

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	87
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LFBGA
Supplier Device Package	112-BGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg390f1024g-e-bga112

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption.

2.1.18 Timer/Counter (TIMER)

The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications.

2.1.19 Real Time Counter (RTC)

The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down.

2.1.20 Backup Real Time Counter (BURTC)

The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz crystal oscillator, a 32.768 kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy Modes and it can also run in backup mode, making it operational even if the main power should drain out.

2.1.21 Low Energy Timer (LETIMER)

The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC.

2.1.22 Pulse Counter (PCNT)

The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3.

2.1.23 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

2.1.24 Voltage Comparator (VCMP)

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

2.1.25 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals.

2.1.26 Digital to Analog Converter (DAC)

The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output.

2.1.27 Operational Amplifier (OPAMP)

The EFM32GG390 features 3 Operational Amplifiers. The Operational Amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable and the OPAMP has various internal configurations such as unity gain, programmable gain using internal resistors etc.

2.1.28 Low Energy Sensor Interface (LESENSE)

The Low Energy Sensor Interface (LESENSETM), is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable FSM which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.

2.1.29 Backup Power Domain

The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC, and a set of retention registers, available in all energy modes. This power domain can be configured to automatically change power source to a backup battery when the main power drains out. The backup power domain enables the EFM32GG390 to keep track of time and retain data, even if the main power source should drain out.

2.1.30 Advanced Encryption Standard Accelerator (AES)

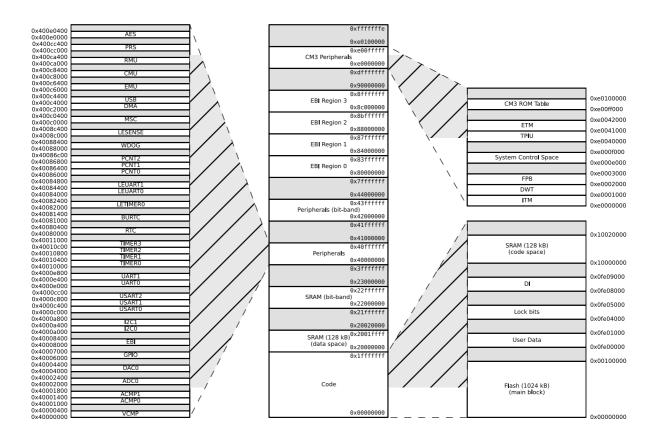
The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

2.1.31 General Purpose Input/Output (GPIO)

In the EFM32GG390, there are 86 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

2.2 Configuration Summary

The features of the EFM32GG390 is a subset of the feature set described in the EFM32GG Reference Manual. Table 2.1 (p. 8) describes device specific implementation of the features.



Module	Configuration	Pin Connections
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0], DAC0_OUTxALT
ОРАМР	Full configuration	Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px, OPAMP_Nx
AES	Full configuration	NA
GPIO	86 pins	Available pins are shown in Table 4.3 (p. 63)

2.3 Memory Map

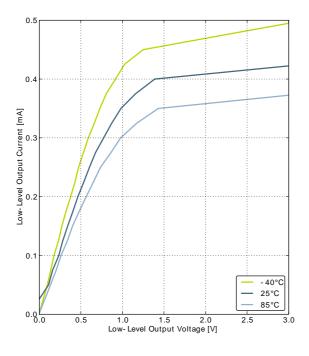
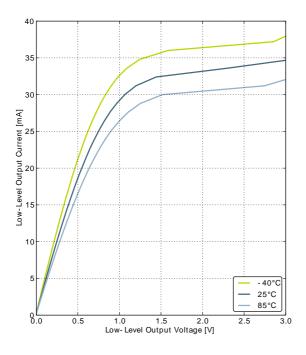
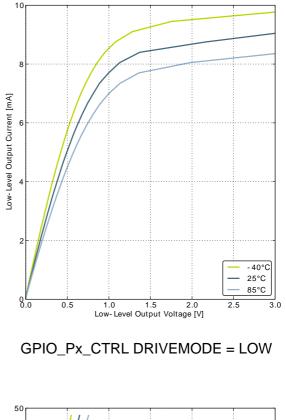
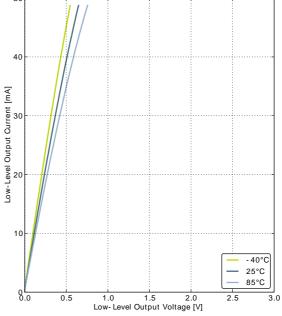

The *EFM32GG390* memory map is shown in Figure 2.2 (p. 9), with RAM and Flash sizes for the largest memory configuration.

Figure 2.2. EFM32GG390 Memory Map with largest RAM and Flash sizes

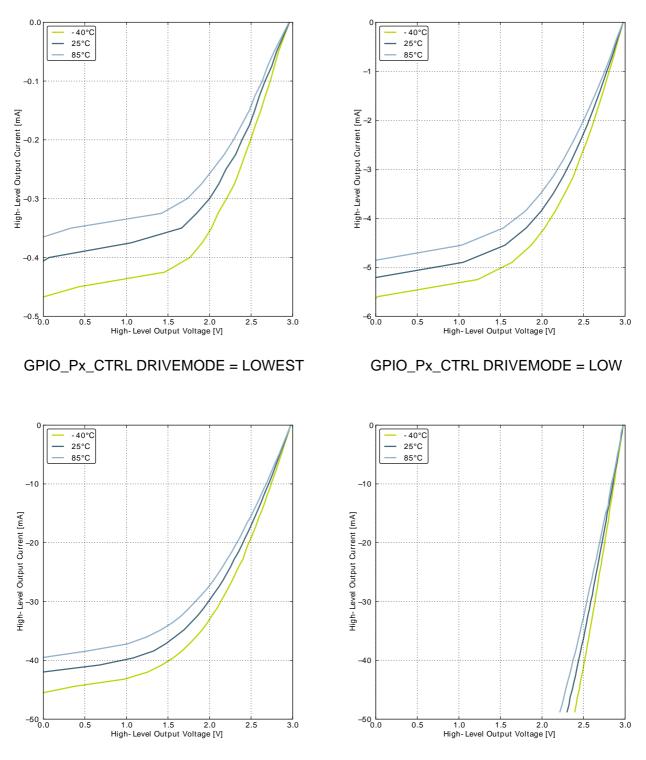



Figure 3.6. Typical Low-Level Output Current, 3V Supply Voltage



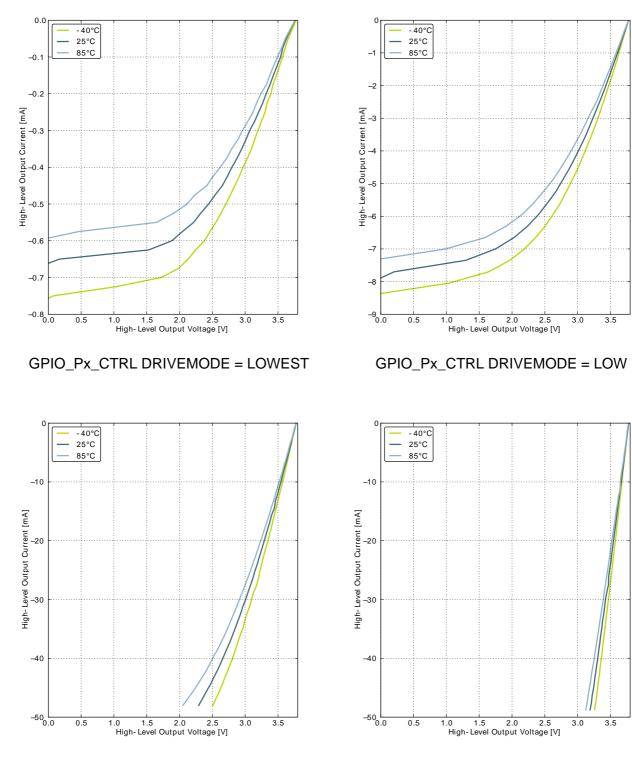
GPIO_Px_CTRL DRIVEMODE = LOWEST

GPIO_Px_CTRL DRIVEMODE = STANDARD



GPIO_Px_CTRL DRIVEMODE = HIGH

Figure 3.7. Typical High-Level Output Current, 3V Supply Voltage



GPIO_Px_CTRL DRIVEMODE = STANDARD

Figure 3.9. Typical High-Level Output Current, 3.8V Supply Voltage

GPIO_Px_CTRL DRIVEMODE = STANDARD

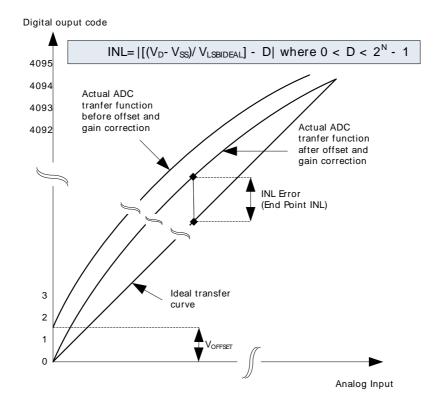
GPIO_Px_CTRL DRIVEMODE = HIGH

EFM[®]32

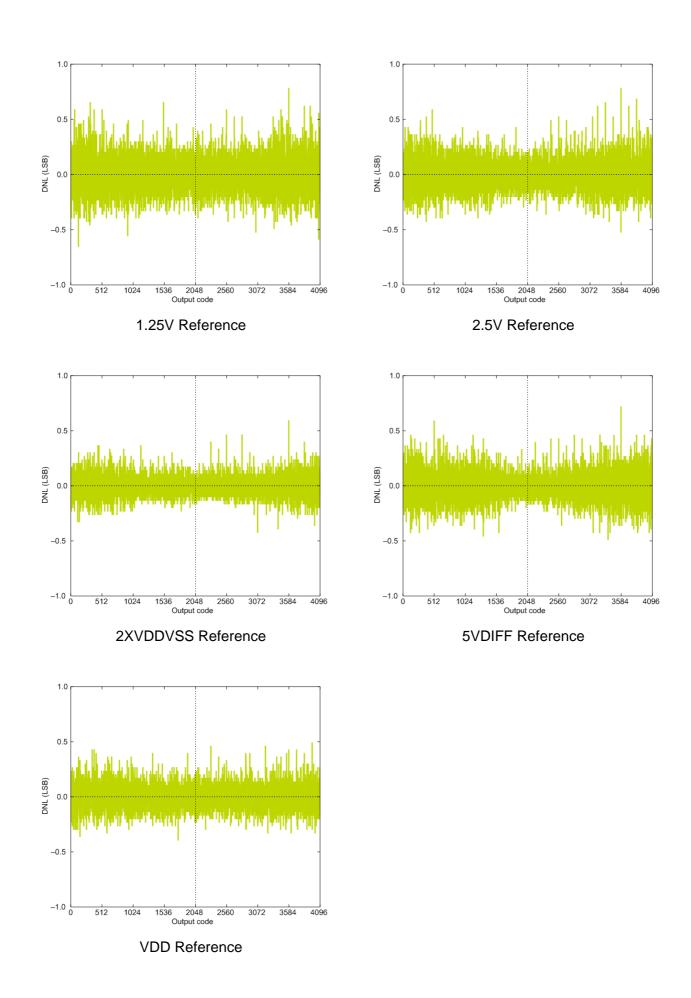
Symbol	Parameter	Condition	Min	Тур	Мах	Unit
C _{ADCIN}	Input capacitance			2		pF
R _{ADCIN}	Input ON resistance		1			MOhm
R _{ADCFILT}	Input RC filter resis- tance			10		kOhm
C _{ADCFILT}	Input RC filter/de- coupling capaci- tance			250		fF
f _{ADCCLK}	ADC Clock Fre- quency				13	MHz
		6 bit	7			ADC- CLK Cycles
t _{ADCCONV}	Conversion time	8 bit	11			ADC- CLK Cycles
		12 bit	13			ADC- CLK Cycles
t _{adcacq}	Acquisition time	Programmable	1		256	ADC- CLK Cycles
t _{ADCACQVDD3}	Required acquisi- tion time for VDD/3 reference		2			μs
	Startup time of ref- erence generator and ADC core in NORMAL mode			5		μs
t _{ADCSTART}	Startup time of ref- erence generator and ADC core in KEEPADCWARM mode			1		μs
		1 MSamples/s, 12 bit, single ended, internal 1.25V refer- ence		59		dB
		1 MSamples/s, 12 bit, single ended, internal 2.5V reference		63		dB
		1 MSamples/s, 12 bit, single ended, V_{DD} reference		65		dB
SNR _{ADC}	Signal to Noise Ra-	1 MSamples/s, 12 bit, differen- tial, internal 1.25V reference		60		dB
	tio (SNR)	1 MSamples/s, 12 bit, differen- tial, internal 2.5V reference		65		dB
		1 MSamples/s, 12 bit, differen- tial, 5V reference		54		dB
		1 MSamples/s, 12 bit, differential, V_{DD} reference		67		dB
		1 MSamples/s, 12 bit, differen- tial, 2xV _{DD} reference		69		dB

...the world's most energy friendly microcontrollers

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
GAIN _{ED}		1.25V reference		0.01 ²	0.033 ³	%/°C
GAINED	Gain error drift	2.5V reference		0.01 ²	0.03 ³	%/°C
OFFRET	Γ _{ED} Offset error drift	1.25V reference		0.2 ²	0.7 ³	LSB/°C
OFFSET _{ED}		2.5V reference		0.2 ²	0.62 ³	LSB/°C


¹On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale input for chips that have the missing code issue.

²Typical numbers given by abs(Mean) / (85 - 25).


³Max number given by (abs(Mean) + 3x stddev) / (85 - 25).

The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.17 (p. 32) and Figure 3.18 (p. 33), respectively.

Figure 3.17. Integral Non-Linearity (INL)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		500 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		58		dB
		500 kSamples/s, 12 bit, differential, V_{DD} reference		59		dB
		500 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		57		dB
	Signal to Noise-	500 kSamples/s, 12 bit, single ended, internal 2.5V reference		54		dB
SNDR _{DAC}	pulse Distortion Ra- tio (SNDR)	500 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		56		dB
		500 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		53		dB
		500 kSamples/s, 12 bit, differential, V_{DD} reference		55		dB
	Oruniaus Ener	500 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		62		dBc
		500 kSamples/s, 12 bit, single ended, internal 2.5V reference		56		dBc
SFDR _{DAC}	Spurious-Free Dynamic Range(SFDR)	500 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		61		dBc
		500 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		55		dBc
		500 kSamples/s, 12 bit, differential, V_{DD} reference		60		dBc
N/	Offeet veltege	After calibration, single ended		2	12	mV
V _{DACOFFSET}	Offset voltage	After calibration, differential		2		mV
DNL _{DAC}	Differential non-lin- earity			±1		LSB
INL _{DAC}	Integral non-lineari- ty			±5		LSB
MC _{DAC}	No missing codes			12		bits

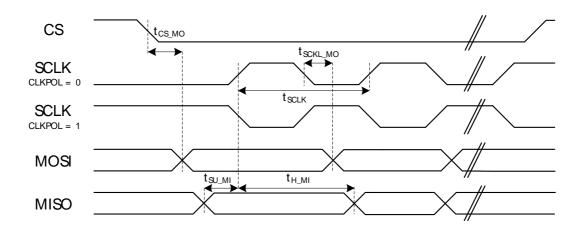
¹Measured with a static input code and no loading on the output.

3.12 Operational Amplifier (OPAMP)

The electrical characteristics for the Operational Amplifiers are based on simulations.

Table 3.16. OPAMP

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		(OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0, Unity Gain		350	405	μA
	Active Current	(OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1, Unity Gain		95	115	μA

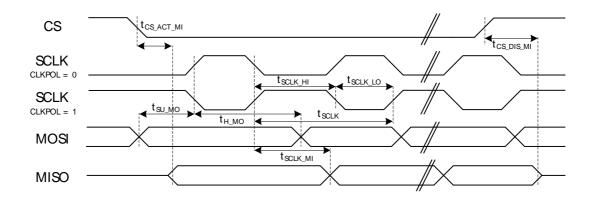

Table 3.26. I2C Fast-mode Plus (Fm+)

Symbol	Parameter	Min	Тур	Мах	Unit
f _{SCL}	SCL clock frequency	0		1000 ¹	kHz
t _{LOW}	SCL clock low time	0.5			μs
t _{HIGH}	SCL clock high time	0.26			μs
t _{SU,DAT}	SDA set-up time	50			ns
t _{HD,DAT}	SDA hold time	8			ns
t _{SU,STA}	Repeated START condition set-up time	0.26			μs
t _{HD,STA}	(Repeated) START condition hold time	0.26			μs
t _{SU,STO}	STOP condition set-up time	0.26			μs
t _{BUF}	Bus free time between a STOP and START condition	0.5			μs

¹For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32GG Reference Manual.

3.17 USART SPI

Figure 3.36. SPI Master Timing


Table 3.27. SPI Master Timing

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
t _{SCLK} ¹²	SCLK period		2 * t _{HFPER-} CLK			ns
t _{CS_MO} ¹²	CS to MOSI		-2.00		1.00	ns
t _{SCLK_MO¹²}	SCLK to MOSI		-4.00		3.00	ns
t 12	MISO setup time	IOVDD = 1.98 V	36.00			ns
t _{SU_MI} ^{1 2}	MISO setup time	IOVDD = 3.0 V	29.00			ns
t _{H_MI} ^{1 2}	MISO hold time		-4.00			ns

¹Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)

 $^2\text{Measurement}$ done at 10% and 90% of V_{DD} (figure shows 50% of $V_{\text{DD}})$

Figure 3.37. SPI Slave Timing

Table 3.28. SPI Slave Timing

Symbol	Parameter	Min	Тур	Max	Unit
t _{SCLK_sl} ¹²	SCKL period	2 * t _{HFPER-} CLK			ns
t _{SCLK_hi} ¹²	SCLK high period	3 * t _{HFPER-} CLK			ns
t _{SCLK_lo} ¹²	SCLK low period	3 * t _{HFPER-} CLK			ns
t _{CS_ACT_MI} ¹²	CS active to MISO	4.00		30.00	ns
t _{CS_DIS_MI} ¹²	CS disable to MISO	4.00		30.00	ns
t _{SU_MO} ¹²	MOSI setup time	4.00			ns
t _{H_MO} ^{1 2}	MOSI hold time	2 + 2* t _{HF-} PERCLK			ns
t _{SCLK_MI} ¹²	SCLK to MISO	9 + t _{HFPER-} CLK		36 + 2*t _{HF-} PERCLK	ns

¹Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)

 $^2\text{Measurement}$ done at 10% and 90% of V_{DD} (figure shows 50% of $\text{V}_{\text{DD}})$

3.18 USB

The USB hardware in the EFM32GG390 passes all tests for USB 2.0 Full Speed certification. See the test-report distributed with application note "AN0046 - USB Hardware Design Guide".

3.19 Digital Peripherals

Table 3.29. Digital Peripherals

Symbol	Parameter	Condition	Min	Тур	Max	Unit
IUSART	USART current	USART idle current, clock en- abled		4.9		µA/ MHz
I _{UART}	UART current	UART idle current, clock en- abled		3.4		µA/ MHz
I _{LEUART}	LEUART current	LEUART idle current, clock en- abled		140		nA
I _{I2C}	I2C current	I2C idle current, clock enabled		6.1		μΑ/ MHz

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
I _{TIMER}	TIMER current	TIMER_0 idle current, clock enabled		6.9		μΑ/ MHz
I _{LETIMER}	LETIMER current	LETIMER idle current, clock enabled		119		nA
I _{PCNT}	PCNT current	PCNT idle current, clock en- abled		54		nA
I _{RTC}	RTC current	RTC idle current, clock enabled		54		nA
I _{AES}	AES current	AES idle current, clock enabled		3.2		μΑ/ MHz
I _{GPIO}	GPIO current	GPIO idle current, clock en- abled		3.7		μΑ/ MHz
I _{EBI}	EBI current	EBI idle current, clock enabled		11.8		μΑ/ MHz
I _{PRS}	PRS current	PRS idle current		3.5		μΑ/ MHz
I _{DMA}	DMA current	Clock enable		11.0		µA/ MHz

	GA112 Pin# and Name		Pin Alterna	ate Functionality / I	Description	
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
ш.		OPAMP_OUT0ALT			I2C0_SDA #4	
H2	PC2	ACMP0_CH2 DAC0_OUT0ALT #2/ OPAMP_OUT0ALT	EBI_A25 #0/1/2	TIM0_CDTI0 #4	US2_TX #0	LES_CH2 #0
H3	PD14				I2C0_SDA #3	
H4	PA7		EBI_CSTFT #0/1/2			
H5	PA8		EBI_DCLK #0/1/2	TIM2_CC0 #0		
H6	VSS	Ground.	LI			
H7	IOVDD_3	Digital IO power supply 3.				
H8	PD8	BU_VIN				CMU_CLK1 #1
H9	PD5	ADC0_CH5 OPAMP_OUT2 #0			LEU0_RX #0	ETM_TD3 #0/2
-110	PD6	ADC0_CH6 OPAMP_P1		LETIM0_OUT0 #0 TIM1_CC0 #4 PCNT0_S0IN #3	US1_RX #2 I2C0_SDA #1	LES_ALTEX0 #0 ACMP0_O #2 ETM_TD0 #0
-111	PD7	ADC0_CH7 OPAMP_N1		LETIM0_OUT1 #0 TIM1_CC1 #4 PCNT0_S1IN #3	US1_TX #2 I2C0_SCL #1	CMU_CLK0 #2 LES_ALTEX1 #0 ACMP1_O #2 ETM_TCLK #0
J1	PC1	ACMP0_CH1 DAC0_OUT0ALT #1/ OPAMP_OUT0ALT	EBI_A24 #0/1/2	TIM0_CC2 #4 PCNT0_S1IN #2	US0_RX #5 US1_RX #0 I2C0_SCL #4	LES_CH1 #0 PRS_CH3 #0
J2	PC3	ACMP0_CH3 DAC0_OUT0ALT #3/ OPAMP_OUT0ALT	EBI_NANDREn #0/1/2	TIM0_CDTI1 #4	US2_RX #0	LES_CH3 #0
J3	PD15				I2C0_SCL #3	
J4	PA12		EBI_A00 #0/1/2	TIM2_CC0 #1		
J5	PA9		EBI_DTEN #0/1/2	TIM2_CC1 #0		
J6	PA10		EBI_VSNC #0/1/2	TIM2_CC2 #0		
J7	PB9		EBI_A03 #0/1/2		U1_TX #2	
J8	PB10		EBI_A04 #0/1/2		U1_RX #2	
J9	PD2	ADC0_CH2	EBI_A27 #0/1/2	TIM0_CC1 #3	USB_DMPU #0 US1_CLK #1	DBG_SWO #3
J10	PD3	ADC0_CH3 OPAMP_N2		TIM0_CC2 #3	US1_CS #1	ETM_TD1 #0/2
J11	PD4	ADC0_CH4 OPAMP_P2			LEU0_TX #0	ETM_TD2 #0/2
K1	PB7	LFXTAL_P		TIM1_CC0 #3	US0_TX #4 US1_CLK #0	
K2	PC4	ACMP0_CH4 OPAMP_P0	EBI_A26 #0/1/2	TIM0_CDTI2 #4 LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0 I2C1_SDA #0	LES_CH4 #0
K3	PA13		EBI_A01 #0/1/2	TIM2_CC1 #1		
K 4	VSS	Ground.	I		I	
< 5	PA11		EBI_HSNC #0/1/2			
K6	RESETn	Reset input, active low. To apply an external rese that reset is released.	t source to this pin, it is req	uired to only drive this pin	low during reset, and let the	e internal pull-up ensur
K7	AVSS_1	Analog ground 1.				

	GA112 Pin# and Name	# Pin Alternate Functionality / Description											
Pin#	Pin Name	Analog	EBI	Timers	Communication	Other							
K8	AVDD_2	Analog power supply 2.											
К9	AVDD_1	Analog power supply 1.	Analog power supply 1.										
K10	AVSS_0	Analog ground 0.											
K11	PD1	ADC0_CH1 DAC0_OUT1ALT #4/ OPAMP_OUT1ALT		TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1	DBG_SWO #2							
L1	PB8	LFXTAL_N		TIM1_CC1 #3	US0_RX #4 US1_CS #0								
L2	PC5	ACMP0_CH5 OPAMP_N0	EBI_NANDWEn #0/1/2	LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0 I2C1_SCL #0	LES_CH5 #0							
L3	PA14		EBI_A02 #0/1/2	TIM2_CC2 #1									
L4	IOVDD_1	Digital IO power supply 1.	L										
L5	PB11	DAC0_OUT0 / OPAMP_OUT0		LETIM0_OUT0 #1 TIM1_CC2 #3	I2C1_SDA #1								
L6	PB12	DAC0_OUT1 / OPAMP_OUT1		LETIM0_OUT1 #1	I2C1_SCL #1								
L7	AVSS_2	Analog ground 2.											
L8	PB13	HFXTAL_P			US0_CLK #4/5 LEU0_TX #1								
L9	PB14	HFXTAL_N			US0_CS #4/5 LEU0_RX #1								
L10	AVDD_0	Analog power supply 0.	·	•									
L11	PD0	ADC0_CH0 DAC0_OUT0ALT #4/ OPAMP_OUT0ALT OPAMP_OUT2 #1		PCNT2_S0IN #0	US1_TX #1								

4.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in Table 4.2 (p. 57). The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note

Some functionality, such as analog interfaces, do not have alternate settings or a LOCA-TION bitfield. In these cases, the pinout is shown in the column corresponding to LOCA-TION 0.

Table 4.2. Alternate functionality overview

Alternate		,	LOC	ATION				
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH0	PC0							Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1							Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2							Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3							Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4							Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5							Analog comparator ACMP0, channel 5.

...the world's most energy friendly microcontrollers

Alternate			LOC	ATION				
Functionality	0	1	2	3	4	5	6	Description
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2		PD1	PD2				Note that this function is not enabled after reset, and must be enabled by software to be used.
EBI_A00	PA12	PA12	PA12					External Bus Interface (EBI) address output pin 00.
EBI_A01	PA13	PA13	PA13					External Bus Interface (EBI) address output pin 01.
EBI_A02	PA14	PA14	PA14					External Bus Interface (EBI) address output pin 02.
EBI_A03	PB9	PB9	PB9					External Bus Interface (EBI) address output pin 03.
EBI_A04	PB10	PB10	PB10					External Bus Interface (EBI) address output pin 04.
EBI_A05	PC6	PC6	PC6					External Bus Interface (EBI) address output pin 05.
EBI_A06	PC7	PC7	PC7					External Bus Interface (EBI) address output pin 06.
EBI_A07	PE0	PE0	PE0					External Bus Interface (EBI) address output pin 07.
EBI_A08	PE1	PE1	PE1					External Bus Interface (EBI) address output pin 08.
EBI_A09	PE2	PC9	PC9					External Bus Interface (EBI) address output pin 09.
EBI_A10	PE3	PC10	PC10					External Bus Interface (EBI) address output pin 10.
EBI_A11	PE4	PE4	PE4					External Bus Interface (EBI) address output pin 11.
EBI_A12	PE5	PE5	PE5					External Bus Interface (EBI) address output pin 12.
EBI_A13	PE6	PE6	PE6					External Bus Interface (EBI) address output pin 13.
EBI_A14	PE7	PE7	PE7					External Bus Interface (EBI) address output pin 14.
EBI_A15	PC8	PC8	PC8					External Bus Interface (EBI) address output pin 15.
EBI_A16	PB0	PB0	PB0					External Bus Interface (EBI) address output pin 16.
EBI_A17	PB1	PB1	PB1					External Bus Interface (EBI) address output pin 17.
EBI_A18	PB2	PB2	PB2					External Bus Interface (EBI) address output pin 18.
EBI_A19	PB3	PB3	PB3					External Bus Interface (EBI) address output pin 19.
EBI_A20	PB4	PB4	PB4					External Bus Interface (EBI) address output pin 20.
EBI_A21	PB5	PB5	PB5					External Bus Interface (EBI) address output pin 21.
EBI_A22	PB6	PB6	PB6					External Bus Interface (EBI) address output pin 22.
EBI_A23	PC0	PC0	PC0					External Bus Interface (EBI) address output pin 23.
EBI_A24	PC1	PC1	PC1					External Bus Interface (EBI) address output pin 24.
EBI_A25	PC2	PC2	PC2					External Bus Interface (EBI) address output pin 25.
EBI_A26	PC4	PC4	PC4					External Bus Interface (EBI) address output pin 26.
EBI_A27	PD2	PD2	PD2					External Bus Interface (EBI) address output pin 27.
EBI_AD00	PE8	PE8	PE8					External Bus Interface (EBI) address and data input / out- put pin 00.
EBI_AD01	PE9	PE9	PE9					External Bus Interface (EBI) address and data input / out- put pin 01.
EBI_AD02	PE10	PE10	PE10					External Bus Interface (EBI) address and data input / out- put pin 02.
EBI_AD03	PE11	PE11	PE11					External Bus Interface (EBI) address and data input / out- put pin 03.
EBI_AD04	PE12	PE12	PE12					External Bus Interface (EBI) address and data input / out- put pin 04.
EBI_AD05	PE13	PE13	PE13					External Bus Interface (EBI) address and data input / out- put pin 05.
EBI_AD06	PE14	PE14	PE14					External Bus Interface (EBI) address and data input / out- put pin 06.

...the world's most energy friendly microcontrollers

Alternate			LOC	ATION						
Functionality	0	1	2	3	4	5	6	Description		
EBI_AD07	PE15	PE15	PE15					External Bus Interface (EBI) address and data input / out- put pin 07.		
EBI_AD08	PA15	PA15	PA15					External Bus Interface (EBI) address and data input / out- put pin 08.		
EBI_AD09	PA0	PA0	PA0					External Bus Interface (EBI) address and data input / out- put pin 09.		
EBI_AD10	PA1	PA1	PA1					External Bus Interface (EBI) address and data input / out-put pin 10.		
EBI_AD11	PA2	PA2	PA2					External Bus Interface (EBI) address and data input / out- put pin 11.		
EBI_AD12	PA3	PA3	PA3					External Bus Interface (EBI) address and data input / out- put pin 12.		
EBI_AD13	PA4	PA4	PA4					External Bus Interface (EBI) address and data input / out- put pin 13.		
EBI_AD14	PA5	PA5	PA5					External Bus Interface (EBI) address and data input / out- put pin 14.		
EBI_AD15	PA6	PA6	PA6					External Bus Interface (EBI) address and data input / out- put pin 15.		
EBI_ALE		PC11	PC11					External Bus Interface (EBI) Address Latch Enable output.		
EBI_ARDY	PF2	PF2	PF2					External Bus Interface (EBI) Hardware Ready Control in- put.		
EBI_BL0	PF6	PF6	PF6					External Bus Interface (EBI) Byte Lane/Enable pin 0.		
EBI_BL1	PF7	PF7	PF7					External Bus Interface (EBI) Byte Lane/Enable pin 1.		
EBI_CS0	PD9	PD9	PD9					External Bus Interface (EBI) Chip Select output 0.		
EBI_CS1	PD10	PD10	PD10					External Bus Interface (EBI) Chip Select output 1.		
EBI_CS2	PD11	PD11	PD11					External Bus Interface (EBI) Chip Select output 2.		
EBI_CS3	PD12	PD12	PD12					External Bus Interface (EBI) Chip Select output 3.		
EBI_CSTFT	PA7	PA7	PA7					External Bus Interface (EBI) Chip Select output TFT.		
EBI_DCLK	PA8	PA8	PA8					External Bus Interface (EBI) TFT Dot Clock pin.		
EBI_DTEN	PA9	PA9	PA9					External Bus Interface (EBI) TFT Data Enable pin.		
EBI_HSNC	PA11	PA11	PA11					External Bus Interface (EBI) TFT Horizontal Synchroniza- tion pin.		
EBI_NANDREn	PC3	PC3	PC3					External Bus Interface (EBI) NAND Read Enable output.		
EBI_NANDWEn	PC5	PC5	PC5					External Bus Interface (EBI) NAND Write Enable output.		
EBI_REn	PF5	PF9	PF5					External Bus Interface (EBI) Read Enable output.		
EBI_VSNC	PA10	PA10	PA10					External Bus Interface (EBI) TFT Vertical Synchronization pin.		
EBI_WEn		PF8						External Bus Interface (EBI) Write Enable output.		
ETM_TCLK	PD7	PF8	PC6	PA6				Embedded Trace Module ETM clock .		
ETM_TD0	PD6	PF9	PC7	PA2				Embedded Trace Module ETM data 0.		
ETM_TD1	PD3	PD13	PD3	PA3				Embedded Trace Module ETM data 1.		
ETM_TD2	PD4	PB15	PD4	PA4				Embedded Trace Module ETM data 2.		
ETM_TD3	PD5		PD5	PA5				Embedded Trace Module ETM data 3.		
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4		
GPIO_EM4WU1	PA6							Pin can be used to wake the system up from EM4		
GPIO_EM4WU2	PC9							Pin can be used to wake the system up from EM4		
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4		

Alternate	ate LOCATION										
Functionality	0	1	2	3	4	5	6	Description			
US2_CLK	PC4	PB5						USART2 clock input / output.			
US2_CS	PC5	PB6						USART2 chip select input / output.			
US2_RX	PC3	PB4						USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Outp (MISO).			
US2_TX	PC2	PB3						USART2 Asynchronous Transmit.Also used as receive in- put in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).			
USB_DM	PF10							USB D- pin.			
USB_DMPU	PD2							USB D- Pullup control.			
USB_DP	PF11							USB D+ pin.			
USB_ID	PF12							USB ID pin. Used in OTG mode.			
USB_VBUS	USB_VBUS							USB 5 V VBUS input.			
USB_VBUSEN	PF5							USB 5 V VBUS enable.			
USB_VREGI	USB_VREGI							USB Input to internal 3.3 V regulator			
USB_VREGO	USB_VREGO							USB Decoupling for internal 3.3 V USB regulator and regulator output			

4.3 GPIO Pinout Overview

The specific GPIO pins available in *EFM32GG390* is shown in Table 4.3 (p. 63). Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	PB15	PB14	PB13	PB12	PB11	PB10	PB9	PB8	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Port C	-	-	-	-	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	PD15	PD14	PD13	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Port F	-	-	-	PF12	PF11	PF10	PF9	PF8	PF7	PF6	PF5	-	-	PF2	PF1	PF0

Table 4.3. GPIO Pinout

4.4 Opamp Pinout Overview

The specific opamp terminals available in EFM32GG390 is shown in Figure 4.2 (p. 64).

Figure 5.3. BGA112 PCB Stencil Design

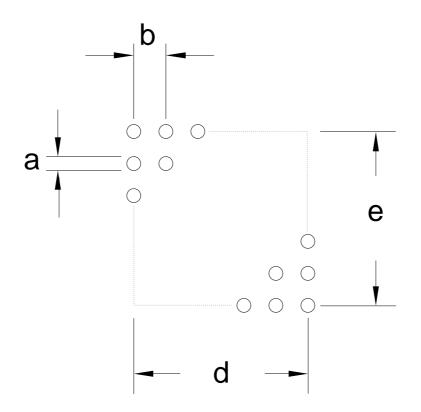


 Table 5.3. BGA112 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.33
b	0.80
d	8.00
e	8.00

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see Figure 4.3 (p. 64).

5.2 Soldering Information

The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.

7 Revision History

7.1 Revision 1.40

March 21st, 2016

Added clarification on conditions for INL_{ADC} and DNL_{ADC} parameters.

Reduced maximum and typical current consumption for all EM0 entries except 48 MHz in the Current Consumption table in the Electrical Characteristics section.

Increased maximum specifications for EM2 current, EM3 current, and EM4 current in the Current Consumption table in the Electrical Characteristics section.

Increased typical specification for EM2 and EM3 current at 85 C in the Current Consumption table in the Electrical Characteristics section.

Added EM2, EM3, and EM4 current consumption vs. temperature graphs.

Added a new EM2 entry and specified the existing specification is for EM0 for the BOD threshold on falling external supply voltage in the Power Management table in the Electrical Characteristics section.

Reduced maximum input leakage current in the GPIO table in the Electrical Characteristics section.

Added a maximum current consumption specification to the LFRCO table in the Electrical Characteristics section.

Added maximum specifications for the active current including references for two channels to the DAC table in the Electrical Characteristics section.

Increased the maximum specification for DAC offset voltage in the DAC table in the Electrical Characteristics section.

Increased the typical specifications for active current with FULLBIAS=1 and capacitive sense internal resistance in the ACMP table in the Electrical Characteristics section.

Added minimum and maximum specifications and updated the typical value for the VCMP offset voltage in the VCMP table in the Electrical Characteristics section.

Removed the maximum specification and reduced the typical value for hysteresis in the VCMP table in the Electrical Characteristics section.

Updated all graphs in the Electrical Characteristics section to display data for 2.0 V as the minimum voltage.

7.2 Revision 1.30

May 23rd, 2014

Removed "preliminary" markings

Updated HFRCO figures.

Corrected single power supply voltage minimum value from 1.85V to 1.98V.

Updated Current Consumption information.

Updated Power Management information.