

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36077lhv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 **Pin Assignment**

Figures 1.3 and 1.4 show Pin Assignment (Top View). Table 1.6 lists the Pin Name Information by Pin Number.

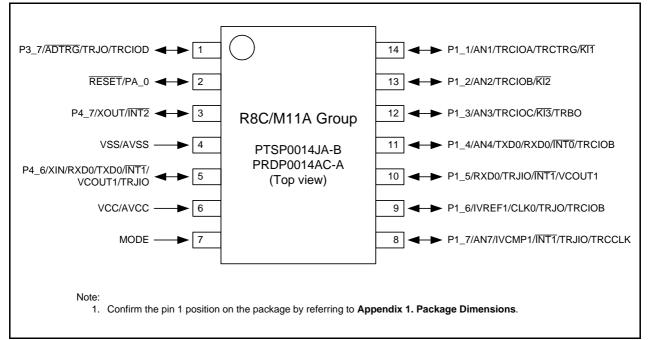
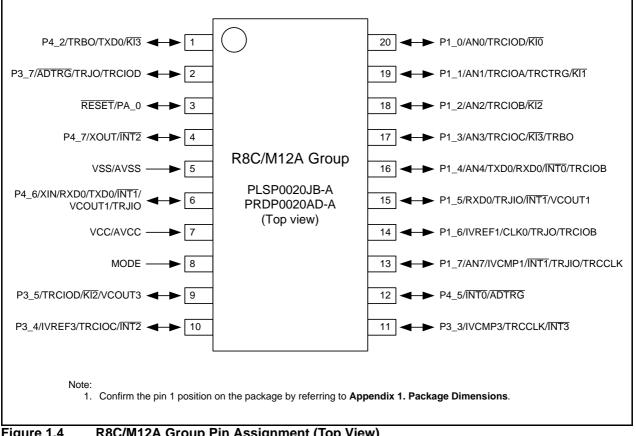



Figure 1.3 R8C/M11A Group Pin Assignment (Top View)

R8C/M12A Group Pin Assignment (Top View) Figure 1.4

Address	Register Name	Symbol	After Reset
0007Ah	Register Hume	Cymbol	
0007Ah 0007Bh			
0007Ch			
0007Dh			
0007Eh			
0007Eh			
00080h	UART0 Transmit/Receive Mode Register	UOMR	00h
00081h	UARTO Bit Rate Register	U0BRG	XXh
00081h	UARTO Transmit Buffer Register	UOTBL	XXh
00082h		UOTBH	XXh
00083h 00084h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00084h	UARTO Transmit/Receive Control Register 0	U0C0	00001000b
	UARTO Receive Buffer Register	UORBL	
00086h	UARTU Receive Buffer Register	UORBL	XXh
00087h			XXh
00088h	UART0 Interrupt Flag and Enable Register	U0IR	00h
00089h			
0008Ah			
0008Bh			
0008Ch			
0008Dh			
0008Eh			
0008Fh			
00090h			
00091h			
00092h			
00093h			
00094h		1	1
00095h			
00096h			
00097h			
00098h	A/D Register 0	ADOL	XXh
00099h		ADOH	000000XXb
0009Ah	A/D Register 1	AD1L	XXh
0009Bh		AD1H	000000XXb
0009Ch	A/D Mode Register	ADMOD	00h
0009Ch	A/D Input Select Register	ADINSEL	00h
0009Eh	A/D Control Register 0	ADCONO	00h
0009Eh	A/D Interrupt Control Status Register	ADICSR	00h
0009FN		ADICSK	0011
000A0h			
000A2h			
000A3h			
000A4h			
000A5h			
000A6h			
000A7h			
000A8h			
000A9h	Port P1 Direction Register	PD1	00h
000AAh			
000ABh	Port P3 Direction Register	PD3	00h
000ACh	Port P4 Direction Register	PD4	00h
000ADh	Port PA Direction Register	PDA	00h
000AEh			
000AFh	Port P1 Register	P1	00h
000B0h			
000B1h	Port P3 Register	P3	00h
000B2h	Port P4 Register	P4	00h
000B3h		PA	00h
	Port PA Register		
	Port PA Register		
000B4h	Port PA Register Pull-Up Control Register 1	PUR1	00h
000B4h 000B5h		PUR1	00h
000B4h 000B5h 000B6h	Pull-Up Control Register 1	PUR1 PUR3	00h
000B4h 000B5h 000B6h 000B7h	Pull-Up Control Register 1 Pull-Up Control Register 3	PUR3	00h
000B4h 000B5h 000B6h 000B7h 000B8h	Pull-Up Control Register 1 Pull-Up Control Register 3 Pull-Up Control Register 4	PUR3 PUR4	00h 00h
000B4h 000B5h 000B6h 000B7h 000B8h 000B9h	Pull-Up Control Register 1 Pull-Up Control Register 3	PUR3	00h
000B4h 000B5h 000B6h 000B7h 000B8h 000B9h 000BAh	Pull-Up Control Register 1 Pull-Up Control Register 3 Pull-Up Control Register 4 Port I/O Function Control Register	PUR3 PUR4 PINSR	00h 00h 00h 00h
000B4h 000B5h 000B6h 000B7h 000B8h 000B9h 000BAh	Pull-Up Control Register 1 Pull-Up Control Register 3 Pull-Up Control Register 4	PUR3 PUR4	00h 00h
000B4h 000B5h 000B6h 000B7h 000B8h 000B9h 000BAh 000BBh 000BCh	Pull-Up Control Register 1 Pull-Up Control Register 3 Pull-Up Control Register 4 Port I/O Function Control Register Drive Capacity Control Register 1	PUR3 PUR4 PINSR DRR1	00h 00h 00h 00h 00h
000B4h 000B5h 000B6h 000B7h 000B8h 000B9h 000BAh 000BBh 000BCh	Pull-Up Control Register 1 Pull-Up Control Register 3 Pull-Up Control Register 4 Port I/O Function Control Register	PUR3 PUR4 PINSR	00h 00h 00h 00h
000B4h 000B5h 000B6h 000B7h 000B8h 000B9h 000BAh 000BBh 000BCh	Pull-Up Control Register 1 Pull-Up Control Register 3 Pull-Up Control Register 4 Port I/O Function Control Register Drive Capacity Control Register 1	PUR3 PUR4 PINSR DRR1	00h 00h 00h 00h 00h

Table 3.3SFR Information (3) (1)

X: Undefined Note:

1. The blank areas are reserved. No access is allowed.

Address	Area Name	Symbol	After Reset
:			
0FFDBh	Option Function Select Register 2	OFS2	(Note 1)
:			
0FFDFh	ID1		(Note 2)
:			
0FFE3h	ID2		(Note 2)
:			
0FFEBh	ID3		(Note 2)
:			
0FFEFh	ID4		(Note 2)
:			
0FFF3h	ID5		(Note 2)
:			
0FFF7h	ID6		(Note 2)
:			
0FFFBh	ID7		(Note 2)
:			
0FFFFh	Option Function Select Register	OFS	(Note 1)

Table 3.9 ID Code Area and Option Function Select Area

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not perform an additional write to the option function select area. Erasure of the block including the option function select area causes the option function select area to be set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user. When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.

2. The ID code area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not perform an additional write to the ID code area. Erasure of the block including the ID code area causes the ID code area to be set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

5.2.1 Processor Mode Register 0 (PM0)

Ado	dress 00	010h									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Sy	Symbol		—	_	—	SRST	_	—	_		
After F	Reset	0	0	0	0	0	0	0	0		
D ''				··				- <i>'</i>			R/W
Bit	Symbo		Bit Name Function								
b0	—	Noth	Nothing is assigned. The write value must be 0. The read value is 0.								—
b1	_										
b2	—										
b3	SRST	Softv	vare reset	bit		0: State	is retained				R/W
						1: Reset	is generat	ed			
b4	—	Noth	ing is assig	gned. The v	write value	must be 0.	The read v	value is 0.			—
b5	—										
b6	—										
b7	—										

Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting the PM0 register.

SRST Bit (Software reset bit)

When the SRST bit is set to 1, the entire MCU is reset. The read value is 0. For details, see 6. Resets.

6.2.2 Reset Source Determination Register (RSTFR)

Ade	dress 0005	5Fh									
	Bit k	o7	b6	b5	b4	b3	b2	b1	b0		
Sy	/mbol -	_	—	—	—	WDR	SWR	HWR	CWR		
After F	Reset	0	0	0	0	X (1)	X (1)	X (1)	X (1)		
		1		·/ N1		-		- .:			D AA/
Bit	Symbol		В	it Name				Function			R/W
b0	CWR	Cold :	start-up/wa	arm start-u	р	0: Cold s	start-up				R/W
		determine flag				1: Warm					
b1	HWR	Hardware reset detect flag				0: Not de	etected				R
						1: Detec	ted				
b2	SWR	Softw	are reset o	detect flag		0: Not de	etected				R
				-		1: Detected					
b3	WDR	Watch	ndog timer	reset dete	ect flag	0: Not de	etected				R
			-		-	1: Detected					
b4	—	Nothi	ng is assig	ned. The v	write value i	must be 0.	The read v	value is 0.			
b5	—										
b6	—										
b7	—										

Note:

1. The value after a reset differs depending on the reset source.

CWR Bit (Cold start-up/warm start-up determine flag)

This flag indicates whether a cold start-up or warm start-up has occurred. The CWR bit is set to 0 (cold start-up) after power-on or voltage monitor 0 reset. This bit remains unchanged after a hardware reset, software reset, or watchdog timer reset.

The CWR bit is set to 1 by writing 1 by a program, but writing 0 to this bit has no effect.

[Condition for setting to 0]

• When a reset occurs after power-on or voltage detection 0.

[Condition for setting to 1]

• When 1 is written to this bit by a program.

HWR Bit (Hardware reset detect flag)

This flag indicates that a hardware reset has occurred.

[Condition for setting to 0]

• When a software reset, watchdog timer reset, power-on reset, or voltage monitor 0 reset occurs.

[Condition for setting to 1]

• When a hardware reset occurs.

SWR Bit (Software reset detect flag)

This flag indicates that a reset has been generated by software.

[Condition for setting to 0]

• When a watchdog timer reset, hardware reset, power-on reset, or voltage monitor 0 reset occurs.

[Condition for setting to 1]

• When a software reset occurs.

6.3.4 Voltage Monitor 0 Reset

The voltage monitor 0 reset is due to the on-chip voltage detection 0 circuit. The voltage detection 0 circuit monitors the voltage applied to the VCC pin. Vdet0 is the detection level. The Vdet0 level is set with bits VDSEL0 to VDSEL1 in the OFS register.

When the input voltage to the VCC pin falls to the Vdet0 level or lower, the CPU, SFRs and I/O ports are initialized. The internal RAM is not initialized. If the supply voltage falls to Vdet0 or lower while writing to the internal RAM, the RAM values will be undefined.

When the voltage applied to the VCC pin next rises to the Vdet0 level or higher, counting of the low-speed onchip oscillator clock starts. When the low-speed on-chip oscillator clock count reaches 256, the internal reset signal goes high and the MCU proceeds to the reset sequence (see Figure 6.2). The low-speed on-chip oscillator clock (no division) is automatically selected as the CPU clock after a reset.

The LVDAS bit in the OFS register can be used to enable or disable the voltage monitor 0 reset after a reset. The setting of the LVDAS bit is valid at all resets.

Bits VDSEL0 to VDSEL1, and LVDAS cannot be changed by a program. To change these bits, write values to b4 to b6 at address 0FFFFh using a flash programmer. For details on the OFS register, see **6.2.4 Option Function Select Register (OFS)**.

For details on the voltage monitor 0 reset, see **7. Voltage Detection Circuit**. Figure 6.5 shows an Example of Voltage Monitor 0 Reset Operation.

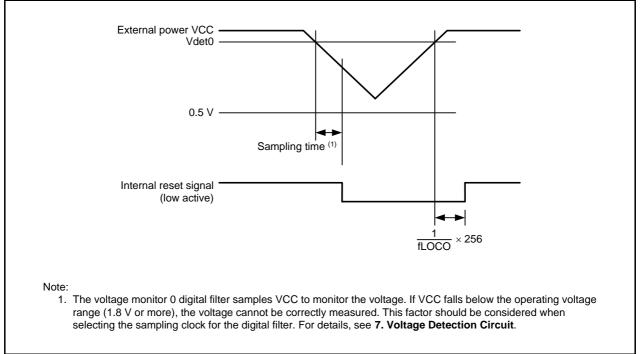
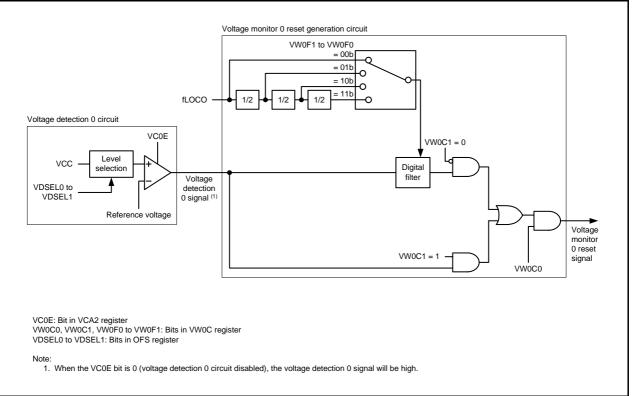
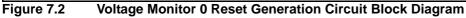
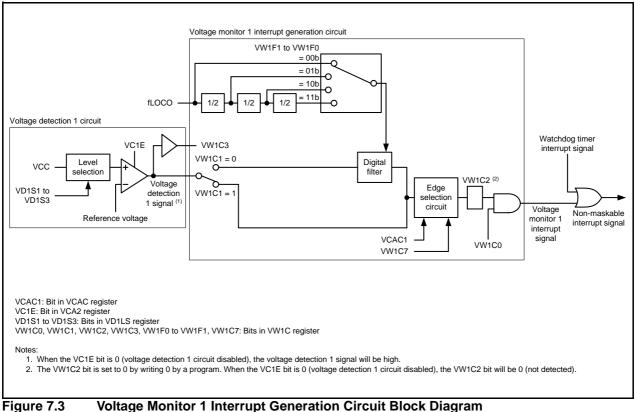





Figure 6.5 Example of Voltage Monitor 0 Reset Operation

7.2.3 Voltage Detection 1 Level Select Register (VD1LS)

Ado	dress 0008	5Bh									
	Bit I	o7	b6	b5	b4	b3	b2	b1	b0		
Sy	mbol -	_		_	_	VD1S3	VD1S2	VD1S1			
After F	Reset	0	0	0	0	0	1	1	1		
Dit	Oursels al	<u> </u>		:4 N I		1		E			
Bit	Symbol		В	it Name				Function			R/W
b0	—	Rese	erved			Set to 1.					R/W
b1	VD1S1	Volta	ge detectio	on 1 level s	elect bits	b3 b2 b1					
b2	VD1S2					0 0 0: 2.35 V (Vdet1_1) 0 0 1: 2.65 V (Vdet1_3)					R/W
b3	VD1S3						0 1 0: 2.95 V (Vdet1_5)				
							0 1 1: 3.25 V (Vdet1_7)				
						1 0 0: 3.55 V (Vdet1_9)					
						101:3					
						110:4	.15 V (Vdet	t1_D)			
						111:4	.45 V (Vdet	t1_F)			
b4	_	Rese	erved			Set to 0.					R/W
b5											
b6	_										
b7		1									

Set the PRC3 bit in the PRCR register to 1 (write enabled) before rewriting the VD1LS register.

7.6 Digital Filter for Voltage Detection Circuits 0 and 1

Figure 7.6 shows a Block Diagram of Voltage Detection Circuit Digital Filter. In digital filter enabled mode, the voltage detection signal from the voltage detection circuit is used to generate a voltage monitor 0 reset signal and a voltage monitor 1 interrupt signal individually through the digital filter circuit. The filter width of the digital filter circuit is the sampling clock \times 2.

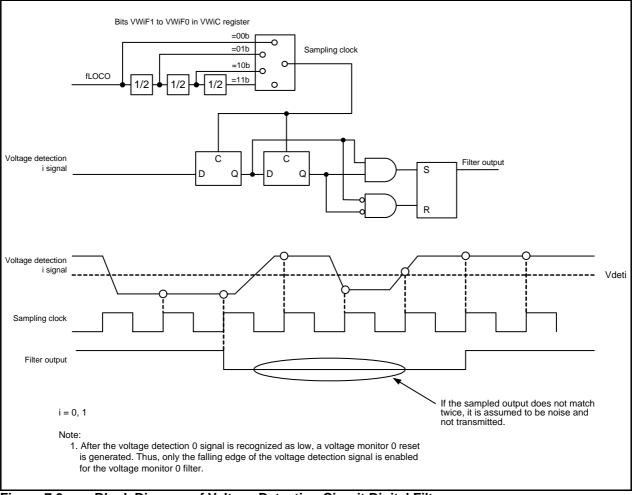


Figure 7.6 Block Diagram of Voltage Detection Circuit Digital Filter

9.2.3 System Clock f Control Register (SCKCR)

Ade	dress 000)22h										
	Bit	b7	b6	b5	b4	b3	b2	b1	b0			
Sy	/mbol		HSCKSEL	WAITM	—	—	PHISSEL2	PHISSEL1	PHISSEL0			
After F	Reset	0	0	0	0	0	0	0	0			
—												
Bit	Symbo			Bit Name				Function		R/W R/W		
b0	PHISSE	LO O	CPU clock divis	sion ratio se	elect bits	These	These bits are used to select the division ratio					
b1	PHISSE	L1					•	< (f) to gene	erate the CPU	R/W		
b2	PHISSE	L2				clock	(fs).			R/W		
						b2 b1 b0	fs = System	clock with	no division			
							fs = System					
							fs = System		•			
						011:	fs = System	clock divid	led by 8			
						100:	fs = System	clock divid	led by 16			
							fs = System	clock divid	led by 32			
							Do not set.					
						111:	Do not set.					
b3	—	1	Nothing is assig	gned. The v	vrite value m	nust be 0.	The read val	ue is 0.		—		
b4	—											
b5	WAITM	۱ ۱	Wait control bit			0: Not	in wait mode	е		R/W		
						1: Wai	t mode is en	tered				
b6	HSCKS	EL H	High-speed on-	chip oscilla	tor/XIN cloc	k 0: XIN	clock			R/W		
		5	select bit			1: Higl	h-speed on-o	chip oscillat	or clock			
b7	_	1	Nothing is assi	gned. The v	vrite value m	nust be 0.	The read val	ue is 0.		—		

Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the SCKCR register.

Bits PHISSEL0 to PHISSEL2 (CPU clock division ratio select bits)

Bits PHISSEL2 to PHISSEL0 are set to 000b (system clock with no division) if the PHISRS bit in the CKRSCR register is 1 (no division) when the MCU returns from wait mode or stop mode.

WAITM Bit (Wait control bit)

- [Condition for setting to 0]
- When a peripheral function interrupt is used to return from wait mode.
- [Condition for setting to 1]
- When 1 is written to the WAITM bit after the PRC0 bit in the PRCR register is set to 1 (write enabled).

11.3.2 Relocatable Vector Table

The relocatable vector table occupies 256 bytes beginning from the start address set in the INTB register. Table 11.6 lists the Relocatable Vector Table.

Interrupt Source	Vector Address ⁽¹⁾ Address (L) to Address (H)	Software Interrupt Number	Priority Level Setting (ILVL0 or ILVL2 to ILVLE)
BRK instruction (2)	+0 to +3 (+00000h to +00003h)	0	
Flash ready	+4 to +7 (+00004h to +00007h)	1	ILVL05 to ILVL04
Reserved		2 to 3	—
Comparator B1	+16 to +19 (+00010h to +00013h)	4	ILVL21 to ILVL20
Comparator B3	+20 to +23 (+00014h to +00017h)	5	ILVL25 to ILVL24
Reserved	+24 to +27 (+00018h to +0001Bh)	6	—
Timer RC	+28 to +31 (+0001Ch to +0001Fh)	7	ILVL35 to ILVL34
Reserved	+32 to +35 (+00020h to +00023h)	8	—
Reserved	+36 to +39 (+00024h to +00027h)	9	—
Reserved	+40 to +43 (+00028h to +0002Bh)	10	—
Reserved	+44 to +47 (+0002Ch to +0002Fh)	11	—
Reserved	+48 to +51 (+00030h to +00033h)	12	—
Key input	+52 to +55 (+00034h to +00037h)	13	ILVL65 to ILVL64
A/D conversion	+56 to +59 (+00038h to +0003Bh)	14	ILVL71 to ILVL70
Reserved	+60 to +63 (+0003Ch to +0003Fh)	15	—
Reserved		16	—
UART0 transmission	+68 to +71 (+00044h to +00047h)	17	ILVL85 to ILVL84
UART0 reception	+72 to +75 (+00048h to +0004Bh)	18	ILVL91 to ILVL90
Reserved	+76 to +79 (+0004Ch to +0004Fh)	19	—
Reserved	+80 to +83 (+00050h to +00053h)	20	—
INT2	+84 to +87 (+00054h to +00057h)	21	ILVLA5 to ILVLA4
Timer RJ2	+88 to +91 (+00058h to +0005Bh)	22	ILVLB1 to ILVLB0
Periodic timer	+92 to +95 (+0005Ch to +0005Fh)	23	ILVLB5 to ILVLB4
Timer RB2	+96 to +99 (+00060h to +00063h)	24	ILVLC1 to ILVLC0
INT1	+100 to +103 (+00064h to +00067h)	25	ILVLC5 to ILVLC4
INT3	+104 to +107 (+00068h to +0006Bh)	26	ILVLD1 to ILVLD0
Reserved		27 to 28	1-
INT0	+116 to +119 (+00074h to +00077h)	29	ILVLE5 to ILVLE4
Reserved		30	
Reserved		31	
Software (2)	+128 to +131 (+00080h to +00083h) to +252 to +255 (+000FCh to +000FFh)	32 to 63	—

Table 11.6	Relocatable Vector Table

Notes:

1. These addresses are relative to those indicated by the INTB register.

2. These interrupts are not disabled by the I flag.

11.5 **INT** Interrupt

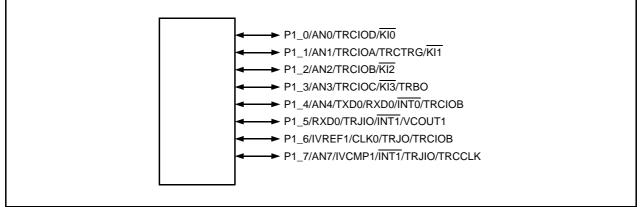
11.5.1 **INTi** Interrupt (i = 0 to 3)

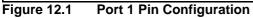
The \overline{INTi} interrupt is generated by an \overline{INTi} input. To use the \overline{INTi} interrupt, set the INTiEN bit in the INTEN register is to 1 (enabled). The edge polarity can be selected by bits INTiSA to INTiSB in the ISCR0 register. The input pins used as the $\overline{INT0}$ to $\overline{INT2}$ input can be selected.

Inputs can be passed through a digital filter with three different sampling clocks.

The interrupt by the \overline{INTi} input can be used as a wakeup function to cancel wait mode or stop mode.

Table 11.11 lists the Pin Configuration for INTi Interrupt.


Pin Name	Assigned Pin	I/O	Function
INT0	P1_4, P4_5	I	INT0 interrupt input
INT1	P1_5, P1_7, P4_6	I	INT1 interrupt input
INT2	P3_4, P4_7	I	INT2 interrupt input
INT3	P3_3	I	INT3 interrupt input


Table 11.11 Pin Configuration for INTi Interrupt

12.3 Port 1

Figure 12.1 shows the Port 1 Pin Configuration.

12.3.1 Port P1 Direction Register (PD1)

Ad	dress	000A	\9h									
	Bit	b	57	b6	b5	b4	b3	b2	b1	b0		
Sy	ymbol	PD	1_7	PD1_6	PD1_5	PD1_4	PD1_3	PD1_2	PD1_1	PD1_0		
After	Reset		0	0	0	0	0	0	0	0		
			1	_					Function			
Bit	Sym	ibol		В	it Name			R/V	Ν			
b0	PD1	_0	Port	P1_0 direc	tion bit			0: Input mode (functions as an input port)				
b1	PD1	_1	Port	P1_1 direc	tion bit		1: Outpu	utput mode (functions as an output port)				W
b2	PD1	_2	Port	P1_2 direc	tion bit						R/V	Ν
b3	PD1	_3	Port	P1_3 direc	tion bit						R/V	Ν
b4	PD1	_4	Port	P1_4 direc	tion bit						R/V	Ν
b5	PD1	_5	Port	Port P1_5 direction bit							R/V	Ν
b6	PD1	_6	Port	P1_6 direc	tion bit						R/V	Ν
b7	PD1	_7	Port	P1_7 direc	tion bit						R/V	Ν

The PD1 register is used to select whether I/O ports are used as input or output. Each bit in the PD1 register corresponds to individual ports.

12.3.2 Port P1 Register (P1)

Address	Address 000AFh											
Bit	b7	b6	b5	b4	b3	b2	b1	b0				
Symbol	P1_7	P1_6	P1_5	P1_4	P1_3	P1_2	P1_1	P1_0				
After Reset	0	0	0	0	0	0	0	0				

Bit	Symbol	Bit Name	Function	R/W
b0	P1_0	Port P1_0 bit	0: Low level	R/W
b1	P1_1	Port P1_1 bit	1: High level	R/W
b2	P1_2	Port P1_2 bit		R/W
b3	P1_3	Port P1_3 bit		R/W
b4	P1_4	Port P1_4 bit		R/W
b5	P1_5	Port P1_5 bit		R/W
b6	P1_6	Port P1_6 bit		R/W
b7	P1_7	Port P1_7 bit		R/W

The P1 register is an I/O port data register. Data input to and output from external devices are accomplished by reading from and writing to the P1 register. The P1 register consists of a port latch to retain output data and a circuit to read the pin states. The value written to the port latch is output from the pins. Each bit in the P1 register corresponds to individual ports.

12.8 Pin Settings for Peripheral Function I/O

Tables 12.21 to 12.24 list the pin settings for peripheral function I/O.

Table 12.21 TRCIOA Pin Settings

Register	TRCOER	TRCMR	Т	RCIOR	0	TRCCR2		Function
Bit	EA	PWM2	IOA2	IOA1	IOA0	TCEG1	TCEG0	Function
	0	1	0	0	1	х	х	Timer mode waveform output (output compare function)
	0	I	0	1	Х	^	^	
Setting	0	1	1	х	х	х	х	Timer mode (input capture function)
value	1	1	1	^	^	^	^	
	1	0	v	v	х	0	1	PWM2 mode (TRCTRG input)
	I	0	~	~	^	1	Х	

X: 0 or 1

Table 12.22 TRCIOB Pin Settings

Register	TRCOER	TRC	CMR	TRCIOR0			Function
Bit	EB	PWM2	PWMB	IOB2	IOB1	IOB0	Function
	0	0	Х	Х	Х	Х	PWM2 mode waveform output
Setting value	0	1	1	Х	Х	Х	PWM mode waveform output
	0	1	0	0	0	1	Timer mode waveform output (output compare function
					1	Х	
	0	1	0	1	х	х	Timer mode (input capture function)
	1	I	0	1	^	^	

X: 0 or 1

Table 12.23 TRCIOC Pin Settings

Register	TRCOER	TRC	CMR	TRCIOR1			Function
Bit	EC	PWM2	PWMC	IOC2	IOC1	IOC0	T unction
	0	1	1	Х	Х	Х	PWM mode waveform output
Catting	0	1	0	0	0	1	Timer mode waveform output (output compare function Timer mode (input capture function)
Setting value					1	Х	
	0	1	0	1	х	х	
	1	I	0				

X: 0 or 1

Table 12.24 TRCIOD Pin Settings

Register	TRCOER	TRC	MR	TRCIOR1			Function
Bit	ED	PWM2	PWMD	IOD2	IOD1	IOD0	T unction
	0	1	1	Х	Х	Х	PWM mode waveform output
Setting value	0	1	0	0	0	1	Timer mode waveform output (output compare function Timer mode (input capture function)
					1	Х	
	0	1	0	1	х	v	
	1	1	0	I	^	X	

X: 0 or 1

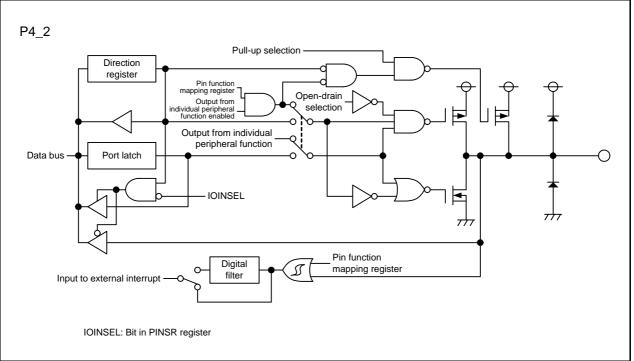


Figure 12.15 I/O Port Configuration (10)

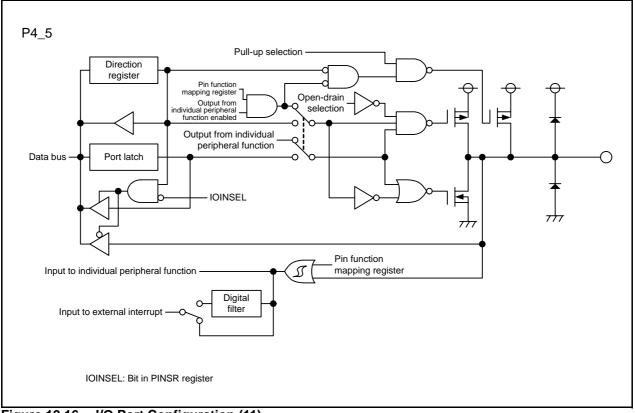


Figure 12.16 I/O Port Configuration (11)

Figure 15.17 shows an Example of One-Shot Pulse Waveform Output Operation in PWM2 Mode.

The count is started when the CTS bit in the TRCMR register is set to 1 (count is started) under the following conditions. Then, the counter is changed to 0000h by a compare match with the TRCGRA register, the count operation is stopped, and a one-shot waveform is output.

- Bits TCEG1 to TCEG0 in the TRCCR2 register are set to 00b (TRCTRG input disabled) to disable the TRCTRG input.
- The CSTP bit in the TRCCR2 register is set to 1 (increment is stopped) to stop the increment when compare match A with the TRCGRA register occurs.
- The CCLR bit in the TRCCR1 register is set to 1 (TRCCNT counter is cleared by input capture/compare match A) to clear the TRCCNT register by compare match A.
- The TOB bit in the TRCCR1 register is set to 0 (output value 0) to set the initial value of the output level to 0.

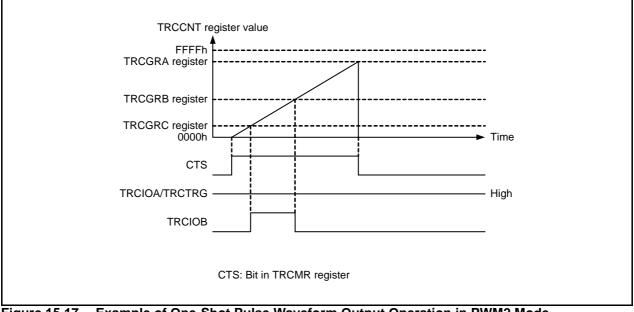


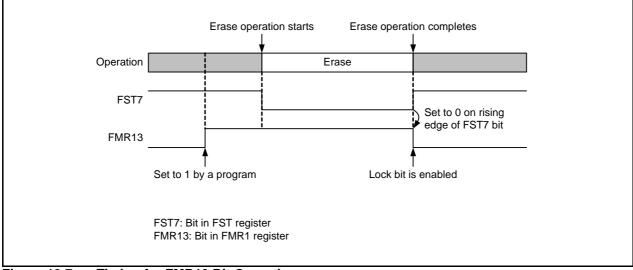
Figure 15.17 Example of One-Shot Pulse Waveform Output Operation in PWM2 Mode

19.6.5 Data Protect Function

Each block in the program ROM in the flash memory has a nonvolatile lock bit. The lock bit is enabled when the FMR13 bit in the FMR1 register is 0 (lock bit enabled). The lock bit can be used to disable (lock) programming/erasing each block. This prevents data from being written or erased inadvertently. The block status changes according to the lock bit as follows:

- When the lock bit data is 0: locked (the block cannot be programmed/erased)
- When the lock bit data is 1: not locked (the block can be programmed/erased)

The lock bit data is set to 0 (locked) when the lock bit program command is executed, and 1 (not locked) when the block is erased. There are no commands that can be used to set only the lock bit data to 1. The lock bit data can be read using the read lock bit status command.


When the FMR13 bit is set to 1 (lock bit disabled), the lock bit function is disabled and no blocks are locked. The lock bit data remains unchanged. When the FMR13 bit is set to 0 (lock bit enabled), the lock bit function is enabled. The lock bit data is retained.

When the block erase command is executed while the FMR13 bit is 1 (lock bit disabled), the target block is erased regardless of the lock bit status. The lock bit for the erase-target block is set to 1 after erase is completed. For details on individual commands, see **19.6.6 Software Commands**.

The FMR13 bit is set to 0 after auto-erase is completed. This bit is also set to 0 when one of the following conditions is met. To program/erase a block with a lock bit in a different state, set the FMR 13 bit to 1 (lock bit disabled) again and execute the program command or the block erase command.

- When the FST7 bit in the FST register is changed from 0 (busy) to 1 (ready) and the program/erase command completes.
- When the FST7 bit in the FST register is changed from 0 (busy) to 1 (ready) and program-suspend/erase-suspend is entered.
- When a command sequence error occurs.
- When the FMR01 bit in the FMR0 register is set to 0 (CPU rewrite mode disabled).
- When the FMSTP bit in the FMR0 register is set to 1 (flash memory is stopped).
- When the CMDRST bit in the FMR0 register is set to 1 (erase/write sequence reset).

Figure 19.7 shows the Timing for FMR13 Bit Operation.

21.5.5 INTi Input Filter (i = 0 to 3) When Returning from Wait Mode or Stop Mode to Standard Mode

When a transition is made to wait mode or stop mode with the WCKSTP bit in the CKSTPR register set to 1 (system clock stopped in wait mode) while in use of the \overline{INTi} input filter, the \overline{INTi} interrupt cannot be used to return to standard operating mode.

When the \overline{INTi} interrupt is used to return, set the WCKSTP bit to 1 and bits INTiF1 to INTiF0 in the INTF0 register to 00b (no filter) before a transition is made to wait mode or stop mode. When the \overline{INTi} input filter is used again, select the sampling clock with bits INTiF0 to INTiF1 to enable the INTIEN bit in the INTEN register.

Figure 21.2 shows the Register Setting Procedure When \overline{INTi} Input Filter (i = 0 to 3) is Used.

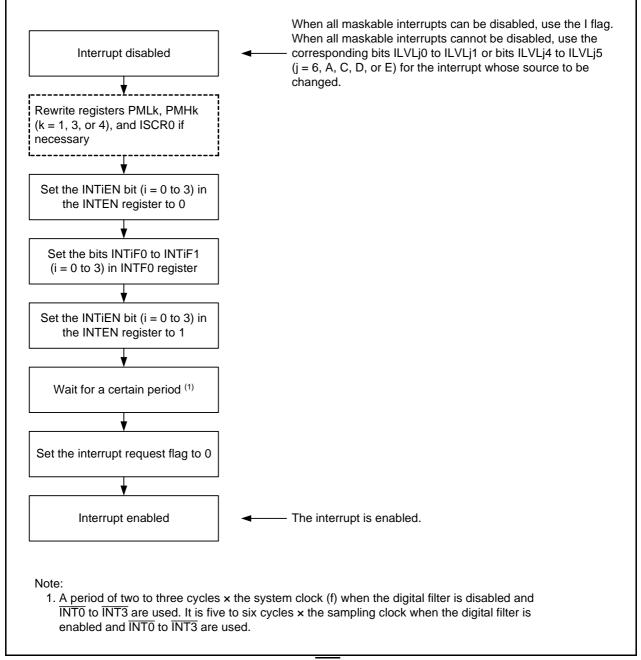


Figure 21.2 Register Setting Procedure When INTi Input Filter (i = 0 to 3) is Used

21.9.5 Input Capture Function

• Set the pulse width of the input capture signal as follows: [When the digital filter is not used] Three or more cycles of the timer RC operation clock (refer to **Table 15.1 Timer RC Specifications**) [When the digital filter is used]

Five cycles of the digital filter sampling clock + three cycles of the timer RC operating clock, minimum (refer to **Figure 15.19 Digital Filter Circuit Block Diagram**)

• The value of the TRCCNT register is transferred to the TRCGRj register one or two cycles of the timer RC operation clock after the input capture signal is input to the TRCIOj (j = A, B, C, or D) pin (when the digital filter function is not used).

21.9.6 TRCMR Register in PWM2 Mode

When the CSTP bit in the TRCCR2 register is 1 (increment is stopped), do not set the TRCMR register when a compare match occurs between registers TRCCNT and TRCGRA.

21.9.7 MSTCR Register

After stopping the timer RC count, set the MSTTRC bit in the MSTCR register to 1 (standby).

21.9.8 Mode Switching

- When switching the modes during operation, set the CTS bit in the TRCMR register to 0 (count is stopped) before switching.
- After switching the modes, set each flag in the TRCSR register to 0 before operation is started.

21.9.9 Procedure for Setting Registers Associated with Timer RC

Set the registers associated with timer RC following the procedure below:

- (1) Set timer RC operating mode (bits PWMB, PWMC, PWMD, and PWM2 in the TRCMR register).
- (2) Set the registers other than that set in (1).
- (3) Set the port output to be enabled (bits EA to ED in the TRCOER register).

