

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A8
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.2GHz
Co-Processors/DSP	Multimedia; NEON [™] SIMD
RAM Controllers	LPDDR2, DDR2, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100Mbps (1)
SATA	SATA 1.5Gbps (1)
USB	USB 2.0 (2), USB 2.0 + PHY (2)
Voltage - I/O	1.3V, 1.8V, 2.775V, 3.3V
Operating Temperature	-20°C ~ 85°C (TC)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	529-FBGA
Supplier Device Package	529-FBGA (19x19)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcimx535dvv2c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Modules List

The i.MX53xD processor contains a variety of digital and analog modules. Table 3 describes these modules in alphabetical order.

Block Mnemonic	Block Name	Subsystem	Brief Description
ARM	ARM Platform	ARM	The ARM Cortex TM A8 platform consists of the ARM processor version r2p5 (with TrustZone) and its essential sub-blocks. It contains the 32 Kbyte L1 instruction cache, 32 Kbyte L1 data cache, Level 2 cache controller and a 256 Kbyte L2 cache. The platform also contains an event monitor and debug modules. It also has a NEON coprocessor with SIMD media processing architecture, a register file with 32/64-bit general-purpose registers, an integer execute pipeline (ALU, Shift, MAC), dual single-precision floating point execute pipelines (FADD, FMUL), a load/store and permute pipeline and a non-pipelined vector floating point (VFP Lite) coprocessor supporting VFPv3.
ASRC	Asynchronous Sample Rate Converter	Multimedia Peripherals	The asynchronous sample rate converter (ASRC) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversion of up to 10 channels of about -120 dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs.
AUDMUX	Digital Audio Multiplexer	Multimedia Peripherals	The AUDMUX is a programmable interconnect for voice, audio, and synchronous data routing between host serial interfaces (for example, SSI1, SSI2, and SSI3) and peripheral serial interfaces (audio and voice codecs). The AUDMUX has seven ports (three internal and four external) with identical functionality and programming models. A desired connectivity is achieved by configuring two or more AUDMUX ports.
CAMP-1 CAMP-2	Clock Amplifier	Clocks, Resets, and Power Control	Clock amplifier
CCM GPC SRC	Clock Control Module Global Power Controller System Reset Controller	Clocks, Resets, and Power Control	These modules are responsible for clock and reset distribution in the system, as well as for system power management. The system includes four PLLs.
CSPI ECSPI-1 ECSPI-2	Configurable SPI, Enhanced CSPI	Connectivity Peripherals	Full-duplex enhanced synchronous serial interface, with data rates 16-60 Mbit/s. It is configurable to support master/slave modes. In Master mode it supports four slave selects for multiple peripherals.
CSU	Central Security Unit	Security	The central security unit (CSU) is responsible for setting comprehensive security policy within the i.MX53xD platform, and for sharing security information between the various security modules. The security control registers (SCR) of the CSU are set during boot time by the high assurance boot (HAB) code and are locked to prevent further writing.

Table 3. i.MX53xD Digital and Analog Blocks

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
USB	USB Controller	Connectivity Peripherals	 USB supports USB2.0 480 MHz, and contains: One high-speed OTG sub-block with integrated HS USB PHY One high-speed host sub-block with integrated HS USB PHY Two identical high-speed Host modules The high-speed OTG module, which is internally connected to the HS USB PHY, is equipped with transceiver-less logic to enable on-board USB connectivity without USB transceivers All the USB ports are equipped with standard digital interfaces (ULPI, HS IC-USB) and transceivers.
VPU	Video Processing Unit	Multimedia Peripherals	 A high-performing video processing unit (VPU) version 3, which covers many SD-level video decoders and SD-level encoders as a multi-standard video codec engine as well as several important video processing such as rotation and mirroring. VPU Features: MPEG-2 decode, Mail-High profile, up to 1080i/p resolution, 40 Mbps bit rate MPEG4/XviD decode, SP/ASP profile, up to 1080 i/p resolution, 40 Mbps bit rate H.263 decode, P0/P3 profile, up to 16CIF resolution, 20 Mbps bit rate H.264 decode, BP/MP/HP profile, up to 1080 i/p resolution, 40 Mbps bit rate VC1 decode, SP/ASP profile, up to 1080 i/p resolution, 40 Mbps bit rate VC1 decode, SP/MP/AP profile, up to 1080 i/p resolution, 40 Mbps bit rate RV10 decode, 8/9/2010 profile, up to 1080 i/p resolution, 40 Mbps bit rate MJPEG decode, Baseline profile, up to 8192 x 8192 resolution, 40 Mbps bit rate¹ H.263 encode, Baseline profile, up to 720p resolution, 14 Mbps bit rate¹ H.264 encode, Baseline profile, up to 720p resolution, 14 Mbps bit rate¹ H.264 encode, Baseline profile, up to 720p resolution, 14 Mbps bit rate¹ H.264 encode, Baseline profile, up to 720p resolution, 14 Mbps bit rate¹ MJPEG encode, Baseline profile, up to 8192 x 8192 resolution, 80 Mpixel/s bit rate for 4:2:2 format
WDOG-1	Watch Dog	Timer Peripherals	The watch dog timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line.
WDOG-2 (TZ)	Watch Dog (TrustZone)	Timer Peripherals	The TrustZone watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. This situation should be avoided, as it can compromise the system's security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode SW.

Table 3. i.MX53xD Digital and Analog	g Blocks (continued)
--------------------------------------	----------------------

- I/O Supplies (NVCC_xxx) below or equal to 2.8 V nom./3.1 V max. should not precede NVCC_CKIH. They can start powering ON during NVCC_CKIH ramp-up, before it is stabilized. Within this group, the supplies can be powered-up in any order. Alternatively, the on-chip regulator VDD_ANA_PLL can be used to power NVCC_CKIH and NVCC_RESET. In this case, the sequence defined in the "Interfacing the i.MX53 Processor with LTC3589-1" section of the *i.MX53 System Development User's Guide* (MX53UG) must be followed.
- I/O Supplies (NVCC_xxx) above 2.8 V nom./3.1 V max. should be powered ON only after NVCC_CKIH is stable.
- In case VDD_DIG_PLL and VDD_ANA_PLL are powered ON from internal voltage regulator (default case for i.MX53xD), there are no related restrictions on VDD_REG, as it is used as their internal regulators power source.

If VDD_DIG_PLL and VDD_ANA_PLL are powered on externally, to reduce current leakage during the power-up, it is recommended to activate the VDD_REG before or at the same time with VDD_DIG_PLL and VDD_ANA_PLL. If this sequencing is not possible, make sure that the 2.5 V VDD_REG supply shut-off output impedance is higher than 1 k Ω when it is inactive.

• VDD_REG supply is required to be powered ON to enable DDR operation. It must be powered on after VCC and before NVCC_EMI_DRAM. The sequence should be:

 $VCC \rightarrow VDD_REG \rightarrow NVCC_EMI_DRAM$

- NVCC_EIM_DRAM_2P5 PoP additional power line timing is the same as DVV_REG
- VDDA and VDDAL1 can be powered ON anytime before POR_B, regardless of any other power signal.
- VDDGP can be powered ON anytime before POR_B, regardless of any other power signal.
- VP and VPH can be powered up together, or anytime after, the VCC. VP and VPH should come before POR.
- TVDAC_DHVDD and TVDAC_AHVDDRGB should be powered from the same regulator. This is due to ESD diode protection circuit, that may cause current leakage if one of the supplies is powered ON before the other.

NOTE

The POR_B input must be immediately asserted at power-up and remain asserted until after the last power rail reaches its working voltage.

- ² Vid(ac) specifies the input differential voltage | Vtr Vcp | required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The Minimum value is equal to Vih(ac) Vil(ac).
- ³ The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross.
- ⁴ The typical value of Vox(ac) is expected to be about 0.5 x OVDD and Vox(ac) is expected to track variation in OVDD. Vox(ac) indicates the voltage at which differential output signal must cross.

Table 25 shows the AC parameters for LPDDR2 I/O operating in LPDDR2 mode.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
AC input logic high	Vih(ac)	—	Vref + 0.22	—	OVDD	V
AC input logic low	Vil(ac)	_	0	_	Vref - 0.22	V
AC differential input high voltage ²	Vidh(ac)	—	0.44	—	—	V
AC differential input low voltage	Vidl(ac)	—	_	—	0.44	V
Input AC differential cross point voltage ³	Vix(ac)	Relative to OVDD/2	-0.12	—	0.12	V
Over/undershoot peak	Vpeak	—	_	—	0.35	V
Over/undershoot area (above OVDD or below OVSS)	Varea	266 MHz	_	—	0.6	V-ns
Single output slew rate	tsr	50 Ω to Vref. 5pF load. Drive impedance= 40 $\Omega \pm 30\%$	1.5	—	3.5	V/ns
		50 Ω to Vref. 5 pF load. Drive impedance= 60 Ω ± 30%	1	_	2.5	
Skew between pad rise/fall asymmetry + skew caused by SSN	t _{SKD}	clk = 266 MHz clk = 400 MHz	_	—	0.2 0.1	ns

Table 25. LPDDR2 I/O LPDDR2 mode AC Characteristics¹

¹ Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.

² Vid(ac) specifies the input differential voltage | Vtr - Vcp | required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The Minimum value is equal to Vih(ac) - Vil(ac).

³ The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross.

Table 26 shows the AC parameters for LPDDR2 I/O operating in DDR3 mode.

Table 26. LPDDR2 I/O DDR3 mode AC Characteristics¹

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
AC input logic high	Vih(ac)	—	Vref + 0.175	—	OVDD	V
AC input logic low	Vil(ac)	—	0	—	Vref - 0.175	V
AC differential input voltage ²	Vid(ac)	—	0.35	—	—	V
Input AC differential cross point voltage ³	Vix(ac)	—	Vref - 0.15	—	Vref + 0.15	V
Output AC differential cross point voltage ⁴	Vox(ac)	_	Vref - 0.15	_	Vref + 0.15	V

	Deveneter	BC	D = 0	BCI	D = 1	BC	D = 2	BC	D = 3
U	Parameter	Min	Мах	Min	Max	Min	Мах	Min	Max
WE3	BCLK High Level Width	0.4 x t		0.8 x t		1.2 x t		1.6 x t	
WE4	Clock rise to address valid ³	-0.5 x t - 1.25	-0.5 x t + 1.75	-t - 1.25	-t + 1.75	-1.5 x t - 1.25	-1.5 x t +1.75	-2 x t - 1.25	-2 x t + 1.75
WE5	Clock rise to address invalid	0.5 x t - 1.25	0.5 x t + 1.75	t - 1.25	t + 1.75	1.5 x t - 1.25	1.5 x t + 1.75	2 x t - 1.25	2 x t + 1.75
WE6	Clock rise to CSx_B valid	-0.5 x t - 1.25	-0.5 x t + 1.75	-t - 1.25	-t + 1.75	-1.5 x t - 1.25	-1.5 x t + 1.75	-2 x t - 1.25	-2 x t + 1.75
WE7	Clock rise to CSx_B invalid	0.5 x t - 1.25	0.5 x t + 1.75	t - 1.25	t + 1.75	1.5 x t - 1.25	1.5 x t + 1.75	2 x t - 1.25	2 x t + 1.75
WE8	Clock rise to WE_B Valid	-0.5 x t - 1.25	-0.5 x t + 1.75	-t - 1.25	-t + 1.75	-1.5 x t - 1.25	-1.5 x t + 1.75	-2 x t - 1.25	-2 x t + 1.75
WE9	Clock rise to WE_B Invalid	0.5 x t - 1.25	0.5 x t + 1.75	t - 1.25	t + 1.75	1.5 x t - 1.25	1.5 x t + 1.75	2 x t - 1.25	2 x t + 1.75
WE10	Clock rise to OE_B Valid	-0.5 x t - 1.25	-0.5 x t + 1.75	-t - 1.25	-t + 1.75	-1.5 x t - 1.25	-1.5 x t + 1.75	-2 x t - 1.25	-2 x t + 1.75
WE11	Clock rise to OE_B Invalid	0.5 x t - 1.25	0.5 x t + 1.75	t - 1.25	t + 1.75	1.5 x t - 1.25	1.5 x t + 1.75	2 x t - 1.25	2 x t + 1.75
WE12	Clock rise to BEy_B Valid	-0.5 x t - 1.25	-0.5 x t + 1.75	-t - 1.25	-t + 1.75	-1.5 x t - 1.25	-1.5 x t + 1.75	-2 x t - 1.25	-2 x t + 1.75
WE13	Clock rise to BEy_B Invalid	0.5 x t - 1.25	0.5 x t + 1.75	t - 1.25	t + 1.75	1.5 x t - 1.25	1.5 x t + 1.75	2 x t - 1.25	2 x t + 1.75
WE14	Clock rise to ADV_B Valid	-0.5 x t - 1.25	-0.5 x t + 1.75	-t - 1.25	-t + 1.75	-1.5 x t - 1.25	-1.5 x t + 1.75	-2 x t - 1.25	-2 x t + 1.75
WE15	Clock rise to ADV_B Invalid	0.5 x t - 1.25	0.5 x t + 1.75	t - 1.25	t + 1.75	1.5 x t - 1.25	1.5 x t + 1.75	2 x t - 1.25	2 x t + 1.75
WE16	Clock rise to Output Data Valid	-0.5 x t - 1.25	-0.5 x t + 1.75	-t - 1.25	-t + 1.75	-1.5 x t - 1.25	-1.5 x t + 1.75	-2 x t - 1.25	-2 x t + 1.75
WE17	Clock rise to Output Data Invalid	0.5 x t - 1.25	0.5 x t + 1.75	t - 1.25	t + 1.75	1.5 x t - 1.25	1.5 x t + 1.75	2 x t - 1.25	2 x t + 1.75
WE18	Input Data setup time to Clock rise	2 ns	—	4 ns	—	—	_	—	—
WE19	Input Data hold time from Clock rise	2 ns	_	2 ns	—	—	_	—	—
WE20	WAIT_B setup time to Clock rise	2 ns	_	4 ns	—	—		—	—
WE21	WAIT_B hold time from Clock rise	2 ns	—	2 ns	—	—		—	—

Table 40. EIM Bus Timing Parameters (continued)¹

NOTE

In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the data bus.

Electrical Characteristics

Figure 27. DTACK Write Access (DAP=0)

Figure 28 and Table 42 show the address and control timing parameters for DDR2 and DDR3.

Figure 28. DDR SDRAM Address and Control Parameters for DDR2 and DDF
--

Table 42.	DDR S	SDRAM	Timing	Parameter	Table ¹	2

	Baramatar	Symbol	SDCLK =	400 MHz	Unito
	Farameter	Symbol	Min	Мах	Units
DDR1	SDRAM clock high-level width	tсн	0.48	0.52	tск
DDR2	SDRAM clock low-level width	tCL	0.48	0.52	tск
DDR4	CS, RAS, CAS, CKE, WE, ODT setup time	tis	0.6	—	ns
DDR5	CS, RAS, CAS, CKE, WE, ODT hold time	tıн	0.6	—	ns
DDR6	Address output setup time	tis	0.6	—	ns
DDR7	Address output hold time	tıн	0.6	—	ns

¹ All timings are refer to Vref level cross point.

 2 $\,$ Reference load model is 25 Ω resistor from each of the DDR outputs to VDD_REF.

ID	Parameter	Standa Supply 1.65 V–1.95	ard Mode Voltage = V, 2.7 V–3.3 V	Fast Mo Supply Volt 2.7 V–3.3	de age = 3 V	Unit
		Min	Мах	Min	Max	
IC1	I2CLK cycle time	10	_	2.5		μs
IC2	Hold time (repeated) START condition	4.0	_	0.6		μs
IC3	Set-up time for STOP condition	4.0	_	0.6		μs
IC4	Data hold time	01	3.45 ²	01	0.9 ²	μs
IC5	HIGH Period of I2CLK Clock	4.0	—	0.6		μs
IC6	LOW Period of the I2CLK Clock	4.7	—	1.3		μs
IC7	Set-up time for a repeated START condition	4.7	—	0.6		μs
IC8	Data set-up time	250	_	100 ³		ns
IC9	Bus free time between a STOP and START condition	4.7	—	1.3		μs
IC10	Rise time of both I2DAT and I2CLK signals	—	1000	$20 + 0.1 C_b^4$	300	ns
IC11	Fall time of both I2DAT and I2CLK signals	—	300	$20 + 0.1 C_b^4$	300	ns
IC12	Capacitive load for each bus line (C_b)	_	400	_	400	pF

Table 58. I²C Module Timing Parameters

¹ A device must internally provide a hold time of at least 300 ns for I2DAT signal in order to bridge the undefined region of the falling edge of I2CLK.

² The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2CLK signal.

³ A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2CLK signal. If such a device does stretch the LOW period of the I2CLK signal, it must output the next data bit to the I2DAT line max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the I2CLK line is released.

⁴ $C_b = total capacitance of one bus line in pF.$

4.7.7 Image Processing Unit (IPU) Module Parameters

The purpose of the IPU is to provide comprehensive support for the flow of data from an image sensor and/or to a display device. This support covers all aspects of these activities:

- Connectivity to relevant devices—cameras, displays, graphics accelerators, and TV encoders.
- Related image processing and manipulation: sensor image signal processing, display processing, image conversions, and other related functions.
- Synchronization and control capabilities, such as avoidance of tearing artifacts.

4.7.7.1 IPU Sensor Interface Signal Mapping

The IPU supports a number of sensor input formats. Table 59 defines the mapping of the Sensor Interface Pins used for various supported interface formats.

valid and cause data to be latched into the input FIFO. The SENSB_PIX_CLK signal is inactive (states low) until valid data is going to be transmitted over the bus.

Figure 45. Non-Gated Clock Mode Timing Diagram

The timing described in Figure 45 is that of a typical sensor. Some other sensors may have a slightly different timing. The CSI can be programmed to support rising/falling-edge triggered SENSB_VSYNC; active-high/low SENSB_HSYNC; and rising/falling-edge triggered SENSB_PIX_CLK.

4.7.7.3 Electrical Characteristics

Figure 46 depicts the sensor interface timing. SENSB_MCLK signal described here is not generated by the IPU. Table 60 lists the sensor interface timing characteristics.

Figure 46. Sensor Interface Timing Diagram

Table 00. Selisur Internace Thinning Characteristics
--

ID	Parameter	Symbol	Min	Мах	Unit
IP1	Sensor output (pixel) clock frequency	Fpck	0.01	180	MHz
IP2	Data and control setup time	Tsu	2	_	ns
IP3	Data and control holdup time	Thd	1	_	ns

4.7.7.6 Synchronous Interfaces to Standard Active Matrix TFT LCD Panels

4.7.7.6.1 IPU Display Operating Signals

The IPU uses four control signals and data to operate a standard synchronous interface:

- IPP_DISP_CLK—Clock to display
- HSYNC—Horizontal synchronization
- VSYNC—Vertical synchronization
- DRDY—Active data

All synchronous display controls are generated on the base of an internally generated "local start point". The synchronous display controls can be placed on time axis with DI's offset, up and down parameters. The display access can be whole number of DI clock (Tdiclk) only. The IPP_DATA can not be moved relative to the local start point. The data bus of the synchronous interface is output direction only.

4.7.7.6.2 LCD Interface Functional Description

Figure 47 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure signals are shown with negative polarity. The sequence of events for active matrix interface timing is:

- DI_CLK internal DI clock, used for calculation of other controls.
- IPP_DISP_CLK latches data into the panel on its negative edge (when positive polarity is selected). In active mode, IPP_DISP_CLK runs continuously.
- HSYNC causes the panel to start a new line. (Usually IPP_PIN_2 is used as HSYNC.)
- VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse. (Usually IPP_PIN_3 is used as VSYNC.)
- DRDY acts like an output enable signal to the CRT display. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off. (DRDY can be used either synchronous or asynchronous generic purpose pin as well.)

Figure 47. Interface Timing Diagram for TFT (Active Matrix) Panels

Figure 59 depicts Write 0 Sequence timing, and Table 68 lists the timing parameters.

Figure 59. Write 0 Sequence Timing Diagram

Table 68	8. WR0	Sequence	Timing	Parameters
----------	--------	----------	--------	------------

ID	Parameter	Symbol	Min	Тур	Max	Unit
OW5	Write 0 Low Time	t _{LOW0}	60	100	120	μs
OW6	Transmission Time Slot	t _{SLOT}	OW5	117	120	μs
Recovery time		t _{REC}	1			μs

Figure 60 depicts Write 1 Sequence timing, Figure 61 depicts the Read Sequence timing, and Table 69 lists the timing parameters.

Figure 60. Write 1 Sequence Timing Diagram

Figure 61. Read Sequence Timing Diagram

4.7.11 PATA Timing Parameters

This section describes the timing parameters of the Parallel ATA module which are compliant with ATA/ATAPI-6 specification.

Parallel ATA module can work on PIO/Multi-Word DMA/Ultra DMA transfer modes. Each transfer mode has different data transfer rate, Ultra DMA mode 4 data transfer rate is up to 100MB/s. Parallel ATA module interface consist of a total of 29 pins. Some pins act on different function in different transfer mode. There are different requirements of timing relationships among the function pins conform with ATA/ATAPI-6 specification and these requirements are configurable by the ATA module registers.

Table 71 and Figure 63 define the AC characteristics of all the PATA interface signals in all data transfer modes.

ATA Interface Signals

Figure 63. PATA Interface Signals Timing Diagram

Table 71. AC Characteristics of All Interface Signa

ID	Parameter	Symbol	Min	Max	Unit
SI1	Rising edge slew rate for any signal on ATA interface ¹	S _{rise}		1.25	V/ns
SI2	Falling edge slew rate for any signal on ATA interface ¹	S _{fall}		1.25	V/ns
SI3	Host interface signal capacitance at the host connector	C _{host}		20	pF

¹ SRISE and SFALL shall meet this requirement when measured at the sender's connector from 10–90% of full signal amplitude with all capacitive loads from 15–40 pF where all signals have the same capacitive load value.

The user must use level shifters for 5.0 V compatibility on the ATA interface. The i.MX53xD PATA interface is 3.3 V compatible.

The use of bus buffers introduces delay on the bus and skew between signal lines. These factors make it difficult to operate the bus at the highest speed (UDMA-5) when bus buffers are used. If fast UDMA mode operation is needed, this may not be compatible with bus buffers.

Another area of attention is the slew rate limit imposed by the ATA specification on the ATA bus. According to this limit, any signal driven on the bus should have a slew rate between 0.4 and 1.2 V/ns with a 40 pF load. Not many vendors of bus buffers specify slew rate of the outgoing signals.

When bus buffers are used, the ata_data bus buffer is special. This is a bidirectional bus buffer, so a direction control signal is needed. This direction control signal is ata_buffer_en. When its high, the bus should drive from host to device. When its low, the bus should drive from device to host. Steering of the signal is such that contention on the host and device tri-state busses is always avoided.

ID	Parameter	Min	Мах	Unit				
SS39	(Tx) CK high to STXD high impedance	—	15.0	ns				
	Synchronous External Clock Operation							
SS44	SRXD setup before (Tx) CK falling	10.0	—	ns				
SS45	SRXD hold after (Tx) CK falling	2.0	_	ns				
SS46	SRXD rise/fall time	—	6.0	ns				

Table 86. SSI Transmitter Timing with External Clock (continued)

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- "Tx" and "Rx" refer to the Transmit and Receive sections of the SSI.
- The terms WL and BL refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the FS timing is same as that of Tx Data (for example, during AC97 mode of operation).

Figure 90. USB Receive Waveform in DAT_SE0 Bidirectional Mode

No.	Parameter	Signal Name	Direction	Min	Мах	Unit	Conditions / Reference Signal
US1	TX Rise/Fall Time	USB_DAT_VP	Out	—	5.0	ns	50 pF
US2	TX Rise/Fall Time	USB_SE0_VM	Out	—	5.0	ns	50 pF
US3	TX Rise/Fall Time	USB_TXOE_B	Out	—	5.0	ns	50 pF
US4	TX Duty Cycle	USB_DAT_VP	Out	49.0	51.0	%	—
US7	RX Rise/Fall Time	USB_DAT_VP	In	—	3.0	ns	35 pF
US8	RX Rise/Fall Time	USB_SE0_VM	In	_	3.0	ns	35 pF

Table 94. Definitions of USB Waveform in	n DAT_SE0 Bi — Directional Mode
--	---------------------------------

Package Information and Contact Assignments

Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (co	ontinued)
--	-----------

Contact UO Buffer Out of Reset Condition					tion ¹			
Contact Name	ct Name Assignment Power Rail Type		Туре	Alt. Mode	Block Instance	Block I/O	Direction	Config. Value
CSI0_DAT10	R5	NVCC_CSI	UHVIO	ALT1	GPIO-5	gpio5_GPIO[28]	Input	100 KΩ PU
CSI0_DAT11	T2	NVCC_CSI	UHVIO	ALT1	GPIO-5	gpio5_GPIO[29]	Input	100 KΩ PU
CSI0_DAT12	Т3	NVCC_CSI	UHVIO	ALT1	GPIO-5	gpio5_GPIO[30]	Input	360 KΩ PD
CSI0_DAT13	T6	NVCC_CSI	UHVIO	ALT1	GPIO-5	gpio5_GPIO[31]	Input	360 KΩ PD
CSI0_DAT14	U1	NVCC_CSI	UHVIO	ALT1	GPIO-6	gpio6_GPIO[0]	Input	360 KΩ PD
CSI0_DAT15	U2	NVCC_CSI	UHVIO	ALT1	GPIO-6	gpio6_GPIO[1]	Input	360 KΩ PD
CSI0_DAT16	T4	NVCC_CSI	UHVIO	ALT1	GPIO-6	gpio6_GPIO[2]	Input	360 KΩ PD
CSI0_DAT17	T5	NVCC_CSI	UHVIO	ALT1	GPIO-6	gpio6_GPIO[3]	Input	360 KΩ PD
CSI0_DAT18	U3	NVCC_CSI	UHVIO	ALT1	GPIO-6	gpio6_GPIO[4]	Input	360 KΩ PD
CSI0_DAT19	U4	NVCC_CSI	UHVIO	ALT1	GPIO-6	gpio6_GPIO[5]	Input	360 KΩ PD
CSI0_DAT4	R1	NVCC_CSI	UHVIO	ALT1	GPIO-5	gpio5_GPIO[22]	Input	100 KΩ PU
CSI0_DAT5	R2	NVCC_CSI	UHVIO	ALT1	GPIO-5	gpio5_GPIO[23]	Input	360 KΩ PD
CSI0_DAT6	R6	NVCC_CSI	UHVIO	ALT1	GPIO-5	gpio5_GPIO[24]	Input	100 KΩ PU
CSI0_DAT7	R3	NVCC_CSI	UHVIO	ALT1	GPIO-5	gpio5_GPIO[25]	Input	100 KΩ PU
CSI0_DAT8	T1	NVCC_CSI	UHVIO	ALT1	GPIO-5	gpio5_GPIO[26]	Input	100 KΩ PU
CSI0_DAT9	R4	NVCC_CSI	UHVIO	ALT1	GPIO-5	gpio5_GPIO[27]	Input	360 KΩ PD
CSI0_DATA_EN	P3	NVCC_CSI	UHVIO	ALT1	GPIO-5	gpio5_GPIO[20]	Input	100 KΩ PU
CSI0_MCLK	P2	NVCC_CSI	UHVIO	ALT1	GPIO-5	gpio5_GPIO[19]	Input	100 KΩ PU
CSI0_PIXCLK	P1	NVCC_CSI	UHVIO	ALT1	GPIO-5	gpio5_GPIO[18]	Input	100 KΩ PU

Package Information and Contact Assignments

Contact	Contact	Contact		I/O	Out of Reset Condition ¹			
Name	Assignment (Top)	Assignment (Bottom)	Power Rail	Buffer Type	Alt. Mode	Function	Direction	Config. Value
DI0_PIN3	_	AC7	NVCC_LCD	GPIO	ALT1	gpio4_GPIO[19]	Input	100 KΩ PU
DI0_PIN4	_	AC6	NVCC_LCD	GPIO	ALT1	gpio4_GPIO[20]	Input	100 KΩ PU
DISP0_DAT 0	_	AD1	NVCC_LCD	GPIO	ALT1	gpio4_GPIO[21]	Input	100 KΩ PD
DISP0_DAT 1	_	AC3	NVCC_LCD	GPIO	ALT1	gpio4_GPIO[22]	Input	100 KΩ PD
DISP0_DAT 10	_	AG2	NVCC_LCD	GPIO	ALT1	gpio4_GPIO[31]	Input	100 KΩ PU
DISP0_DAT 11	_	AE3	NVCC_LCD	GPIO	ALT1	gpio5_GPIO[5]	Input	100 KΩ PD
DISP0_DAT 12	_	AC1	NVCC_LCD	GPIO	ALT1	gpio5_GPIO[6]	Input	100 KΩ PU
DISP0_DAT 13	_	AH3	NVCC_LCD	GPIO	ALT1	gpio5_GPIO[7]	Input	100 KΩ PU
DISP0_DAT 14	_	AG3	NVCC_LCD	GPIO	ALT1	gpio5_GPIO[8]	Input	100 KΩ PU
DISP0_DAT 15	_	AH4	NVCC_LCD	GPIO	ALT1	gpio5_GPIO[9]	Input	100 KΩ PU
DISP0_DAT 16	_	AG5	NVCC_LCD	GPIO	ALT1	gpio5_GPIO[10]	Input	100 KΩ PU
DISP0_DAT 17	_	AB6	NVCC_LCD	GPIO	ALT1	gpio5_GPIO[11]	Input	100 KΩ PU
DISP0_DAT 18		AJ4	NVCC_LCD	GPIO	ALT1	gpio5_GPIO[12]	Input	100 KΩ PU
DISP0_DAT 19	_	AA7	NVCC_LCD	GPIO	ALT1	gpio5_GPIO[13]	Input	100 KΩ PU
DISP0_DAT 2		AC2	NVCC_LCD	GPIO	ALT1	gpio4_GPIO[23]	Input	100 KΩ PD
DISP0_DAT 20	_	AJ5	NVCC_LCD	GPIO	ALT1	gpio5_GPIO[14]	Input	100 KΩ PU
DISP0_DAT 21		AB7	NVCC_LCD	GPIO	ALT1	gpio5_GPIO[15]	Input	100 KΩ PU
DISP0_DAT 22	_	AH5	NVCC_LCD	GPIO	ALT1	gpio5_GPIO[16]	Input	100 KΩ PU
DISP0_DAT 23	_	AJ6	NVCC_LCD	GPIO	ALT1	gpio5_GPIO[17]	Input	100 KΩ PU

Table 119. 12 x 12 mm Po	P Signal Assignments,	Power Rails, and I/O ((continued)
--------------------------	-----------------------	------------------------	-------------

Package Information and Contact Assignments

Table 120. PoF	• 12 × 12 mm,	0.4 mm Pitch	Top Ball Map	(continued)
----------------	---------------	--------------	---------------------	-------------

AC	NC	NC	DRAM_SDCKE0	DRAM_SDCKE1	GND	DRAM_A0	DRAM_A2	POP_VDDCA	GND	POP_VDDMM	POP_VACC	GND	DRAM_D10	DRAM_D8	GND	DRAM_D15	DRAM_D11	GND	DRAM_SDQS1_B	POP_VDD1	GND	NC	NC	v
	-	2	e	4	5	9	2	8	6	10	ŧ	12	13	14	15	16	17	18	19	20	21	22	23	

21 22 23 23 24 25 25 26 26 26 28 28 28 28	LVDS0_TX1_N LVDS0_TX0_P TVDAC_IOB TVDAC_IOB_BACK TVDAC_OMP GPI0_12 TVDAC_VREF GND GND GND	LVDS0_TX1_P LVDS0_TX0_N TVCDC_IOB_BACK TVDAC_IOG GPI0_10 GPI0_11 GPI0_14 GND GND GND	83_B M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	DRAM_SDQS DRAM_DQA DRAM_DQA POP_VDD GPIO_13 GPIO_13 POP_VDD POP_VDD POP_VDD TVCDC_IOR_E TVCDC_IOR_E TVDAC_IO	NC DRAM_SDQS NC DRAM_SDQ NC DRAM_DQA NC POP_VDD NC POP_VDD NC POP_VDD DRAM_A15 POP_VDD DRAM_D18 TVCDC_IOR_E DRAM_D16 TVCDC_IOR_E DRAM_D16 TVCDC_IOR_E	NC NC DRAM_SDQS NC NC DRAM_SDQA NC NC DRAM_DQA NC NC DRAM_DQA NC NC POP_VDD DA NC POP_VDD DP NC NC NC NC POP_VDD DP NC NC DP NC NC POP_VDD NC POP_VDD POP_VDD NC NC POP_VDD NC NC POP_VDD NC NC POP_VDD NC NC POP_VDD NC POP_VD POP_VDD NC POP_VD POP_VDD NC POP_VD POP_VDD NC POP_VD
23 24	TVDAC_IOB TVCDC_IOG_BACK	TVCDC_IOB_BACK TVDAC_IOG	DRAM_DQM3 POP_VDDQ	NC NC	00	zz
22	LVDS0_TX0_P	LVDS0_TX0_N	DRAM_SDQS3	NC	0	ž
21	LVDS0_TX1_N	LVDS0_TX1_P	DRAM_SDQS3_B	NC	0	N
20	LVDS0_TX2_P	LVDS0_TX2_N	POP_VDDQ	NC		NC
19	LVDS0_CLK_P	LVDS0_CLK_N	DRAM_D25	NC		NC
18	LVDS0_TX3_P	LVDS0_TX3_N	LVDS_BG_RES	NC		NC
17	LVDS1_TX0_P	LVDS1_TX0_N	GND	NC		NC
16	LVDS1_TX1_N	LVDS1_TX1_P	POP_VDDQ	NC		NC
15	LVDS1_CLK_N	LVDS1_CLK_P	NANDF_RB0	NC		NC
14	LVDS1_TX2_N	LVDS1_TX2_P	POP_VDD2	NC		NC
13	LVDS1_TX3_N	LVDS1_TX3_P	POP_VDD1	NC		NC
12	NANDF_CS3	PATA_DATA8	NANDF_CS2	NC		NC
11	NANDF_CS1	PATA_DATA9	POP_VCCQMM	NC		NC
10	EIM_DA8	PATA_DATA10	EIM_D27	NC		NC
6	EIM_OE	PATA_DATA0	PATA_DATA11	NC		NC
8	EIM_DA3	PATA_DATA1	POP_VCCMM	NC		NC
7	EIM_A16	EIM_A20	EIM_D29	NC		NC
9	EIM_A19	PATA_DATA2	EIM_A21	NC		NC
5	EIM_LBA	PATA_IORDY	PATA_DATA3	NC		NC
4	EIM_A24	PATA_RESET_B	EIM_CS1	NC		NC
3	EIM_A25	EIM_A23	POP_VDD1	POP_VDD2		EIM_DA4
2	GND	GND	EIM_A22	EIM_D28		EIM_DA12
1	GND	GND	EIM_D30	EIM_D26		EIM_D25
	٨	æ	v	٥		ш

	۲۹	АН
1	GND	GND
2	GND	SVDDGP
3	DISP0_DAT9	DISP0_DAT13
4	DISP0_DAT18	DISP0_DAT15
5	DISP0_DAT20	DISP0_DAT22
9	DISP0_DAT23	DI0_PIN15
7	KEY_ROW2	KEY_COL4
8	KEY_COL3	KEY_ROW1
6	KEY_COL1	KEY_ROW0
10	GPIO_19	GPIO_16
11	GPIO_5	GPIO_4
12	GPIO_6	GPIO_1
13	HAV	ЧРН
14	SATA_TXP	SATA_TXM
15	GND	GND
16	SATA_RXP	SATA_RXM
17	SATA_REXT	SD2_DATA0
18	SATA_REFCLKM	SATA_REFCLKP
19	VP	٨P
20	USB_H1_GPANAIO	USB_H1_RREFEXT
21	USB_H1_DP	USB_H1_DN
22	USB_H1_VBUS	USB_OTG_ID
23	USB_OTG_DN	USB_OTG_DP
24	USB_OTG_RREFEXT	USB_OTG_GPANAIO
25	SD1_DATA3	SD1_DATA2
26	SD1_CLK	SD1_CMD
27	DRAM_D15	SD1_DATA0
28	GND	SVCC
29	GND	GND
	۲۹	АН

Table 121. PoP 12 \times 12 mm, 0.4 mm Pitch Bottom Ball Map (continued)

i.MX53xD Applications Processors for Consumer Products, Rev. 6

Package Information and Contact Assignments

Table 122	. i.MX53xD	Data Sheet	Document	Revision	History	(continued)
-----------	------------	-------------------	----------	----------	---------	-------------

Rev. Number	Date	Substantive Change(s)
Rev. 1	03/2011	 Updated the first sentence of Section 3.1, "Special Signal Considerations." Deleted two tables, "Special Signal Considerations" and "JTAG Controller Interface Summary," in Section 3.1, "Special Signal Considerations." Updated Table 8, "i.MX53xD Operating Ranges," on page 21. Changed VDDGP voltages as follows: 400 MHz from 1.35 to 1.05 V maximum. 800 MHz from 1.0/1.05/1.1 to 1.05/1.1/1.15 V minimum/nominal/maximum. Stop mode from 0.9/0.95/1.1 to 0.8/0.85/1.3 V minimum/nominal/maximum. Added statements to footnotes 5 and 6. Added footnote on voltage ramping. In Section 1, "Introduction," the second bullet item changed from "Smartbooks" to "Smart mobile devices." In Table 2, "Ordering Information," on page 4, added two new rows for part numbers PCIMX535DVV1C and MCIMX535DVV1C.
Rev. 0	02/2011	Initial release.