

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wlgafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address: F	FF9DH Afte	er reset: 00H	R/W					
Symbol	<7>	6	<5>	4	3	2	1	0
RTCC0	RTCE	0	RCLOE1	0	AMPM	CT2	CT1	CT0

Figure 8-5. Format of Real-time Clock Control Register 0 (RTCC0) (2/2)

Table 8-2. Relationship Between RTCE and RCLOE1 Settings and Status

Register Settings		Sta	itus
RTCE	RCLOE1	Real-time clock 2 RTC1HZ pin output	
0	×	Counting stopped	No output
1	0	Count operation No output	
	1	Count operation	1 Hz output

AMPM	12-/24-hour system select					
0	12-hour system (a.m. and p.m. are displayed.)					
1	24-hour system					

When changing the value of the AMPM bit while the clock counter operates (RTCE = 1), set RWAIT (bit 0 of RTCC1) and then set the hour counter (HOUR) again.

When the AMPM value is 0, the 12-hour system is displayed. When the value is 1, the 24-hour system is displayed. Table 8-3 shows the displayed time digits.

CT2	CT1	CT0	Constant-period interrupt (INTRTC) selection
0	0	0	Does not use constant-period interrupt function.
0	0	1	Once per 0.5 s (synchronized with second count up)
0	1	0	Once per 1 s (same time as second count up)
0	1	1	Once per 1 m (second 00 of every minute)
1	0	0	Once per 1 hour (minute 00 and second 00 of every hour)
1	0	1	Once per 1 day (hour 00, minute 00, and second 00 of every day)
1	1	×	Once per 1 month (Day 1, hour 00 a.m., minute 00, and second 00 of every month)
When chang	ging the value	es of the CT2	to CT0 bits while the counter operates (RTCE = 1), rewrite the

values of the CT2 to CT0 bits while the counter operates (RTCE = T), rewrite the values of the CT2 to CT0 bits after disabling interrupt servicing INTRTC by using the interrupt mask flag register. Furthermore, after rewriting the values of the CT2 to CT0 bits, enable interrupt servicing after clearing the RIFG and RTCIF flags.

Caution Be sure to clear bits 4 and 6 to "0".

Remark ×: don't care

Table 8-3 shows the relationship between the setting value of the AMPM bit, the hour count register (HOUR) value, and time.

24-Hour Displa	ay (AMPM = 1)	12-Hour Display (AMPM = 1)		
Time	HOUR Register	Time	HOUR Register	
0	00H	12 a.m.	12H	
1	01H	1 a.m.	01H	
2	02H	2 a.m.	02H	
3	03H	3 a.m.	03H	
4	04H	4 a.m.	04H	
5	05H	5 a.m.	05H	
6	06H	6 a.m.	06H	
7	07H	7 a.m.	07H	
8	08H	8 a.m.	08H	
9	09H	9 a.m.	09H	
10	10H	10 a.m.	10H	
11	11H	11 a.m.	11H	
12	12H	12 p.m.	32H	
13	13H	1 p.m.	21H	
14	14H	2 p.m.	22H	
15	15H	3 p.m.	23H	
16	16H	4 p.m.	24H	
17	17H	5 p.m.	25H	
18	18H	6 p.m.	26H	
19	19H	7 p.m.	27H	
20	20H	8 p.m.	28H	
21	21H	9 p.m.	29H	
22	22H	10 p.m.	30H	
23	23H	11 p.m.	31H	

Table 8-3. Displayed Time Digits

The HOUR register value is set to 12-hour display when the AMPM bit is "0" and to 24-hour display when the AMPM bit is "1".

In 12-hour display, the fifth bit of the HOUR register displays 0 for AM and 1 for PM.

9.3.3 12-bit interval timer control register (ITMC)

This register is used to set up the starting and stopping of the 12-bit interval timer operation and to specify the timer compare value.

The ITMC register can be set by a 16-bit memory manipulation instruction.

Reset signal generation sets this register to 0FFFH.

Figure 9-4. Format of 12-bit Interval Timer Control Register (ITMC)

Address: FFF90H After reset: 0FFFH R/W

Symbol	15	14	13	12	11 to 0
ITMC	RINTE	0	0	0	ITMCMP11 to ITMCMP0

RINTE	12-bit Interval timer operation control			
0	count operation stopped (count clear)			
1	Count operation started			

ITMCMP11 to ITMCMP0	Specification of the 12-bit interval timer compare value				
001H	These bits generate an interrupt at the fixed cycle (count clock cycles x (ITMCMP				
•	setting + 1)).				
•					
•					
FFFH					
000H	Setting prohibited				
Example interrupt cycles when 001H or FFFH is specified for ITMCMP11 to ITMCMP0					
• ITMCMP11 to ITMCMP0 = 001H, count clock: when fsub = 32.768 kHz					
1/32.768 [kHz] × (1 + 1) = 0.06103515625 [ms] \cong 61.03 [µs]					
• ITMCMP11 to ITMCMP0 = FFFH, count clock: when fsub = 32.768 kHz					
1/32.768 [kHz] × (4095 +	1) = 125 [ms]				

- Cautions 1. Before changing the RINTE bit from 1 to 0, use the interrupt mask flag register to disable the INTIT interrupt servicing. When the operation starts (changing the RINTE bit from 0 to 1) again, clear the TMKAIF flag, and then enable the interrupt servicing.
 - 2. The value read from the RINTE bit is applied one count clock cycle after setting the RINTE bit.
 - 3. When setting the RINTE bit after returned from standby mode and entering standby mode again, confirm that the written value of the RINTE bit is reflected, or wait that more than one clock of the count clock has elapsed after returned from standby mode. Then enter standby mode.
 - 4. Only change the setting of the ITMCMP11 to ITMCMP0 bits when RINTE = 0. However, it is possible to change the settings of the ITMCMP11 to ITMCMP0 bits at the same time as when changing RINTE from 0 to 1 or 1 to 0.

12.3.4 A/D converter mode register 2 (ADM2)

This register is used to select the A/D converter reference voltage, check the upper limit and lower limit A/D conversion result values, select the resolution, and specify whether to use the SNOOZE mode.

The ADM2 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 12-7. Format of A/D Converter Mode Register 2 (ADM2) (1/2)

Address: F0010H After reset: 00H		R/W						
Symbol	7	6	5	4	<3>	<2>	1	<0>
ADM2	ADREFP1	ADREFP0	ADREFM	0	ADRCK	AWC	0	ADTYP

ADREFP1	ADREFP0	Selection of the + side reference voltage of the A/D converter				
0	0	Supplied from VDD				
0	1	Supplied from P21/AVREFP/ANI0				
1	0	Supplied from the internal reference voltage (1.45 V) ^{Note}				
1	1	Setting prohibited				
 When ADR (1) Set ADO (2) Change (3) Referen (4) Set ADO (5) Referen When ADR When ADR After (5) statistical When ADR Experimentation 	EFP1 or ADRE CE = 0 the values of A ce voltage stab CE = 1 ce voltage stab EFP1 and ADR EFP1 and ADR abilization time, EFP1 and ADR abilization time, EFP1 and ADR abilization time, EFP1 and ADR abilization time, EFP1 and ADR	FP0 bit is rewritten, this must be configured in accordance with the following procedures. ADREFP1 and ADREFP0 illization wait time (A) illization wait time (B) EFP0 are set to 1 and 0, the setting is changed to A = 5 μ s, B = 1 μ s. EFP0 are set to 0 and 0 or 0 and 1, A needs no wait and B = 1 μ s. start the A/D conversion. EFP0 are set to 1 and 0, respectively, A/D conversion cannot be performed on the voltage and internal reference voltage (1.45 V). EVER DUBLES = 0				

ADREFM	Selection of the – side reference voltage of the A/D converter
0	Supplied from Vss
1	Supplied from P20/AV _{REFM} /ANI1

Note This setting can be used only in HS (high-speed main) mode.

- Cautions 1. Rewrite the value of the ADM2 register while conversion is stopped (ADCS = 0, ADCE = 0).
 - 2. Do not set the ADREFP1 bit to 1 when shifting to STOP mode, or to HALT mode while the CPU is operating on the subsystem clock. When the internal reference voltage is selected (ADREFP1, ADREFP0 = 1, 0), the A/D converter reference voltage current (IADREF) indicated in 32.4.2 Supply current characteristics will be added.
 - 3. When using AVREFP and AVREFM, specify ANIO and ANI1 as the analog input channels and specify input mode by using the port mode register.

12.4 A/D Converter Conversion Operations

The A/D converter conversion operations are described below.

- <1> The voltage input to the selected analog input channel is sampled by the sample & hold circuit.
- <2> When sampling has been done for a certain time, the sample & hold circuit is placed in the hold state and the sampled voltage is held until the A/D conversion operation has ended.
- <3> Bit 9 of the successive approximation register (SAR) is set. The series resistor string voltage tap is set to (1/2) AVREF by the tap selector.
- <4> The voltage difference between the series resistor string voltage tap and sampled voltage is compared by the voltage comparator. If the analog input is greater than (1/2) AVREF, the MSB bit of the SAR register remains set to 1. If the analog input is smaller than (1/2) AVREF, the MSB bit is reset to 0.
- <5> Next, bit 8 of the SAR register is automatically set to 1, and the operation proceeds to the next comparison. The series resistor string voltage tap is selected according to the preset value of bit 9, as described below.
 - Bit 9 = 1: (3/4) AVREF
 - Bit 9 = 0: (1/4) AVREF

The voltage tap and sampled voltage are compared and bit 8 of the SAR register is manipulated as follows.

- Sampled voltage \geq Voltage tap: Bit 8 = 1
- Sampled voltage < Voltage tap: Bit 8 = 0
- <6> Comparison is continued in this way up to bit 0 of the SAR register.
- <7> Upon completion of the comparison of 10 bits, an effective digital result value remains in the SAR register, and the result value is transferred to the A/D conversion result register (ADCR, ADCRH) and then latched ^{Note 1}. At the same time, the A/D conversion end interrupt request (INTAD) can also be generated ^{Note 1}.
- <8> Repeat steps <1> to <7>, until the ADCS bit is cleared to 0^{Note 2}. To stop the A/D converter, clear the ADCS bit to 0.
- **Notes 1.** If the A/D conversion result is outside the A/D conversion result range specified by the ADRCK bit and the ADUL and ADLL registers (see **Figure 12-8**), the A/D conversion result interrupt request signal is not generated and no A/D conversion results are stored in the ADCR and ADCRH registers.
 - 2. While in the sequential conversion mode, the ADCS flag is not automatically cleared to 0. This flag is not automatically cleared to 0 while in the one-shot conversion mode of the hardware trigger no-wait mode, either. Instead, 1 is retained.
- **Remarks 1.** Two types of the A/D conversion result registers are available.
 - ADCR register (16 bits): Store 10-bit A/D conversion value
 - ADCRH register (8 bits): Store 8-bit A/D conversion value
 - 2. AVREF: The + side reference voltage of the A/D converter. This can be selected from AVREFP, the internal reference voltage (1.45 V), and VDD.

14.3.3 Serial mode register mn (SMRmn)

The SMRmn register is a register that sets an operation mode of channel n. It is also used to select an operation clock (fMCK), specify whether the serial clock (fSCK) may be input or not, set a start trigger, an operation mode (CSI, UART, or simplified I²C), and an interrupt source. This register is also used to invert the level of the receive data only in the UART mode.

Rewriting the SMRmn register is prohibited when the register is in operation (when SEmn = 1). However, the MDmn0 bit can be rewritten during operation.

The SMRmn register can be set by a 16-bit memory manipulation instruction.

Reset signal generation sets the SMRmn register to 0020H.

Figure 14-7. Format of Serial Mode Register mn (SMRmn) (1/2)

Address: F0110H, F0111H (SMR00) to F0116H, F0117H (SMR03), After reset: 0020H R/W F0150H, F0151H (SMR10) to F0156H, F0157H (SMR13)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMRmn	CKS	CCS	0	0	0	0	0	STS	0	SIS	1	0	0	MD	MD	MD
	mn	mn						mn ^{Note}		mn0				mn2	mn1	mn0
										Note						

CKS	Selection of operation clock (fMCK) of channel n
mn	
0	Operation clock CKm0 set by the SPSm register
1	Operation clock CKm1 set by the SPSm register
Opera higher	tion clock (f _{MCK}) is used by the edge detector. In addition, depending on the setting of the CCSmn bit and the 7 bits of the SDRmn register, a transfer clock (from) is generated

CCS mn	Selection of transfer clock (ftclk) of channel n						
0	Divided operation clock fmck specified by the CKSmn bit						
1	Clock input fsck from the SCKp pin (slave transfer in CSI mode)						
Transf error o SDRm	fer clock f_{TCLK} is used for the shift register, communication controller, output controller, interrupt controller, and controller. When CCSmn = 0, the division ratio of operation clock (f_{MCK}) is set by the higher 7 bits of the normalized register.						

STS	Selection of start trigger source
mn	
0	Only software trigger is valid (selected for CSI, UART transmission, and simplified I ² C).
1	Valid edge of the RxDq pin (selected for UART reception)
Transf	fer is started when the above source is satisfied after 1 is set to the SSm register.

Note The SMR01, SMR03, SMR11, and SMR13 registers only.

Caution Be sure to clear bits 13 to 9, 7, 4, and 3 (or bits 13 to 6, 4, and 3 for the SMR00, SMR02, SMR10, or SMR12 register) to "0". Be sure to set bit 5 to "1".

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), p: CSI number (p = 00, 10), q: UART number (q = 0 to 3), r: IIC number (r = 00, 10)

RENESAS

14.3.10 Serial channel enable status register m (SEm)

The SEm register indicates whether data transmission/reception operation of each channel is enabled or stopped.

When 1 is written a bit of serial channel start register m (SSm), the corresponding bit of this register is set to 1. When 1 is written a bit of serial channel stop register m (STm), the corresponding bit is cleared to 0.

Channel n that is enabled to operate cannot rewrite by software the value of the CKOmn bit (serial clock output of channel n) of serial output register m (SOm) to be described below, and a value reflected by a communication operation is output from the serial clock pin.

Channel n that stops operation can set the value of the CKOmn bit of the SOm register by software and output its value from the serial clock pin. In this way, any waveform, such as that of a start condition/stop condition, can be created by software.

The SEm register can be read by a 16-bit memory manipulation instruction.

The lower 8 bits of the SEm register can be set with a 1-bit or 8-bit memory manipulation instruction with SEmL. Reset signal generation clears the SEm register to 0000H.

Figure 14-14. Format of Serial Channel Enable Status Register m (SEm)

Address: F01	20H, F0	0121H (SE0)	After re	eset: 00	00H	R									
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SE0	0	0	0	0	0	0	0	0	0	0	0	0	SE03	SE02	SE01	SE00
Address: F01	60H, F(D161H (SE1)	After re	eset: 00	00H	R									
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SE1	0	0	0	0	0	0	0	0	0	0	0	0	SE13	SE12	SE11	SE10
	SEm				Ir	ndicatio	n of ope	eration e	enable/s	stop sta	tus of c	hannel	n			
	n															
	0	Opera	Operation stops													
	1	Opera	tion is e	enabled												

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3)

(1) Register setting

Figure 14-57. Example of Contents of Registers for Slave Reception of 3-Wire Serial I/O (CSI00, CSI10) (1/2)

Note Only provided for the SCR00 register. This bit is fixed to 1 for the other registers.

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 2), p: CSI number (p = 00, 10), mn = 00, 02

2. : Setting is fixed in the CSI slave transmission mode, : Setting disabled (set to the initial value)
 ×: Bit that cannot be used in this mode (set to the initial value when not used in any mode)
 0/1: Set to 0 or 1 depending on the usage of the user

Starting setting for resumption No Completing master (Essential) (master) preparations? Yes (Essential) Port manipulation mode register. (Selective) Changing setting of the SPSm register Changing setting of the SMRmn register (Selective) (Selective) Changing setting of the SCRmn register Clearing error flag (Selective) (SIRmn). Changing setting of the SOEm register (Selective) Changing setting of the SOm register (Selective) data (SOmn). Changing setting of the SOEm register (Selective) Port manipulation (Essential) register. (Essential) Writing to the SSm register (Essential) Starting communication Completing resumption setting

Figure 14-66. Procedure for Resuming Slave Transmission/Reception

Wait until stop the communication target

Disable data output of the target channel by setting a port register and a port

Re-set the register to change the operation clock setting.

Re-set the register to change serial mode register mn (SMRmn) setting.

Re-set the register to change serial communication operation setting register mn (SCRmn) setting.

If the OVF flag remain set, clear this using serial flag clear trigger register mn

Set the SOEmn bit to 0 to stop output from the target channel.

Set the initial output level of the serial

Set the SOEmn bit to 1 and enable output from the target channel.

Enable data output of the target channel by setting a port register and a port mode

Set the SSmn bit of the target channel to 1 (SEmn = 1 : to enable operation).

Sets transmit data to the SIOp register (bits 7 to 0 of the SDRmn register) and wait for a clock from the master.

- Cautions 1. Be sure to set transmit data to the SIOp register before the clock from the master is started.
 - 2. If PER0 is rewritten while stopping the master transmission and the clock supply is stopped, wait until the transmission target (master) stops or transmission finishes, and then perform initialization instead of restarting the transmission.

(2) Operation procedure

Figure 14-85. Initial Setting Procedure for UART Reception

Caution Set the RXEmn bit of SCRmn register to 1, and then be sure to set SSmn to 1 after 4 or more fmck clocks have elapsed.

Figure 14-86. Procedure for Stopping UART Reception

The meanings of <3> to <10> in (2) Address ~ data ~ data in Figure 15-32 are explained below.

- <3> In the slave device if the address received matches the address (SVAn value) of a slave device ^{Note}, that slave device sends an ACK by hardware to the master device. The ACK is detected by the master device (ACKDn = 1) at the rising edge of the 9th clock.
- <4> The master device issues an interrupt (INTIICAn: end of address transmission) at the falling edge of the 9th clock. The slave device whose address matched the transmitted slave address sets a wait status (SCLAn = 0) and issues an interrupt (INTIICAn: address match)^{Note}.
- <5> The master device writes the data to transmit to the IICA shift register n (IICAn) and releases the wait status that it set by the master device.
- <6> If the slave device releases the wait status (WRELn = 1), the master device starts transferring data to the slave device.
- <7> After data transfer is completed, because of ACKEn = 1, the slave device sends an ACK by hardware to the master device. The ACK is detected by the master device (ACKDn = 1) at the rising edge of the 9th clock.
- <8> The master device and slave device set a wait status (SCLAn = 0) at the falling edge of the 9th clock, and both the master device and slave device issue an interrupt (INTIICAn: end of transfer).
- <9> The master device writes the data to transmit to the IICAn register and releases the wait status that it set by the master device.
- <10> The slave device reads the received data and releases the wait status (WRELn = 1). The master device then starts transferring data to the slave device.
- **Note** If the transmitted address does not match the address of the slave device, the slave device does not return an ACK to the master device (NACK: SDAAn = 1). The slave device also does not issue the INTIICAn interrupt (address match) and does not set a wait status. The master device, however, issues the INTIICAn interrupt (end of address transmission) regardless of whether it receives an ACK or NACK.
- **Remarks 1.** <1> to <15> in Figure 15-32 represent the entire procedure for communicating data using the I²C bus.

Figure 15-32 (1) Start condition ~ address ~ data shows the processing from <1> to <6>, Figure 15-32 (2) Address ~ data ~ data shows the processing from <3> to <10>, and Figure 15-32 (3) Data ~ data ~ stop condition shows the processing from <7> to <15>.

2. n = 0

(4) DMA pending instruction

Even if a DMA request is generated, DMA transfer is held pending immediately after the following instructions.

- CALL !addr16
- CALL \$!addr20
- CALL !!addr20
- CALL rp
- CALLT [addr5]
- BRK
- MOV PSW, #byte
- MOV PSW, A
- MOV1 PSW. bit, CY
- SET1 PSW. bit
- CLR1 PSW. bit
- POP PSW
- BTCLR PSW. bit, \$addr20
- El
- DI
- Write instructions for registers IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, IF3L, MK0L, MK0H, MK1L, MK1H, MK2L, MK2H, MK3L, PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR03L, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H, and PR13L each.
- Instruction for accessing the data flash memory
- (5) Operation if address in general-purpose register area or other than those of internal RAM area is specified The address indicated by DMA RAM address register n (DRAn) is incremented during DMA transfer. If the address is incremented to an address in the general-purpose register area or exceeds the area of the internal RAM, the following operation is performed.
 - In mode of transfer from SFR to RAM The data of that address is lost.
 - In mode of transfer from RAM to SFR Undefined data is transferred to SFR.

In either case, malfunctioning may occur or damage may be done to the system. Therefore, make sure that the address is within the internal RAM area other than the general-purpose register area.

Figure 19-7. Interrupt Request Acknowledgment Processing Algorithm

xxIF: Interrupt request flag

××MK: Interrupt mask flag

xxPR0: Priority specification flag 0

××PR1: Priority specification flag 1

IE: Flag that controls acknowledgment of maskable interrupt request (1 = Enable, 0 = Disable)

ISP0, ISP1: Flag that indicates the priority level of the interrupt currently being serviced (see Figure 19-6)

Note For the default priority, see Table 19-1 Interrupt Source List.

- Notes 1. The LVIMK flag is set to "1" by reset signal generation.
 - After an interrupt is generated, perform the processing according to Figure 24-8 Setting Procedure for Operating Voltage Check/Reset in interrupt and reset mode.
- **Remark** VPOR: POR power supply rise detection voltage VPDR: POR power supply fall detection voltage

RENESAS

Products	Code flash memory (00000H to xxxxxH)	RAM (zzzzH to FFEFFH)	Detected lowest address for read/instruction fetch (execution) (yyyyyH)
R5F10WLA, R5F10WMA	16384 × 8 bits (00000H to 03FFFH)	1024×8 bits (FFB00H to FFEFFH)	10000H
R5F10WLC, R5F10WMC	32768 × 8 bits (00000H to 07FFFH)	1536×8 bits (FF900H to FFEFFH)	10000H
R5F10WLD, R5F10WMD	49152 × 8 bits (00000H to 0BFFFH)	2048 × 8 bits (FF700H to FFEFFH)	10000H
R5F10WLE, R5F10WME	65536 × 8 bits (00000H to 0FFFFH)	4096 × 8 bits (FEF00H to FFEFFH)	10000H
R5F10WLF, R5F10WMF	98304 × 8 bits (00000H to 17FFFH)	6144 × 8 bits (FE700H to FFEFFH)	20000H
R5F10WLG, R5F10WMG	131072 × 8 bits (00000H to 1FFFFH)	8192 × 8 bits (FDF00H to FFEFFH)	20000H

25.3.6.1 Invalid memory access detection control register (IAWCTL)

This register is used to control detection of invalid memory access and the RAM/SFR guard function.

The IAWEN bit is used for the invalid memory access detection function.

The IAWCTL register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 25-12. Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: F0078H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
IAWCTL	IAWEN	0	GRAM1	GRAM0	0	GPORT	GINT	GCSC

IAWEN ^{Note}	Control of invalid memory access detection							
0	Disable the detection of invalid memory access.							
1	Enable the detection of invalid memory access.							

Note Only writing 1 to the IAWEN bit is valid; not writing 0 to the IAWEN bit is ignored after it is set to 1.

Remark By specifying WDTON = 1 (watchdog timer operation enable) for the option byte (000C0H), the invalid memory access function is enabled even IAWEN = 0.

28.5.2 Boot swap function

If rewriting the boot area failed by temporary power failure or other reasons, restarting a program by resetting or overwriting is disabled due to data destruction in the boot area.

The boot swap function is used to avoid this problem.

Before erasing boot cluster 0^{Note}, which is a boot area, by self-programming, write a new boot program to boot cluster 1 in advance. When the program has been correctly written to boot cluster 1, swap this boot cluster 1 and boot cluster 0 by using the set information function of the firmware of the RL78 microcontroller, so that boot cluster 1 is used as a boot area. After that, erase or write the original area, boot cluster 0.

As a result, even if a power failure occurs while the area is being rewritten, the program is executed correctly because it is booted from boot cluster 1 to be swapped when the program is reset and started next.

Note A boot cluster is a 4 KB area and boot clusters 0 and 1 are swapped by the boot swap function.

Figure 28-9. Boot Swap Function

In an example of above figure, it is as follows. Boot cluster 0: Boot area before boot swap Boot cluster 1: Boot area after boot swap

32.1 Absolute Maximum Ratings

Absolute	Maximum	Ratings	(1/3)
----------	---------	---------	-------

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
REGC pin input voltage	Viregc	REGC	-0.3 to +2.8 and -0.3 to V_{DD} +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	–0.3 to V _{DD} +0.3 ^{Note 2}	V
	VI2	P60 and P61 (N-ch open-drain)	–0.3 to +6.5	V
	Vı3	EXCLK, EXCLKS, RESET	-0.3 to Vdd +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	–0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANIO, ANI1, ANI16 to ANI26	-0.3 to V_DD +0.3 and -0.3 to AV_{REF(+)} +0.3^{Notes 2, 3}	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AVREF (+): + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

AC Timing Test Points

IICA serial transfer timing

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conc	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVD5	Vpoc2,	VPOC1, VPOC0 = 0, 1, 1,	falling reset voltage	2.64	2.75	2.86	V
mode	VLVD4		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVD3]	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	VLVD0		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

33.6.6 Supply voltage rise time

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} rise slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 33.4 AC Characteristics.

