

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Not For New Designs
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	1.6MB (1.6M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	138K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-13
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2787x200f100labkxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

4.7 4.7.1	AC Parameters
4.7.2	Definition of Internal Timing
4.7.2.1	Wakeup Clock
4.7.2.3	Selecting and Changing the Operating Frequency 114
4.7.3	External Clock Input Parameters 115
4.7.4	Pad Properties
4.7.5	External Bus Timing 12'
4.7.5.1	Bus Cycle Control with the READY Input 126
4.7.6	Synchronous Serial Interface Timing 129
4.7.7	Debug Interface Timing 133
5	Package and Reliability 139
5.1	Packaging
5.2	Thermal Considerations 14
5.3	Quality Declarations 142

Summary of Features

1.3 Definition of Feature Variants

The XC2787X types are offered with several Flash memory sizes. **Table 3** and **Table 4** describe the location of the available Flash memory.

Table 3 Continuous Flash Memory Ranges

Total Flash Size	1st Range ¹⁾	2nd Range	3rd Range
1,600 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H D8'FFFF _H	n.a.
1,088 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H CF'FFFF _H	D8'0000 _H D8'FFFF _H

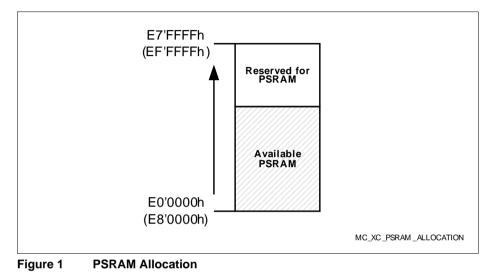
1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

Table 4 Flash Memory Module Allocation (in Kbytes)

Total Flash Size	Flash 01)	Flash 1	Flash 2	Flash 3	Flash 4	Flash 5	Flash 6
1,600	256	255	256	256	256	256	64
1,088	256	255	256	256	-	-	64

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFF_H).

The XC2787X types are offered with different interface options. **Table 5** lists the available channels for each option.


Table 5 Interface Channel Association

Total Number	Available Channels / Message Objects
16 ADC0 channels	CH0 CH15
8 ADC1 channels	CH0 CH7
2 CAN nodes	CAN0, CAN1 128 message objects
6 serial channels	U0C0, U0C1, U1C0, U1C1, U2C0, U2C1

Summary of Features

The XC2787X types are offered with several PSRAM memory sizes. Figure 1 shows the allocation rules. For example 80 Kbytes of PSRAM will be allocated at E0'0000h-E1'3FFFh.

General Device Information

Table	e 6 Pin De	finitior	ns and	Functions (cont'd)		
Pin	Symbol	Ctrl.	Туре	Function		
52	P2.11	O0 / I	St/B	Bit 11 of Port 2, General Purpose Input/Output		
	U0C0_SELO 2	O1	St/B	USIC0 Channel 0 Select/Control 2 Output		
	U0C1_SELO 2	O2	St/B	USIC0 Channel 1 Select/Control 2 Output		
	U3C1_DOUT	O3	St/B	USIC3 Channel 1 Shift Data Output		
	BHE/WRH	ОН	St/B	External Bus Interf. High-Byte Control Output Can operate either as Byte High Enable (BHE) or as Write strobe for High Byte (WRH).		
53	P11.5	O0 / I	St/B	Bit 5 of Port 11, General Purpose Input/Output		
	CCU61_CC6 0	01	St/B	CCU61 Channel 0 Output		
	CCU61_COU T63	O2	St/B	CCU61 Channel 3 Output		
	U3C1_SELO 1	O3	St/B	USIC3 Channel 1 Select/Control 1 Output		
	CCU61_CC6 0INB	1	St/B	CCU61 Channel 0 Input		
	U3C1_DX2B	I	St/B	USIC3 Channel 1 Shift Control Input		
55	P2.0	O0 / I	St/B	Bit 0 of Port 2, General Purpose Input/Output		
	CCU63_CC6 0	O2	St/B	CCU63 Channel 0 Output		
	AD13	OH / IH	St/B	External Bus Interface Address/Data Line 13		
	RxDC0C	I	St/B	CAN Node 0 Receive Data Input		
	CCU63_CC6 0INB	I	St/B	CCU63 Channel 0 Input		
	T5INB	I	St/B	GPT12E Timer T5 Count/Gate Input		

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
95	P10.3	O0 / I	St/B	Bit 3 of Port 10, General Purpose Input/Output				
	CCU60_COU T60	O2	St/B	CCU60 Channel 0 Output				
	AD3	OH / IH	St/B	External Bus Interface Address/Data Line 3				
	U0C0_DX2A	I	St/B	USIC0 Channel 0 Shift Control Input				
	U0C1_DX2A	I	St/B	USIC0 Channel 1 Shift Control Input				
	U3C0_DX0A	I	St/B	USIC3 Channel 0 Shift Data Input				
96	P0.5	O0 / I	St/B	Bit 5 of Port 0, General Purpose Input/Output				
	U1C1_SCLK OUT	01	St/B	USIC1 Channel 1 Shift Clock Output				
	U1C0_SELO 2	02	St/B	USIC1 Channel 0 Select/Control 2 Output				
	CCU61_COU T62	O3	St/B	CCU61 Channel 2 Output				
	A5	ОН	St/B	External Bus Interface Address Line 5				
	U1C1_DX1A	I	St/B	USIC1 Channel 1 Shift Clock Input				
	U1C0_DX1C	I	St/B	USIC1 Channel 0 Shift Clock Input				
97	P3.3	O0 / I	St/B	Bit 3 of Port 3, General Purpose Input/Output				
	U2C0_SELO 0	01	St/B	USIC2 Channel 0 Select/Control 0 Output				
	U2C1_SELO 1	02	St/B	USIC2 Channel 1 Select/Control 1 Output				
	U2C0_DX2A	I	St/B	USIC2 Channel 0 Shift Control Input				

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
117	P10.10	O0 / I	St/B	Bit 10 of Port 10, General Purpose Input/Output				
	U0C0_SELO 0	O1	St/B	USIC0 Channel 0 Select/Control 0 Output				
	CCU60_COU T63	O2	St/B	CCU60 Channel 3 Output				
	AD10	OH / IH	St/B	External Bus Interface Address/Data Line 10				
	U0C0_DX2C	I	St/B	USIC0 Channel 0 Shift Control Input				
	U0C1_DX1A	I	St/B	USIC0 Channel 1 Shift Clock Input				
	TDI_B	IH	St/B	JTAG Test Data Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.				
118	P10.11	O0 / I	St/B	Bit 11 of Port 10, General Purpose Input/Output				
(U1C0_SCLK OUT	O1	St/B	USIC1 Channel 0 Shift Clock Output				
	BRKOUT	02	St/B	OCDS Break Signal Output				
	U3C0_SELO 0	O3	St/B	USIC3 Channel 0 Select/Control 0 Output				
	AD11	OH / IH	St/B	External Bus Interface Address/Data Line 11				
	U1C0_DX1D	I	St/B	USIC1 Channel 0 Shift Clock Input				
	TMS_B	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.				
	U3C0_DX2A	I	St/B	USIC3 Channel 0 Shift Control Input				
119	P9.2	O0 / I	St/B	Bit 2 of Port 9, General Purpose Input/Output				
	CCU63_CC6 2	O1	St/B	CCU63 Channel 2 Output				
	CC1_CC4	O2	St/B	CAPCOM1 CC4 Compare Output				
	CCU63_CC6 2INA	I	St/B	CCU63 Channel 2 Input				
	CAPINB	I	St/B	GPT12E Register CAPREL Capture Input				

General Device Information

Table 6Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
120	P1.2	O0 / I	St/B	Bit 2 of Port 1, General Purpose Input/Output			
	CCU62_CC6 2	01	St/B	CCU62 Channel 2 Output			
	U1C0_SELO 6	02	St/B	USIC1 Channel 0 Select/Control 6 Output			
	U2C1_SCLK OUT	O3	St/B	USIC2 Channel 1 Shift Clock Output			
	A10	ОН	St/B	External Bus Interface Address Line 10			
	ESR1_4	I	St/B	ESR1 Trigger Input 4			
	CCU61_T12 HRB	I	St/B	External Run Control Input for T12 of CCU61			
	CCU62_CC6 2INA	I	St/B	CCU62 Channel 2 Input			
	U2C1_DX0D	I	St/B	USIC2 Channel 1 Shift Data Input			
	U2C1_DX1C	I	St/B	USIC2 Channel 1 Shift Clock Input			
121	P10.12	O0 / I	St/B	Bit 12 of Port 10, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TDO_B	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.			
	AD12	OH / IH	St/B	External Bus Interface Address/Data Line 12			
	U1C0_DX0C	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX1E	I	St/B	USIC1 Channel 0 Shift Clock Input			
122	P9.3	O0 / I	St/B	Bit 3 of Port 9, General Purpose Input/Output			
	CCU63_COU T60	01	St/B	CCU63 Channel 0 Output			
	BRKOUT	O2	St/B	OCDS Break Signal Output			

Memory Content Protection

The contents of on-chip memories can be protected against soft errors (induced e.g. by radiation) by activating the parity mechanism or the Error Correction Code (ECC).

The parity mechanism can detect a single-bit error and prevent the software from using incorrect data or executing incorrect instructions.

The ECC mechanism can detect and automatically correct single-bit errors. This supports the stable operation of the system.

It is strongly recommended to activate the ECC mechanism wherever possible because this dramatically increases the robustness of an application against such soft errors.

3.3 Central Processing Unit (CPU)

The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instructionfetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three register banks, and dedicated SFRs. The ALU features a multiply-and-divide unit, a bit-mask generator, and a barrel shifter.

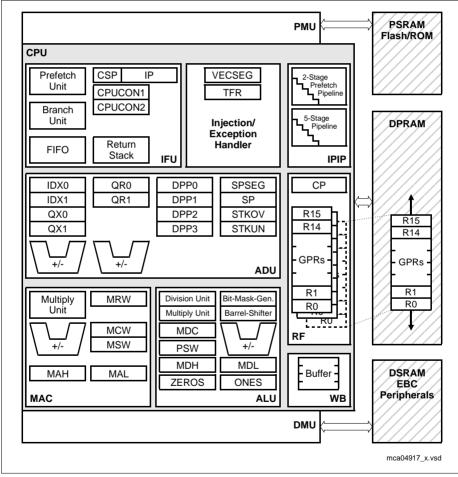


Figure 5 CPU Block Diagram

Target Protocols

Each USIC channel can receive and transmit data frames with a selectable data word width from 1 to 16 bits in each of the following protocols:

- UART (asynchronous serial channel)
 - module capability: maximum baud rate = f_{SYS} / 4
 - data frame length programmable from 1 to 63 bits
 - MSB or LSB first
- LIN Support (Local Interconnect Network)
 - module capability: maximum baud rate = f_{SYS} / 16
 - checksum generation under software control
 - baud rate detection possible by built-in capture event of baud rate generator
- SSC/SPI (synchronous serial channel with or without data buffer)
 - module capability: maximum baud rate = f_{SYS} / 2, limited by loop delay
 - number of data bits programmable from 1 to 63, more with explicit stop condition
 - MSB or LSB first
 - optional control of slave select signals
- IIC (Inter-IC Bus)
 - supports baud rates of 100 kbit/s and 400 kbit/s
- IIS (Inter-IC Sound Bus)
 - module capability: maximum baud rate = f_{SYS} / 2
- Note: Depending on the selected functions (such as digital filters, input synchronization stages, sample point adjustment, etc.), the maximum achievable baud rate can be limited. Please note that there may be additional delays, such as internal or external propagation delays and driver delays (e.g. for collision detection in UART mode, for IIC, etc.).

MultiCAN Features

- CAN functionality conforming to CAN specification V2.0 B active for each CAN node (compliant to ISO 11898)
- Independent CAN nodes
- Set of independent message objects (shared by the CAN nodes)
- Dedicated control registers for each CAN node
- Data transfer rate up to 1 Mbit/s, individually programmable for each node
- · Flexible and powerful message transfer control and error handling capabilities
- Full-CAN functionality for message objects:
 - Can be assigned to one of the CAN nodes
 - Configurable as transmit or receive objects, or as message buffer FIFO
 - Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering
 - Remote Monitoring Mode, and frame counter for monitoring
- Automatic Gateway Mode support
- 16 individually programmable interrupt nodes
- Analyzer mode for CAN bus monitoring

3.15 System Timer

The System Timer consists of a programmable prescaler and two concatenated timers (10 bits and 6 bits). Both timers can generate interrupt requests. The clock source can be selected and the timers can also run during power reduction modes.

Therefore, the System Timer enables the software to maintain the current time for scheduling functions or for the implementation of a clock.

3.16 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.4 s can be monitored (@ 80 MHz).

Time intervals between 2.56 μ s and 10.71 s can be monitored (@ 100 MHz).

4 Electrical Parameters

The operating range for the XC2787X is defined by its electrical parameters. For proper operation the specified limits must be respected when integrating the device in its target environment.

4.1 General Parameters

These parameters are valid for all subsequent descriptions, unless otherwise noted.

Parameter	Symbol		Values	;	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Output current on a pin when high value is driven	I _{OH} SR	-30	-	-	mA	
Output current on a pin when low value is driven	I _{OL} SR	-	-	30	mA	
Overload current	$I_{\rm OV}{\rm SR}$	-10	-	10	mA	1)
Absolute sum of overload currents	$\Sigma I_{OV} $ SR	-	-	100	mA	1)
Junction Temperature	$T_{\sf J}{\sf SR}$	-40	-	150	°C	
Storage Temperature	$T_{\rm ST}{ m SR}$	-65	-	150	°C	
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	-0.5	-	6.0	V	
Voltage on any pin with respect to ground (Vss)	$V_{\rm IN}~{\rm SR}$	-0.5	-	V _{DDP} + 0.5	V	$V_{\rm IN} \leq V_{\rm DDP(max)}$

Table 12 Absolute Maximum Rating Parameters

 Overload condition occurs if the input voltage V_{IN} is out of the absolute maximum rating range. In this case the current must be limited to the listed values by design measures.

Note: Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Pullup/Pulldown Device Behavior

Most pins of the XC2787X feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application.

The specified current values indicate how to load the respective pin depending on the intended signal level. **Figure 13** shows the current paths.

The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values.

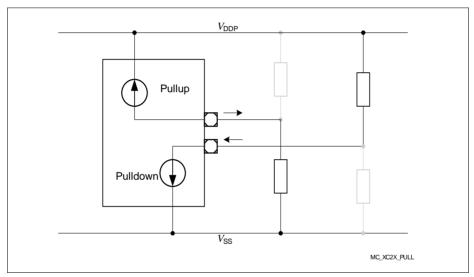


Figure 13 Pullup/Pulldown Current Definition

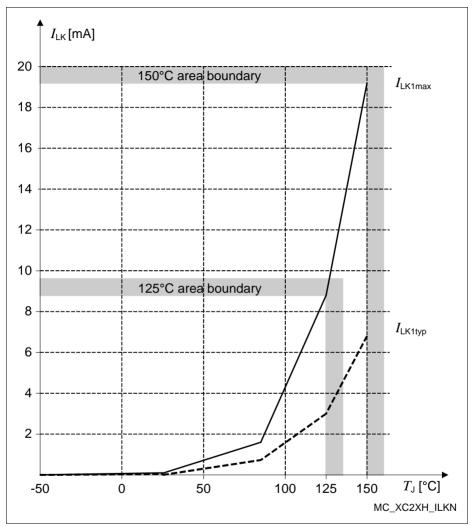


Figure 15 Leakage Supply Current as a Function of Temperature

4.5 System Parameters

The following parameters specify several aspects which are important when integrating the XC2787X into an application system.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol		Values	;	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Short-term deviation of internal clock source frequency ¹⁾	∆f _{INT} CC	-1	-	1	%	$\Delta T_{\rm J} \le 10^{\circ} {\rm C}$	
Internal clock source frequency	$f_{\rm INT}{\rm CC}$	4.8	5.0	5.2	MHz		
Wakeup clock source	$f_{\rm WU}{\rm CC}$	400	-	700	kHz	FREQSEL= 00	
frequency ²⁾		210	-	390	kHz	FREQSEL= 01	
		140	-	260	kHz	FREQSEL= 10	
		110	-	200	kHz	FREQSEL= 11	
Startup time from power- on with code execution from Flash	t _{SPO} CC	1.9	2.6	3.2	ms	$f_{ m WU}$ = 500 kHz	
Startup time from stopover mode with code execution from PSRAM	t _{SSO} CC	11 / f _{WU} ³⁾	-	12 / f _{WU} ³⁾	μS		
Core voltage (PVC) supervision level	$V_{\rm PVC}{ m CC}$	V _{LV} - 0.03	$V_{\rm LV}$	V _{LV} + 0.07 ⁴⁾	V	5)	
Supply watchdog (SWD) supervision level	V _{SWD} CC	V _{LV} - 0.10 ⁶⁾	$V_{\rm LV}$	V _{LV} + 0.15	V	voltage_range= lower ⁵⁾	
		V _{LV} - 0.15	$V_{\rm LV}$	V _{LV} + 0.15	V	voltage_range= upper ⁵⁾	

Table 22Various System Parameters

 The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization.

 This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to production test - verified by design/characterization

3) f_{WU} in MHz

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Rise and Fall times (10% - 90%)	t _{RF} CC	-	-	37 + 0.65 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Medium
		_	_	24 + 0.3 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Medium
		-	-	6.2 + 0.24 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Sharp
		-	-	34 + 0.3 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Slow
		-	-	500 + 2.5 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Weak

Table 29 Standard Pad Parameters for Lower Voltage Range (cont'd)

An output current above |I_{OXnom}| may be drawn from up to three pins at the same time. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 50 mA.

XC2787X XC2000 Family / High Line

Electrical Parameters

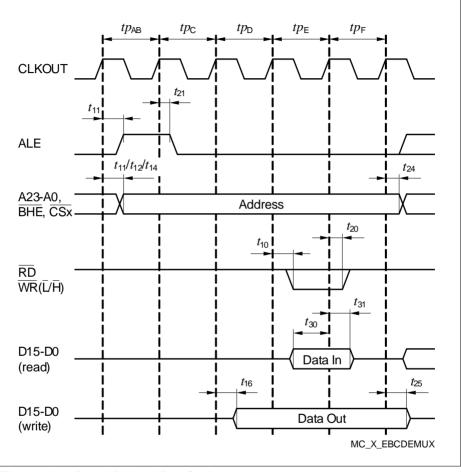


Figure 24 Demultiplexed Bus Cycle

4.7.5.1 Bus Cycle Control with the READY Input

The duration of an external bus cycle can be controlled by the external circuit using the READY input signal. The polarity of this input signal can be selected.

Synchronous READY permits the shortest possible bus cycle but requires the input signal to be synchronous to the reference signal CLKOUT.

An asynchronous READY signal puts no timing constraints on the input signal but incurs a minimum of one waitstate due to the additional synchronization stage. The minimum

duration of an asynchronous READY signal for safe synchronization is one CLKOUT period plus the input setup time.

An active READY signal can be deactivated in response to the trailing (rising) edge of the corresponding command (RD or WR).

If the next bus cycle is controlled by READY, an active READY signal must be disabled before the first valid sample point in the next bus cycle. This sample point depends on the programmed phases of the next cycle.

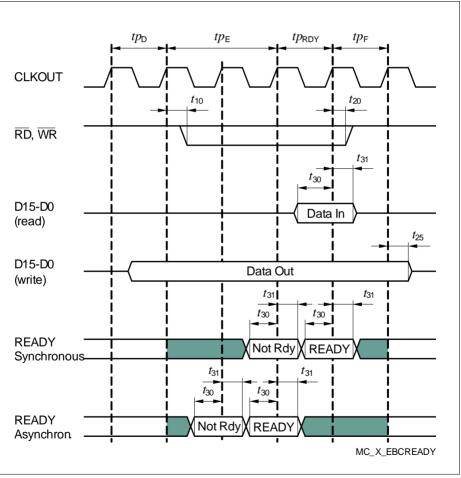


Figure 25 READY Timing

Package and Reliability

5.3 Quality Declarations

The operation lifetime of the XC2787X depends on the applied temperature profile in the application. For a typical example, please refer to **Table 44**; for other profiles, please contact your Infineon counterpart to calculate the specific lifetime within your application.

Table 43Quality Parameters

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Operation lifetime	t _{OP} CC	-	-	20	а	See Table 44 and Table 45
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	-	-	2 000	V	EIA/JESD22- A114-B
Moisture sensitivity level	MSL CC	-	-	3	-	JEDEC J-STD-020C

Table 44 Typical Usage Temperature Profile

Operating Time (Sum = 20 years)	Operating Temperat.	Notes
1 200 h	$T_{\rm J} = 150^{\circ}{\rm C}$	Normal operation
3 600 h	$T_{\rm J}$ = 125°C	Normal operation
7 200 h	$T_{\rm J} = 110^{\circ}{\rm C}$	Normal operation
12 000 h	$T_{\rm J} = 100^{\circ}{\rm C}$	Normal operation
7 × 21 600 h	$T_{\rm J} = 010^{\circ} {\rm C},,$ 6070°C	Power reduction

Table 45 Long Time Storage Temperature Profile

Operating Time (Sum = 20 years)	Operating Temperat.	Notes
2 000 h	$T_{\rm J} = 150^{\circ}{\rm C}$	Normal operation
16 000 h	$T_{\rm J} = 125^{\circ}{\rm C}$	Normal operation
6 000 h	$T_{\rm J} = 110^{\circ}{\rm C}$	Normal operation
151 200 h	$T_{\rm J} \le 150^{\circ}{ m C}$	No operation

www.infineon.com

Published by Infineon Technologies AG