

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Deta	ils

2010	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	87
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.85V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LFBGA
Supplier Device Package	112-BGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg390f1024-bga112t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32GG microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

2.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 μ DMA controller licensed from ARM.

2.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32GG.

2.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32GG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

2.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32GG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

2.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

2.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

2.1.10 External Bus Interface (EBI)

The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH, ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M3. This enables seamless access from software without manually manipulating the IO settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required

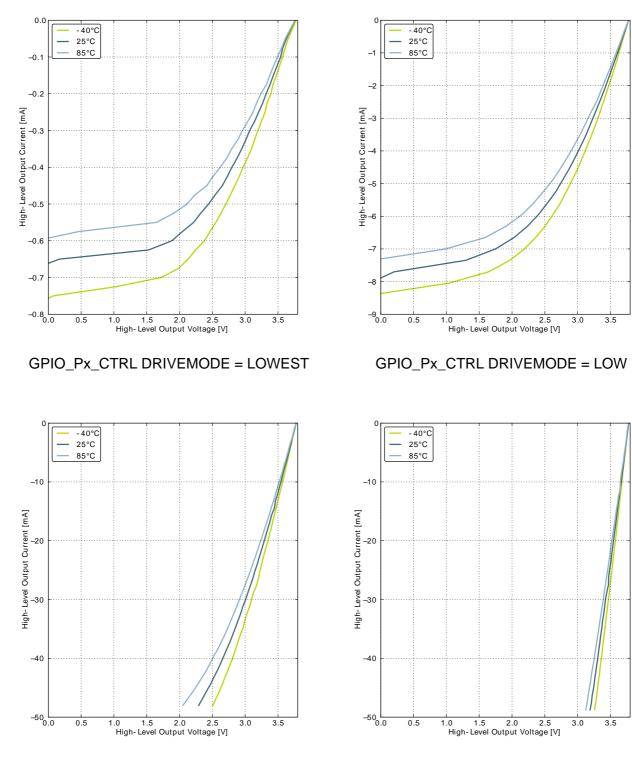


Table 3.5. Power Management

Symbol	Parameter	Condition	Min	Тур	Max	Unit
	BOD threshold on	EMO	1.74		1.96	V
V _{BODextthr} -	thr- falling external sup- ply voltage	EM2	1.74		1.98	V
V _{BODintthr} -	BOD threshold on falling internally reg- ulated supply volt- age		1.57		1.70	V
V _{BODextthr+}	BOD threshold on rising external sup- ply voltage			1.85	1.98	V
V _{PORthr+}	Power-on Reset (POR) threshold on rising external sup- ply voltage				1.98	V
t _{RESET}	Delay from reset is released until program execution starts	Applies to Power-on Reset, Brown-out Reset and pin reset.		163		μs
C _{DECOUPLE}	Voltage regulator decoupling capaci-tor.	X5R capacitor recommended. Apply between DECOUPLE pin and GROUND		1		μF
C _{USB_VREGO}	USB voltage regu- lator out decoupling capacitor.	X5R capacitor recommended. Apply between USB_VREGO pin and GROUND		1		μF
C _{USB_VREGI}	USB voltage regula- tor in decoupling ca- pacitor.	X5R capacitor recommended. Apply between USB_VREGI pin and GROUND		4.7		μF

Figure 3.9. Typical High-Level Output Current, 3.8V Supply Voltage

GPIO_Px_CTRL DRIVEMODE = STANDARD

GPIO_Px_CTRL DRIVEMODE = HIGH

3.9 Oscillators

3.9.1 LFXO

Table 3.8. LFXO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LFXO}	Supported nominal crystal frequency			32.768		kHz
ESR _{LFXO}	Supported crystal equivalent series re- sistance (ESR)			30	120	kOhm
C _{LFXOL}	Supported crystal external load range		X ¹		25	pF
DC _{LFXO}	Duty cycle		48	50	53.5	%
I _{LFXO}	Current consump- tion for core and buffer after startup.	ESR=30 kOhm, C _L =10 pF, LFXOBOOST in CMU_CTRL is 1		190		nA
t _{LFXO}	Start- up time.	ESR=30 kOhm, C _L =10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1		400		ms

¹See Minimum Load Capacitance (C_{LFXOL}) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio

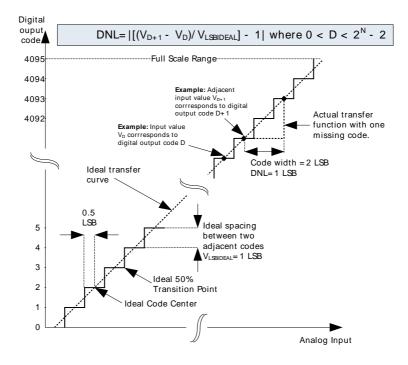
For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration".

3.9.2 HFXO

Table 3.9. HFXO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{HFXO}	Supported nominal crystal Frequency		4		48	MHz
	Supported crystal	Crystal frequency 48 MHz			50	Ohm
ESR _{HFXO}	equivalent series re-	Crystal frequency 32 MHz		30	60	Ohm
	sistance (ESR)	Crystal frequency 4 MHz		400	1500	Ohm
9 _{mHFXO}	The transconduc- tance of the HFXO input transistor at crystal startup	HFXOBOOST in CMU_CTRL equals 0b11	20			mS
C _{HFXOL}	Supported crystal external load range		5		25	pF
	Current consump- tion for HFXO after startup	4 MHz: ESR=400 Ohm, C _L =20 pF, HFXOBOOST in CMU_CTRL equals 0b11		85		μΑ
IHFXO		32 MHz: ESR=30 Ohm, C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		165		μA
t _{HFXO}	Startup time	32 MHz: ESR=30 Ohm, C_L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		400		μs

EFM[®]32


Symbol	Parameter	Condition	Min	Тур	Мах	Unit
C _{ADCIN}	Input capacitance			2		pF
R _{ADCIN}	Input ON resistance		1			MOhm
R _{ADCFILT}	Input RC filter resis- tance			10		kOhm
C _{ADCFILT}	Input RC filter/de- coupling capaci- tance			250		fF
f _{ADCCLK}	ADC Clock Fre- quency				13	MHz
		6 bit	7			ADC- CLK Cycles
t _{ADCCONV}	Conversion time	8 bit	11			ADC- CLK Cycles
		12 bit	13			ADC- CLK Cycles
t _{adcacq}	Acquisition time	Programmable	1		256	ADC- CLK Cycles
t _{ADCACQVDD3}	Required acquisi- tion time for VDD/3 reference		2			μs
	Startup time of ref- erence generator and ADC core in NORMAL mode			5		μs
t _{ADCSTART}	Startup time of ref- erence generator and ADC core in KEEPADCWARM mode			1		μs
		1 MSamples/s, 12 bit, single ended, internal 1.25V refer- ence		59		dB
		1 MSamples/s, 12 bit, single ended, internal 2.5V reference		63		dB
		1 MSamples/s, 12 bit, single ended, V_{DD} reference		65		dB
SNR _{ADC}	Signal to Noise Ra-	1 MSamples/s, 12 bit, differen- tial, internal 1.25V reference		60		dB
	tio (SNR)	1 MSamples/s, 12 bit, differen- tial, internal 2.5V reference		65		dB
		1 MSamples/s, 12 bit, differen- tial, 5V reference		54		dB
		1 MSamples/s, 12 bit, differential, V_{DD} reference		67		dB
		1 MSamples/s, 12 bit, differen- tial, 2xV _{DD} reference		69		dB

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
		200 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		62		dB
		200 kSamples/s, 12 bit, single ended, internal 2.5V reference		63		dB
		200 kSamples/s, 12 bit, single ended, V _{DD} reference		67		dB
		200 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		63		dB
		200 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, 5V reference		66		dB
		200 kSamples/s, 12 bit, differential, V_{DD} reference	63	66		dB
		200 kSamples/s, 12 bit, differ- ential, 2xV _{DD} reference		70		dB
		1 MSamples/s, 12 bit, single ended, internal 1.25V refer- ence		58		dB
		1 MSamples/s, 12 bit, single ended, internal 2.5V reference		62		dB
		1 MSamples/s, 12 bit, single ended, V _{DD} reference		64		dB
		1 MSamples/s, 12 bit, differen- tial, internal 1.25V reference		60		dB
		1 MSamples/s, 12 bit, differen- tial, internal 2.5V reference		64		dB
		1 MSamples/s, 12 bit, differen- tial, 5V reference		54		dB
		1 MSamples/s, 12 bit, differential, V_{DD} reference		66		dB
SINAD _{ADC}	SIgnal-to-Noise And Distortion-ratio (SINAD)	1 MSamples/s, 12 bit, differen- tial, 2xV _{DD} reference		68		dB
		200 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		61		dB
		200 kSamples/s, 12 bit, single ended, internal 2.5V reference		65		dB
		200 kSamples/s, 12 bit, single ended, V _{DD} reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		63		dB
		200 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, 5V reference		66		dB
		200 kSamples/s, 12 bit, differential, V_{DD} reference	62	65		dB

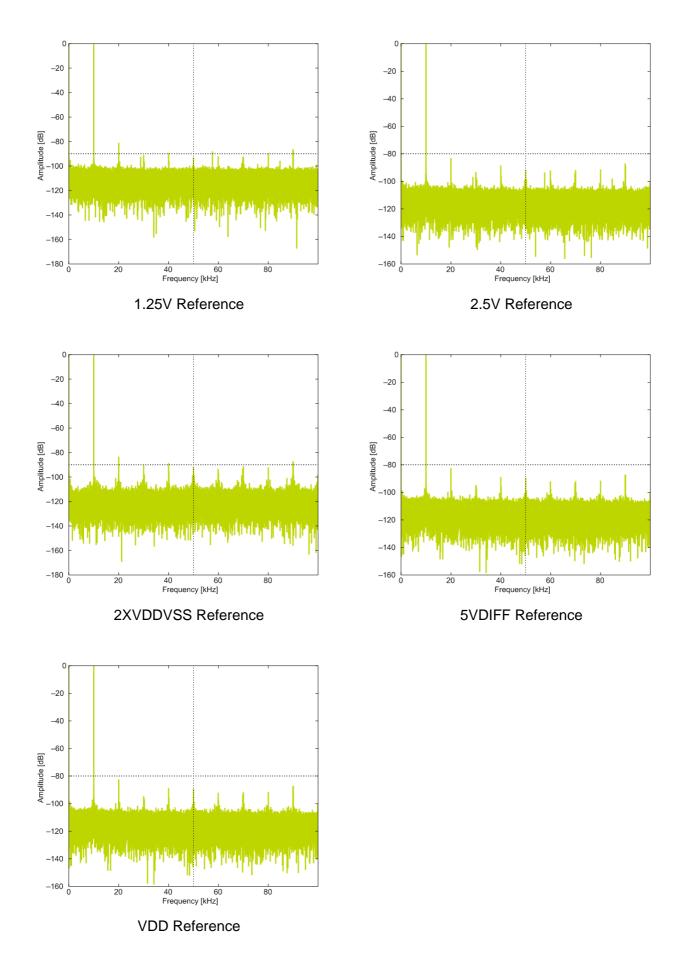


Figure 3.18. Differential Non-Linearity (DNL)

3.10.1 Typical performance

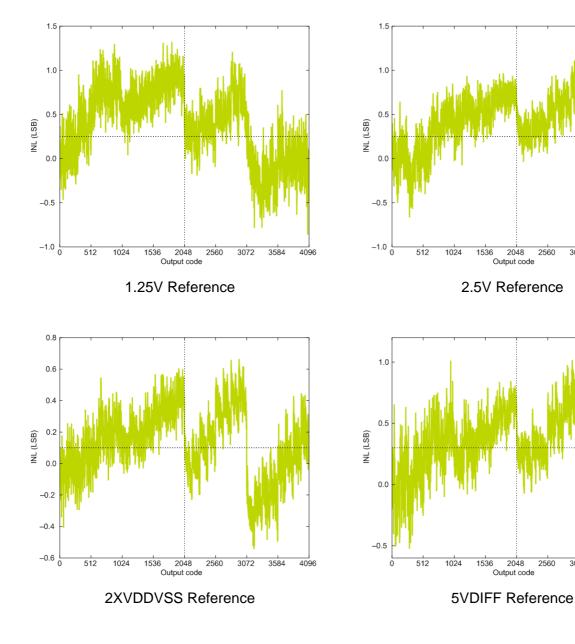
Figure 3.19. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C

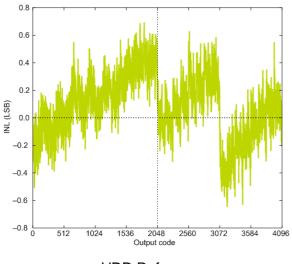
3072

2560

2560

3072


3584


4096

3584

4096

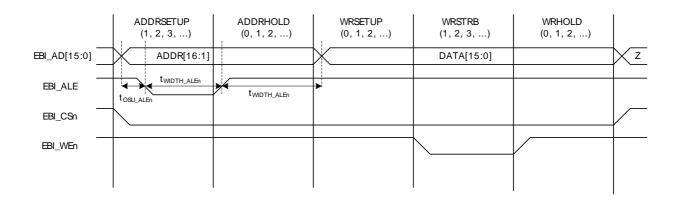
Figure 3.20. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C

VDD Reference

Table 3.19. EBI Write Enable Timing

Symbol	Parameter	Min	Тур	Мах	Unit
t _{OH_WEn 1234}	Output hold time, from trailing EBI_WEn/ EBI_NANDWEn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid	-6.00 + (WRHOLD * thfcoreclk)			ns
t _{OSU_WEn 12345}	Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_WEn/ EBI_NANDWEn edge	-14.00 + (WRSETUP * t _{HFCORECLK})			ns
twidth_wen ¹²³⁴⁵	EBI_WEn/EBI_NANDWEn pulse width	-7.00 + ((WRSTRB +1) * t _{HFCORECLK})			ns

¹Applies for all addressing modes (figure only shows D16 addressing mode)


²Applies for both EBI_WEn and EBI_NANWEn (figure only shows EBI_WEn)

³Applies for all polarities (figure only shows active low signals)

 $^4\text{Measurement}$ done at 10% and 90% of V_DD (figure shows 50% of $_\text{VDD})$

⁵ The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFWE=0. The leading edge of EBI_WEn can be moved to the right by setting HALFWE=1. This decreases the length of t_{WIDTH_WEn} and increases the length of t_{OSU_WEn} by 1/2 * $t_{HFCLKNODIV}$.

Figure 3.32. EBI Address Latch Enable Related Output Timing

Table 3.20. EBI Address Latch Enable Related Output Timing

Symbol	Parameter	Min	Тур	Мах	Unit
t _{OH_ALEn 1234}	Output hold time, from trailing EBI_ALE edge to EBI_AD invalid	-6.00 + (AD- DRHOLD ⁵ * t _{HFCORE-} CLK)			ns
t _{OSU_ALEn 124}	Output setup time, from EBI_AD valid to leading EBI_ALE edge	-13.00 + (0 * t _{HFCORE-} _{CLK})			ns
twidth_Alen ¹²³⁴	EBI_ALEn pulse width	-7.00 + (ADDRSET- UP+1) * t _{HFCORECLK})			ns

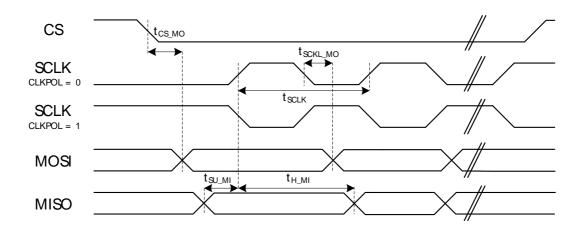
¹Applies to addressing modes D8A24ALE and D16A16ALE (figure only shows D16A16ALE)

²Applies for all polarities (figure only shows active low signals)

 3 The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFALE=0. The trailing edge of EBI_ALE can be moved to the left by setting HALFALE=1. This decreases the length of t_{WIDTH_ALEn} and increases the length of tOH_ALEn by t_{HFCORECLK} - 1/2 * t_{HFCLKNODIV}.

 4 Measurement done at 10% and 90% of V_DD (figure shows 50% of $_{\text{VDD}})$

⁵Figure only shows a write operation. For a multiplexed read operation the address hold time is controlled via the RDSETUP state instead of via the ADDRHOLD state.

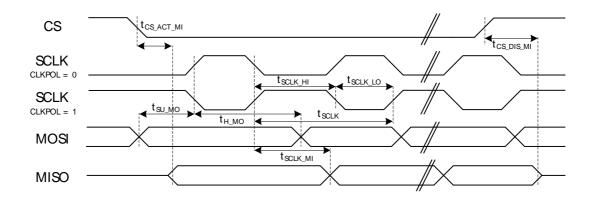

Table 3.26. I2C Fast-mode Plus (Fm+)

Symbol	Parameter	Min	Тур	Мах	Unit
f _{SCL}	SCL clock frequency	0		1000 ¹	kHz
t _{LOW}	SCL clock low time	0.5			μs
t _{HIGH}	SCL clock high time	0.26			μs
t _{SU,DAT}	SDA set-up time	50			ns
t _{HD,DAT}	SDA hold time	8			ns
t _{SU,STA}	Repeated START condition set-up time	0.26			μs
t _{HD,STA}	(Repeated) START condition hold time	0.26			μs
t _{SU,STO}	STOP condition set-up time	0.26			μs
t _{BUF}	Bus free time between a STOP and START condition	0.5			μs

¹For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32GG Reference Manual.

3.17 USART SPI

Figure 3.36. SPI Master Timing


Table 3.27. SPI Master Timing

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
t _{SCLK} ¹²	SCLK period		2 * t _{HFPER-} CLK			ns
t _{CS_MO} ¹²	CS to MOSI		-2.00		1.00	ns
t _{SCLK_MO¹²}	SCLK to MOSI		-4.00		3.00	ns
t 12	MISO setup time	IOVDD = 1.98 V	36.00			ns
t _{SU_MI} ^{1 2}		IOVDD = 3.0 V	29.00			ns
t _{H_MI} ^{1 2}	MISO hold time		-4.00			ns

¹Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)

 $^2\text{Measurement}$ done at 10% and 90% of V_{DD} (figure shows 50% of $V_{\text{DD}})$

Figure 3.37. SPI Slave Timing

Table 3.28. SPI Slave Timing

Symbol	Parameter	Min	Тур	Max	Unit
t _{SCLK_sl} ¹²	SCKL period	2 * t _{HFPER-} CLK			ns
t _{SCLK_hi} ¹²	SCLK high period	3 * t _{HFPER-} CLK			ns
t _{SCLK_lo} ¹²	SCLK low period	3 * t _{HFPER-} CLK			ns
t _{CS_ACT_MI} ¹²	CS active to MISO	4.00		30.00	ns
t _{CS_DIS_MI} ¹²	CS disable to MISO	4.00		30.00	ns
t _{SU_MO} ¹²	MOSI setup time	4.00			ns
t _{H_MO} ^{1 2}	MOSI hold time	2 + 2* t _{HF-} PERCLK			ns
t _{SCLK_MI} ¹²	SCLK to MISO	9 + t _{HFPER-} CLK		36 + 2*t _{HF-} PERCLK	ns

¹Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)

 $^2\text{Measurement}$ done at 10% and 90% of V_{DD} (figure shows 50% of $\text{V}_{\text{DD}})$

3.18 USB

The USB hardware in the EFM32GG390 passes all tests for USB 2.0 Full Speed certification. See the test-report distributed with application note "AN0046 - USB Hardware Design Guide".

3.19 Digital Peripherals

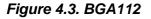
Table 3.29. Digital Peripherals

Symbol	Parameter	Condition	Min	Тур	Max	Unit
IUSART	USART current	USART idle current, clock en- abled		4.9		µA/ MHz
I _{UART}	UART current	UART idle current, clock en- abled		3.4		µA/ MHz
I _{LEUART}	LEUART current	LEUART idle current, clock en- abled		140		nA
I _{I2C}	I2C current	I2C idle current, clock enabled		6.1		μΑ/ MHz

	GA112 Pin# and Name	Pin Alternate Functionality / Description							
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other			
A4	PE9		EBI_AD01 #0/1/2	PCNT2_S1IN #1					
A5	PD10		EBI_CS1 #0/1/2						
A6	PF7		EBI_BL1 #0/1/2	TIM0_CC1 #2	U0_RX #0				
A7	PF5		EBI_REn #0/2	TIM0_CDTI2 #2/5	USB_VBUSEN #0	PRS_CH2 #1			
A8	PF12				USB_ID				
A9	PE4		EBI_A11 #0/1/2		US0_CS #1				
A10	PF10				U1_TX #1 USB_DM				
A11	PF11				U1_RX #1 USB_DP				
B1	PA15		EBI_AD08 #0/1/2	TIM3_CC2 #0					
B2	PE13		EBI_AD05 #0/1/2		US0_TX #3 US0_CS #0 I2C0_SCL #6	LES_ALTEX7 #0 ACMP0_O #0 GPIO_EM4WU5			
В3	PE11		EBI_AD03 #0/1/2	TIM1_CC1 #1	US0_RX #0	LES_ALTEX5 #0 BOOT_RX			
B4	PE8		EBI_AD00 #0/1/2	PCNT2_S0IN #1		PRS_CH3 #1			
B5	PD11		EBI_CS2 #0/1/2						
B6	PF8		EBI_WEn #1	TIM0_CC2 #2		ETM_TCLK #1			
B7	PF6		EBI_BL0 #0/1/2	TIM0_CC0 #2	U0_TX #0				
B8	USB_VBUS	USB 5.0 V VBUS input.							
B9	PE5		EBI_A12 #0/1/2		US0_CLK #1				
B10	USB_VREGI								
B11	USB_VREGO								
C1	PA1		EBI_AD10 #0/1/2	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0 PRS_CH1 #0			
C2	PA0		EBI_AD09 #0/1/2	TIM0_CC0 #0/1/4	I2C0_SDA #0 LEU0_RX #4	PRS_CH0 #0 GPIO_EM4WU0			
C3	PE10		EBI_AD02 #0/1/2	TIM1_CC0 #1	US0_TX #0	BOOT_TX			
C4	PD13					ETM_TD1 #1			
C5	PD12		EBI_CS3 #0/1/2						
C6	PF9		EBI_REn #1			ETM_TD0 #1			
C7	VSS	Ground.							
C8	PF2		EBI_ARDY #0/1/2	TIM0_CC2 #5	LEU0_TX #4	ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4			
C9	PE6		EBI_A13 #0/1/2		US0_RX #1				
C10	PC10	ACMP1_CH2	EBI_A10 #1/2	TIM2_CC2 #2	US0_RX #2	LES_CH10 #0			
C11	PC11	ACMP1_CH3	EBI_ALE #1/2		US0_TX #2	LES_CH11 #0			
D1	PA3		EBI_AD12 #0/1/2	TIM0_CDTI0 #0	U0_TX #2	LES_ALTEX2 #0 ETM_TD1 #3			
D2	PA2		EBI_AD11 #0/1/2	TIM0_CC2 #0/1		CMU_CLK0 #0 ETM_TD0 #3			
D3	PB15					ETM_TD2 #1			

	GA112 Pin# and Name	Pin Alternate Functionality / Description							
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other			
ш.		OPAMP_OUT0ALT			I2C0_SDA #4				
H2	PC2	ACMP0_CH2 DAC0_OUT0ALT #2/ OPAMP_OUT0ALT	EBI_A25 #0/1/2	TIM0_CDTI0 #4	US2_TX #0	LES_CH2 #0			
H3	PD14				I2C0_SDA #3				
H4	PA7		EBI_CSTFT #0/1/2						
H5	PA8		EBI_DCLK #0/1/2	TIM2_CC0 #0					
H6	VSS	Ground.	LI						
H7	IOVDD_3	Digital IO power supply 3.							
H8	PD8	BU_VIN				CMU_CLK1 #1			
H9	PD5	ADC0_CH5 OPAMP_OUT2 #0			LEU0_RX #0	ETM_TD3 #0/2			
-110	PD6	ADC0_CH6 OPAMP_P1		LETIM0_OUT0 #0 TIM1_CC0 #4 PCNT0_S0IN #3	US1_RX #2 I2C0_SDA #1	LES_ALTEX0 #0 ACMP0_O #2 ETM_TD0 #0			
-111	PD7	ADC0_CH7 OPAMP_N1		LETIM0_OUT1 #0 TIM1_CC1 #4 PCNT0_S1IN #3	US1_TX #2 I2C0_SCL #1	CMU_CLK0 #2 LES_ALTEX1 #0 ACMP1_O #2 ETM_TCLK #0			
J1	PC1	ACMP0_CH1 DAC0_OUT0ALT #1/ OPAMP_OUT0ALT	EBI_A24 #0/1/2	TIM0_CC2 #4 PCNT0_S1IN #2	US0_RX #5 US1_RX #0 I2C0_SCL #4	LES_CH1 #0 PRS_CH3 #0			
J2	PC3	ACMP0_CH3 DAC0_OUT0ALT #3/ OPAMP_OUT0ALT	EBI_NANDREn #0/1/2	TIM0_CDTI1 #4	US2_RX #0	LES_CH3 #0			
J3	PD15				I2C0_SCL #3				
J4	PA12		EBI_A00 #0/1/2	TIM2_CC0 #1					
J5	PA9		EBI_DTEN #0/1/2	TIM2_CC1 #0					
J6	PA10		EBI_VSNC #0/1/2	TIM2_CC2 #0					
J7	PB9		EBI_A03 #0/1/2		U1_TX #2				
J8	PB10		EBI_A04 #0/1/2		U1_RX #2				
J9	PD2	ADC0_CH2	EBI_A27 #0/1/2	TIM0_CC1 #3	USB_DMPU #0 US1_CLK #1	DBG_SWO #3			
J10	PD3	ADC0_CH3 OPAMP_N2		TIM0_CC2 #3	US1_CS #1	ETM_TD1 #0/2			
J11	PD4	ADC0_CH4 OPAMP_P2			LEU0_TX #0	ETM_TD2 #0/2			
K1	PB7	LFXTAL_P		TIM1_CC0 #3	US0_TX #4 US1_CLK #0				
K2	PC4	ACMP0_CH4 OPAMP_P0	EBI_A26 #0/1/2	TIM0_CDTI2 #4 LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0 I2C1_SDA #0	LES_CH4 #0			
K3	PA13		EBI_A01 #0/1/2	TIM2_CC1 #1					
K 4	VSS	Ground.			I				
K5	PA11		EBI_HSNC #0/1/2						
K6	RESETn	Reset input, active low. To apply an external rese that reset is released.	t source to this pin, it is req	uired to only drive this pin	low during reset, and let the	e internal pull-up ensur			
K7	AVSS_1	Analog ground 1.							

...the world's most energy friendly microcontrollers


Alternate	LOCATION							
Functionality	0	1	2	3	4	5	6	Description
EBI_AD07	PE15	PE15	PE15					External Bus Interface (EBI) address and data input / out- put pin 07.
EBI_AD08	PA15	PA15	PA15					External Bus Interface (EBI) address and data input / out- put pin 08.
EBI_AD09	PA0	PA0	PA0					External Bus Interface (EBI) address and data input / out- put pin 09.
EBI_AD10	PA1	PA1	PA1					External Bus Interface (EBI) address and data input / out- put pin 10.
EBI_AD11	PA2	PA2	PA2					External Bus Interface (EBI) address and data input / out- put pin 11.
EBI_AD12	PA3	PA3	PA3					External Bus Interface (EBI) address and data input / out- put pin 12.
EBI_AD13	PA4	PA4	PA4					External Bus Interface (EBI) address and data input / out- put pin 13.
EBI_AD14	PA5	PA5	PA5					External Bus Interface (EBI) address and data input / out- put pin 14.
EBI_AD15	PA6	PA6	PA6					External Bus Interface (EBI) address and data input / out- put pin 15.
EBI_ALE		PC11	PC11					External Bus Interface (EBI) Address Latch Enable output.
EBI_ARDY	PF2	PF2	PF2					External Bus Interface (EBI) Hardware Ready Control in- put.
EBI_BL0	PF6	PF6	PF6					External Bus Interface (EBI) Byte Lane/Enable pin 0.
EBI_BL1	PF7	PF7	PF7					External Bus Interface (EBI) Byte Lane/Enable pin 1.
EBI_CS0	PD9	PD9	PD9					External Bus Interface (EBI) Chip Select output 0.
EBI_CS1	PD10	PD10	PD10					External Bus Interface (EBI) Chip Select output 1.
EBI_CS2	PD11	PD11	PD11					External Bus Interface (EBI) Chip Select output 2.
EBI_CS3	PD12	PD12	PD12					External Bus Interface (EBI) Chip Select output 3.
EBI_CSTFT	PA7	PA7	PA7					External Bus Interface (EBI) Chip Select output TFT.
EBI_DCLK	PA8	PA8	PA8					External Bus Interface (EBI) TFT Dot Clock pin.
EBI_DTEN	PA9	PA9	PA9					External Bus Interface (EBI) TFT Data Enable pin.
EBI_HSNC	PA11	PA11	PA11					External Bus Interface (EBI) TFT Horizontal Synchroniza- tion pin.
EBI_NANDREn	PC3	PC3	PC3					External Bus Interface (EBI) NAND Read Enable output.
EBI_NANDWEn	PC5	PC5	PC5					External Bus Interface (EBI) NAND Write Enable output.
EBI_REn	PF5	PF9	PF5					External Bus Interface (EBI) Read Enable output.
EBI_VSNC	PA10	PA10	PA10					External Bus Interface (EBI) TFT Vertical Synchronization pin.
EBI_WEn		PF8						External Bus Interface (EBI) Write Enable output.
ETM_TCLK	PD7	PF8	PC6	PA6				Embedded Trace Module ETM clock .
ETM_TD0	PD6	PF9	PC7	PA2				Embedded Trace Module ETM data 0.
ETM_TD1	PD3	PD13	PD3	PA3				Embedded Trace Module ETM data 1.
ETM_TD2	PD4	PB15	PD4	PA4				Embedded Trace Module ETM data 2.
ETM_TD3	PD5		PD5	PA5				Embedded Trace Module ETM data 3.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU1	PA6							Pin can be used to wake the system up from EM4
GPIO_EM4WU2	PC9							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1		1					Pin can be used to wake the system up from EM4

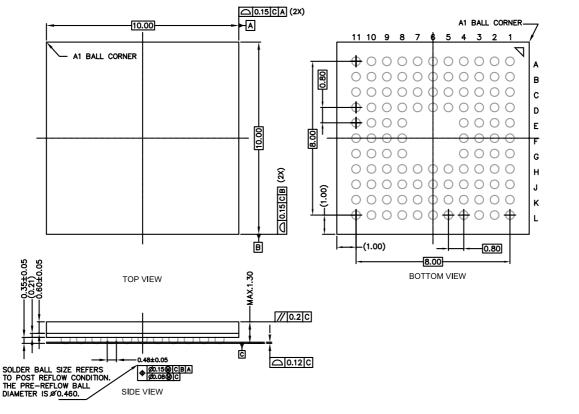


Figure 4.2. Opamp Pinout

4.5 BGA112 Package

Rev: 97SPP01315A_X03_06Jun11

Note:

- 1. The dimensions in parenthesis are reference.
- 2. Datum 'C' and seating plane are defined by the crown of the solder balls.
- 3. All dimensions are in millimeters.

EFM[®]32

Updated GPIO information.

Updated LFRCO information.

Updated HFRCO information.

Updated ULFRCO information.

Updated ADC information.

Updated DAC information.

Updated OPAMP information.

Updated ACMP information.

Updated VCMP information.

Added AUXHFRCO information.

7.3 Revision 1.21

November 21st, 2013

Updated figures.

Updated errata-link.

Updated chip marking.

Added link to Environmental and Quality information.

Re-added missing DAC-data.

7.4 Revision 1.20

September 30th, 2013

Added I2C characterization data.

Added SPI characterization data.

Added EBI characterization data.

Corrected the DAC and OPAMP2 pin sharing information in the Alternate Functionality Pinout section.

Corrected GPIO operating voltage from 1.8 V to 1.85 V.

Added the USB bootloader information.

Updated that the EM2 current consumption test was carried out with only one RAM block enabled.

Corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit.

Updated Environmental information.

Updated trademark, disclaimer and contact information.

Other minor corrections.

7.5 Revision 1.10

June 28th, 2013

Updated PCB Land Pattern, PCB Solder Mask and PCB Stencil Design figures.

Updated power requirements in the Power Management section.

Removed minimum load capacitance figure and table. Added reference to application note.

Other minor corrections.

7.6 Revision 1.00

September 11th, 2012

Updated the HFRCO 1 MHz band typical value to 1.2 MHz.

Updated the HFRCO 7 MHz band typical value to 6.6 MHz.

Other minor corrections.

7.7 Revision 0.98

May 25th, 2012

Corrected BGA solder balls material description.

Corrected EM3 current consumption in the Electrical Characteristics section.

7.8 Revision 0.96

February 28th, 2012

Added reference to errata document.

Corrected BGA112 package drawing.

Updated PCB land pattern, solder mask and stencil design.

7.9 Revision 0.95

September 28th, 2011

Flash configuration for Giant Gecko is now 1024KB or 512KB. For flash sizes below 512KB, see the Leopard Gecko Family.

Corrected operating voltage from 1.8 V to 1.85 V.

Added rising POR level to Electrical Characteristics section.

Updated Minimum Load Capacitance (C_{LFXOL}) Requirement For Safe Crystal Startup.

Added Gain error drift and Offset error drift to ADC table.

Added Opamp pinout overview.

Added reference to errata document.

A Disclaimer and Trademarks

A.1 Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

A.2 Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISO-modem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

List of Equations

3.1. Total ACMP Active Current	43
3.2. VCMP Trigger Level as a Function of Level Setting	45