

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

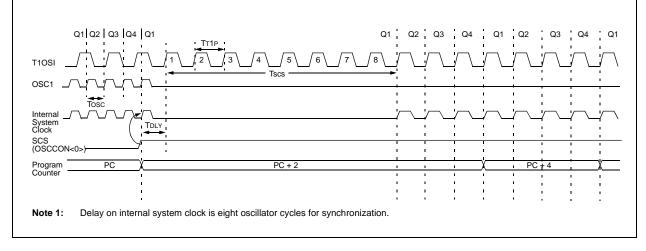
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c658-e-l

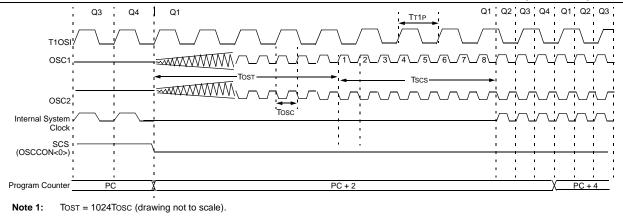
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


NOTES:

2.6.2 OSCILLATOR TRANSITIONS

The PIC18CXX8 devices contain circuitry to prevent "glitches" when switching between oscillator sources. Essentially, the circuitry waits for eight rising edges of the clock source that the processor is switching to. This ensures that the new clock source is stable and that its pulse width will not be less than the shortest pulse width of the two clock sources.


A timing diagram indicating the transition from the main oscillator to the Timer1 oscillator is shown in Figure 2-7. The Timer1 oscillator is assumed to be running all the time. After the SCS bit is set, the processor is frozen at the next occurring Q1 cycle. After eight synchronization cycles are counted from the Timer1 oscillator, operation resumes. No additional delays are required after the synchronization cycles. The sequence of events that takes place when switching from the Timer1 oscillator to the main oscillator will depend on the mode of the main oscillator. In addition to eight clock cycles of the main oscillator, additional delays may take place.

If the main oscillator is configured for an external crystal (HS, XT, LP), the transition will take place after an oscillator start-up time (TOST) has occurred. A timing diagram indicating the transition from the Timer1 oscillator to the main oscillator for HS, XT and LP modes is shown in Figure 2-8.

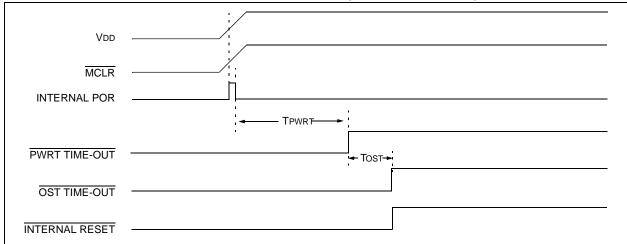
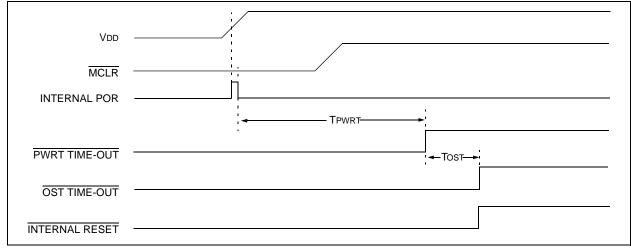


FIGURE 2-7: TIMING DIAGRAM FOR TRANSITION FROM OSC1 TO TIMER1 OSCILLATOR


FIGURE 2-8: TIMING DIAGRAM FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS,XT,LP)

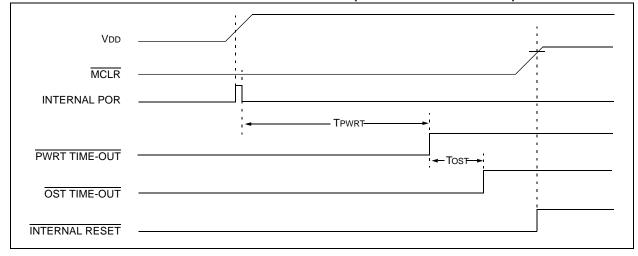


FIGURE 3-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 3-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

Filename	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS ⁽³⁾
TXB2D7	TXB2D77	TXB2D76	TXB2D75	TXB2D74	TXB2D73	TXB2D72	TXB2D71	TXB2D70	xxxx xxxx	uuuu uuuu
TXB2D6	TXB2D67	TXB2D66	TXB2D65	TXB2D64	TXB2D63	TXB2D62	TXB2D61	TXB2D60	XXXX XXXX	uuuu uuuu
TXB2D5	TXB2D57	TXB2D56	TXB2D55	TXB2D54	TXB2D53	TXB2D52	TXB2D51	TXB2D50	xxxx xxxx	uuuu uuuu
TXB2D4	TXB2D47	TXB2D46	TXB2D45	TXB2D44	TXB2D43	TXB2D42	TXB2D41	TXB2D40	XXXX XXXX	uuuu uuuu
TXB2D3	TXB2D37	TXB2D36	TXB2D35	TXB2D34	TXB2D33	TXB2D32	TXB2D31	TXB2D30	xxxx xxxx	uuuu uuuu
TXB2D2	TXB2D27	TXB2D26	TXB2D25	TXB2D24	TXB2D23	TXB2D22	TXB2D21	TXB2D20	xxxx xxxx	uuuu uuuu
TXB2D1	TXB2D17	TXB2D16	TXB2D15	TXB2D14	TXB2D13	TXB2D12	TXB2D11	TXB2D10	xxxx xxxx	uuuu uuuu
TXB2D0	TXB2D07	TXB2D06	TXB2D05	TXB2D04	TXB2D03	TXB2D02	TXB2D01	TXB2D00	xxxx xxxx	uuuu uuuu
TXB2DLC	_	TXRTR	-	_	DLC3	DLC2	DLC1	DLC0	0x00 xxxx	0u00 uuuu
TXB2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	uuuu uuuu
TXB2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	uuuu uuuu
TXB2SIDL	SID2	SID1	SID0		EXIDEN	_	EID17	EID16	xxx0 x0xx	uuu0 u0uu
TXB2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	uuuu uuuu
TXB2CON	_	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	0000 0000	0000 0000
RXM1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	uuuu uuuu
RXM1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	uuuu uuuu
RXM1SIDL	SID2	SID1	SID0		_	_	EID17	EID16	xxxxx	uuuuu
RXM1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	uuuu uuuu
RXM0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	uuuu uuuu
RXM0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	uuuu uuuu
RXM0SIDL	SID2	SID1	SID0	_	_	_	EID17	EID16	xxxxx	uuuuu
RXM0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	uuuu uuuu
RXF5EID0	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	uuuu uuuu
RXF5EID8	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	uuuu uuuu
RXF5SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	uuu- u-uu
RXF5SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	uuuu uuuu
RXF4EID0	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	uuuu uuuu
RXF4EID8	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	uuuu uuuu
RXF4SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	xxx- x-xx	uuu- u-uu
RXF4SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	uuuu uuuu
RXF3EID0	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	uuuu uuuu
RXF3EID8	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	uuuu uuuu
RXF3SIDL	SID2	SID1	SID0		EXIDEN		EID17	EID16	xxx- x-xx	uuu- u-uu
RXF3SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.
4: These registers are reserved on PIC18C658.

5.1 **Control Registers**

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include:

- RCON register
- TABLAT register
- TBLPTR registers

RCON REGISTER 5.1.1

The LWRT bit specifies the operation of Table Writes to internal memory when the VPP voltage is applied to the MCLR pin. When the LWRT bit is set, the controller continues to execute user code, but long table writes are allowed (for programming internal program memory) from user mode. The LWRT bit can be cleared only by performing either a POR or MCLR Reset.

REGISTER 5-1: RCON REGISTER (ADDRESS: 0xFD0h)

	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0			
	IPEN	LWRT		RI	TO	PD	POR	BOR			
	bit 7							bit 0			
bit 7 bit 6	IPEN: Interrupt Priority Enable 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (16CXXX compatibility mode) LWRT: Long Write Enable										
		TBLWT to int									
	 Disable TBLWT to internal program memory. Note 1: Only cleared on a POR or MCLR reset. This bit has no effect on TBLWTs to external program memory. 										
bit 5	Unimplem	ented: Read	as '0'								
bit 4	1 = No res	Instruction Fl SET instructio	n occurred								
bit 3		out bit ower-up, CLR time-out occ		on, or SLEEP	o instruction						
bit 2		-down bit ower-up or by cution of the s									
bit 1	 POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) 										
bit 0	 BOR: Brown-out Reset Status bit 1 = No Brown-out Reset or POR Reset occurred 0 = A Brown-out Reset or POR Reset occurred (must be set in software after a Brown-out Reset occurs) 										
	Legend:										
	R = Reada	ble bit	W = Wri	table bit	U = Unimp	lemented	bit, read as	'0'			
	- n = Value	at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is	unknown			

7.1 <u>Control Registers</u>

This section contains the control and status registers.

7.1.1 INTCON REGISTERS

The INTCON Registers are readable and writable registers, which contain various enable, priority, and flag bits.

REGISTER 7-1: INTCON REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF		
bit 7							bi		
GIF/GIFH:	Global Interru	int Enable b	it						
GIE/GIEH: Global Interrupt Enable bit When IPEN = 0:									
1 = Enable	s all un-mask s all interrupt		i						
	<u>l = 1:</u> s all high prio s all high prio								
	: Peripheral Ir	• •							
When IPEN 1 = Enables	•	ed periphera							
	<u>I = 1:</u> s all low priori s all priority p								
1 = Enables	MR0 Overflov s the TMR0 o s the TMR0 o	verflow inter	rupt						
1 = Enables	T0 External In s the INT0 ex s the INT0 ex	ternal interru	ıpt						
1 = Enable	Port Change I s the RB port s the RB port	change inte	rrupt						
1 = TMR0 r	MR0 Overflov register has o register did no	verflowed (m		ed in softwa	ıre)				
1 = The IN	Γ0 External In Γ0 external in Γ0 external in	terrupt occu	rred (must be	e cleared in	software b	y reading P	ORTB)		
1 = At least	Port Change I t one of the R f the RB7:RB	B7:RB4 pins	changed sta		e cleared ir	n software)			
Legend:									
R = Readab	ole bit	W = Writ	table bit	U = Unimpl	lemented b	oit, read as '	0'		
			is set	'0' = Bit is o		x = Bit is u			

allows software polling.

the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature

8.0 I/O PORTS

Depending on the device selected, there are up to eleven ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (output latch)

The data latch (LAT register) is useful for read-modify-write operations on the value that the I/O pins are driving.

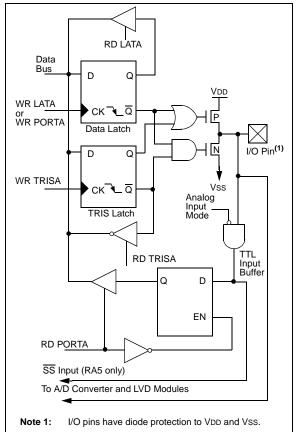
8.1 PORTA, TRISA and LATA Registers

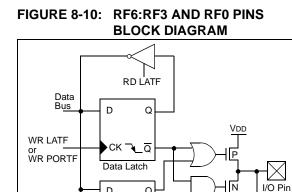
PORTA is a 6-bit wide, bi-directional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). On a Power-on Reset, these pins are configured as inputs and read as '0'.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch.

Read-modify-write operations on the LATA register, reads and writes the latched output value for PORTA.

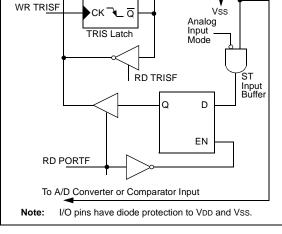
The RA4 pin is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

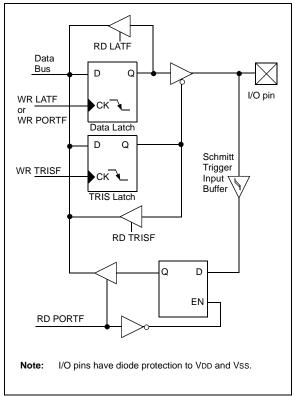

The other PORTA pins are multiplexed with analog inputs and the analog VREF+ and VREF- inputs. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1). On a Power-on Reset, these pins are configured as analog inputs and read as '0'.


The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 8-1: INITIALIZING PORTA

CLRF	PORTA	; Initialize PORTA by ; clearing output
		; data latches
		; uata fatenes
CLRF	LATA	; Alternate method
		; to clear output
		; data latches
MOVLW	0x07	; Configure A/D
MOVWF	ADCON1	; for digital inputs
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA3:RA0 as inputs
		; RA5:RA4 as outputs


FIGURE 8-1: RA3:RA0 AND RA5 PINS BLOCK DIAGRAM



Q

D

FIGURE 8-11: RF7 PIN BLOCK DIAGRAM

TABLE 8-11: PORTF FUNCTIONS

Name	Bit#	Buffer Type	Function
RF0/AN5	bit0	ST	Input/output port pin or analog input.
RF1/AN6/C2OUT	bit1	ST	Input/output port pin or analog input or comparator 2 output.
RF2/AN7/C1OUT	bit2	ST	Input/output port pin or analog input or comparator 1 output.
RF3/AN8	bit3	ST	Input/output port pin or analog input or comparator input.
RF4/AN9	bit4	ST	Input/output port pin or analog input or comparator input.
RF5/AN10/ CVREF	bit5	ST	Input/output port pin or analog input or comparator input or comparator reference output.
RF6/AN11	bit6	ST	Input/output port pin or analog input or comparator input.
RF7	bit7	ST	Input/output port pin.

Legend: ST = Schmitt Trigger input

TABLE 8-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PO BC	R,	Value on all other RESETS
TRISF	PORTF Data Direction Control Register									1111	1111 1111
PORTF	Read PORTF pin / Write PORTF Data Latch									xxxx	uuuu uuuu
LATF	Read PORTF Data Latch/Write PORTF Data Latch									0000	uuuu uuuu
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00	0000	00 0000
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000	0000	0000 0000
	= unknow			CTINV	015	CIVI2	CIVIT	CIVIU	0000	0000	

Legend: x = unknown, u = unchanged

14.1 CCP1 Module

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

14.2 CCP2 Module

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

TABLE 14-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

14.3 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on pin RC2/CCP1. An event is defined as:

- · every falling edge
- · every rising edge
- every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR registers) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

14.3.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 is configured as an out-
	put, a write to the port can cause a capture
	condition.

14.3.2 TIMER1/TIMER3 MODE SELECTION

The timers used with the capture feature (either Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer used with each CCP module is selected in the T3CON register.

TABLE 14-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	TMR1 or TMR3 time-base. Time-base can be different for each CCP.
Capture	Compare	The compare could be configured for the special event trigger, which clears either TMR1 or TMR3, depending upon which time-base is used.
Compare	Compare	The compare(s) could be configured for the special event trigger, which clears TMR1 or TMR3 depending upon which time-base is used.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

15.2 Control Registers

The MSSP module has three associated registers. These include a status register and two control registers.

REGISTER 15-1: SSPSTAT REGISTER

Register 15-1 shows the MSSP Status Register (SSPSTAT), Register 15-2 shows the MSSP Control Register 1 (SSPCON1), and Register 15-3 shows the MSSP Control Register 2 (SSPCON2).

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	Р	S	R/W	UA	BF
	bit 7							bit 0
bit 7	SMP: Sam	-						
	SPI Master							
	•	ata sampled ata sampled		•				
	<u>SPI Slave</u>							
		be cleared w	hen SPI is us	sed in Slave	mode			
	In I ² C Mas	ter or Slave n	node:					
		te control dis					MHz)	
h.:		te control ena	-	speed mode	e (400 kHz)			
bit 6	$\frac{CKE:SPIC}{CKP = 0}$	Clock Edge S	elect					
		ansmitted on	rising edge of	of SCK				
	0 = Data tr	ansmitted on	falling edge	of SCK				
	$\frac{\text{CKP} = 1}{1 \text{ Dete } \text{tr}}$	onomittad on	folling odgo					
		ansmitted on ansmitted on						
bit 5		Address bit (I						
		es that the la		• /	itted was d	ata		
		es that the la	st byte receiv	ed or transm	itted was a	ddress		
bit 4	P: STOP b	it only. This bit	is closed with	on the MSS	D modulo in	disabled		loared)
		es that a STC						iealeu.)
		bit was not de					_0_1)	
bit 3	S: START							
		only. This bit						leared.)
		es that a STA bit was not c		een detected	last (this bi	it is '0' on F	RESET)	
bit 2	R/W: Read	/Write bit info	ormation (I ² C	mode only)				
		ds the R/W bi					his bit is onl	y valid from
	-	s match to the	e next STAR	T bit, STOP b	oit, or not A	CK bit.		
	<u>In I²C Slav</u> 1 = Read	<u>e mode:</u>						
	0 = Write							
	In I ² C Mas							
		it is in progre						
		it is not in pro this bit with \$		PEN, RCEN	, or ACKEN	will indica	te if the MS	SP is in
	IDLE m		, ,	,	,			-

TABLE 16-4 :	BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc = 40 MHz		SPBRG	33 MHz 5		SPBRG	25	25 MHz		20	MHz	SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	(docimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	2.40	-0.07	214	2.40	-0.15	162	2.40	+0.16	129
9.6	9.62	+0.16	64	9.55	-0.54	53	9.53	-0.76	40	9.47	-1.36	32
19.2	18.94	-1.36	32	19.10	-0.54	26	19.53	+1.73	19	19.53	+1.73	15
76.8	78.13	+1.73	7	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3
96	89.29	-6.99	6	103.13	+7.42	4	97.66	+1.73	3	104.17	+8.51	2
300	312.50	+4.17	1	257.81	-14.06	1	NA	-	-	312.50	+4.17	0
500	625	+25.00	0	NA	-	-	NA	-	-	NA	-	-
HIGH	625	-	0	515.63	-	0	390.63	-	0	312.50	-	0
LOW	2.44	-	255	2.01	-	255	1.53	-	255	1.22	-	255

BAUD	Fosc =	= 16 MHz	SPBRG	10	10 MHz SPBRG 7.15909 MHz S		SPBRG	5.0688 MHz		SPBRG		
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR		KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	1.20	+0.16	207	1.20	+0.16	129	1.20	+0.23	92	1.20	0	65
2.4	2.40	+0.16	103	2.40	+0.16	64	2.38	-0.83	46	2.40	0	32
9.6	9.62	+0.16	25	9.77	+1.73	15	9.32	-2.90	11	9.90	+3.13	7
19.2	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5	19.80	+3.13	3
76.8	83.33	+8.51	2	78.13	+1.73	1	111.86	+45.65	0	79.20	+3.13	0
96	83.33	-13.19	2	78.13	-18.62	1	NA	-	-	NA	-	-
300	250	-16.67	0	156.25	-47.92	0	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	250	-	0	156.25	-	0	111.86	-	0	79.20	-	0
LOW	0.98	-	255	0.61	-	255	0.44	-	255	0.31	-	255

BAUD	Fosc	= 4 MHz	SPBRG	3.579545 MHz SPBRG		1 MHz		SPBRG	32.768 kHz		SPBRG	
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR		KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	0.30	-0.16	207	0.30	+0.23	185	0.30	+0.16	51	0.26	-14.67	1
1.2	1.20	+1.67	51	1.19	-0.83	46	1.20	+0.16	12	NA	-	-
2.4	2.40	+1.67	25	2.43	+1.32	22	2.23	-6.99	6	NA	-	-
9.6	8.93	-6.99	6	9.32	-2.90	5	7.81	-18.62	1	NA	-	-
19.2	20.83	+8.51	2	18.64	-2.90	2	15.63	-18.62	0	NA	-	-
76.8	62.50	-18.62	0	55.93	-27.17	0	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	62.50	-	0	55.93	-	0	15.63	-	0	0.51	-	0
LOW	0.24	-	255	0.22	-	255	0.06	-	255	0.002	-	255

16.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode, in that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA register).

16.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

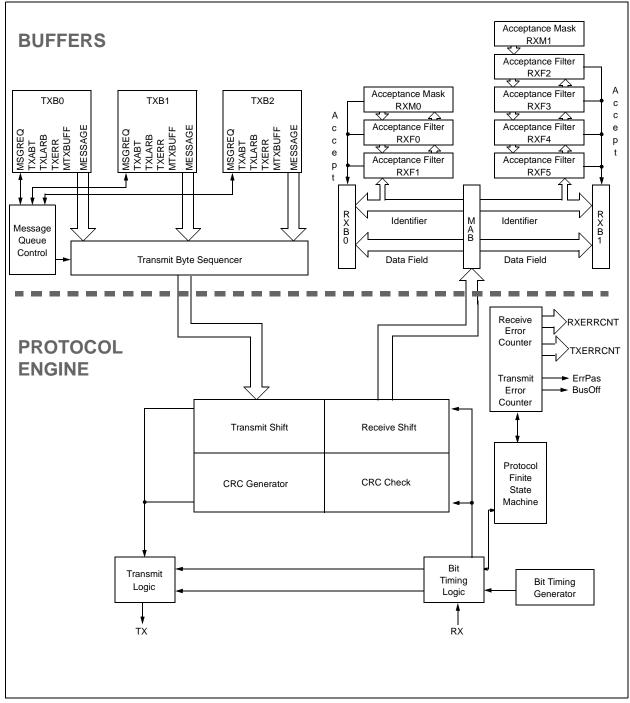
- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

16.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode and bit SREN, which is a "don't care" in Slave mode.


If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register, and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

Steps to follow when setting up a Synchronous Slave Reception:

- 1. Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete. An interrupt will be generated if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

17.1.2 TRANSMIT/RECEIVE BUFFERS

The PIC18CXX8 has three transmit and two receive buffers, two acceptance masks (one for each receive buffer), and a total of six acceptance filters. Figure 17-1 is a block diagram of these buffers and their connection to the protocol engine.

FIGURE 17-1: CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM

17.2.3 CAN RECEIVE BUFFER REGISTERS

This section shows the Receive Buffer registers with its associated control registers.

	R/C-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R-0	R/W-0		
	RXFUL	R/W-0	R/W-0	0-0	-	RXB0DBEN	JTOFF	FILHIT0		
	bit 7		TOTINO			IN DODDEN		bit 0		
bit 7	RXFUL: Receive Full Status bit 1 = Receive buffer contains a received message 0 = Receive buffer is open to receive a new message									
		This bit is s is read.	set by the C	CAN modu	le and should	l be cleared by	software aft	er the buffer		
bit 6-5	10 = Recei	ve all mess ve only val ve only val	ages (incluid message id message	uding thos es with ex es with sta	e with errors) tended identif indard identifi	fier				
bit 4	Unimplemented: Read as '0'									
bit 3	•									
bit 2										
bit 1	JTOFF: Ju 1 = Allows 0 = Allows	Jump Table	e offset bet	ween 6 ai		BEN)				
	Note:	This bit allo	ows same	filter jump	table for both	n RXB0CON a	nd RXB1CO	N.		
bit 0	FILHIT0: Filter Hit bit This bit indicates which acceptance filter enabled the message reception into receive buffer 0 1 = Acceptance Filter 1 (RXF1) 0 = Acceptance Filter 0 (RXF0)									
	Legend:									
	R = Reada	ble bit	W = Wri	table bit	U = U	nimplemented	bit, read as	'0'		
	- n = Value	at POR	'1' = Bit	is set	'0' = E	Bit is cleared	x = Bit is ι	unknown		

REGISTER 17-12: RXB0CON - RECEIVE BUFFER 0 CONTROL REGISTER

x = Bit is unknown

17.2.6 CAN MODULE I/O CONTROL REGISTER

This subsection describes the CAN Module I/O Control register.

REGISTER 17-32: CIOCON – CAN I/O CONTROL REGISTER

- n = Value at POR

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
	TX1SRC	TX1EN	ENDRHI	CANCAP	_	—	—	_		
	bit 7							bit 0		
bit 7	TX1SRC: C									
		. = CAN TX1 pin will output the CAN clock = CAN TX1 pin will output TXD								
bit 6		X1EN: CAN TX1 Pin Enable								
		1 = CAN TX1 pin will output TXD or CAN clock 0 = CAN TX1 pin will have digital I/O function								
bit 5	ENDRHI: E									
			-	rive VDD whe		/e				
bit 4	CANCAP:	CAN Messa	ge Receive	Capture Ena	able					
	1 = Enable 0 = Disable									
bit 3-0		•								
DII 3-0	ommpleme		ias U							
	Legend:									
	R = Readat	ole bit	W = Writa	ble bit	U = Uni	mplemented	bit, read as	0'		

'0' = Bit is cleared

'1' = Bit is set

18.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 12 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TAD:

- 2Tosc
- 4Tosc
- 8Tosc
- 16Tosc
- 32Tosc
- 64Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 18-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

18.3 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin defined as a digital input may cause the input buffer to consume current out of the device's specification limits.

TABLE 18-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	ource (TAD)	Maximum Device Frequency				
Operation	ADCS2:ADCS0	PIC18CXX8	PIC18LCXX8 ⁽⁶⁾			
2Tosc	000	1.25 MHz	666 kHz			
4Tosc	100	2.50 MHz	1.33 MHz			
8Tosc	001	5.00 MHz	2.67 MHz			
16Tosc	101	10.0 MHz	5.33 MHz			
32Tosc	010	20.0 MHz	10.67 MHz			
64Tosc	110	40.0 MHz	21.33 MHz			
RC	x11	_	—			

Note 1: The RC source has a typical TAD time of 4 ms.

2: The RC source has a typical TAD time of 6 ms.

- **3:** These values violate the minimum required TAD time.
- 4: For faster conversion times, the selection of another clock source is recommended.
- 5: For device frequencies above 1 MHz, the device must be in SLEEP for the entire conversion or the A/D accuracy may be out of specification.

6: This column is for the LC devices only.

22.3.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If an interrupt condition (interrupt flag bit and interrupt enable bits are set) occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt condition occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overrightarrow{PD} bit. If the \overrightarrow{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

FIGURE 22-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT^(1,2)

3: TOST = 1024TOSC (drawing not to scale). This delay will not occur for RC and EC osc modes.

4: CLKOUT is not available in these oscillator modes, but shown here for timing reference.

POF	5	Рор Тор	Pop Top of Return Stack						
Synt	tax:	[label]	[label] POP						
Ope	rands:	None							
Ope	ration:	$({\rm TOS}) \rightarrow$	bit buc	ket					
Stat	us Affected:	None							
Enco	oding:	0000	0000 0000 0000 0110						
Des	cription:	The TOS return sta TOS value ous value return sta This instru enable the the return software s	ck and e then that wa ck. uction i e user t stack	is disc pecom as pus s provi o prop	card les t hed ided erly	ed. The he previ- onto the to manage			
Wor	ds:	1							
Cycl	les:	1							
QC	ycle Activity:								
	Q1	Q2	C	3		Q4			
	Decode	No operation	Pop [·] val		ор	No peration			
<u>Exa</u>	mple:	POP GOTO	NEW						
	Before Instru TOS Stack (1	iction level down)	= =	0031A 01433					
	After Instruct TOS PC	ion	= =	01433 NEW	2h				

PUSH	Push Top	Push Top of Return Stack							
Syntax:	[label]	PUSH							
Operands:	None								
Operation:	(PC+2) \rightarrow	$(PC+2) \rightarrow TOS$							
Status Affected:	None								
Encoding:	0000	0000	0000	0101					
Description:	the return value is pu This instru ing a softv	The PC+2 is pushed onto the top of the return stack. The previous TOS value is pushed down on the stack. This instruction allows implement- ing a software stack by modifying TOS, and then push it onto the return stack							
Words:	1	σκ.							
Cycles:	1								
Q Cycle Activity									
Q1	Q2	Q3	3	Q4					
Decode	Push PC+2 onto return stack	No operat		No peration					
Example:	PUSH								
Before Instr TOS PC	uction		00345Ah 000124h						
After Instruc PC TOS Stack (1	ction level down)	= C	000126h 000126h 00345Ah						

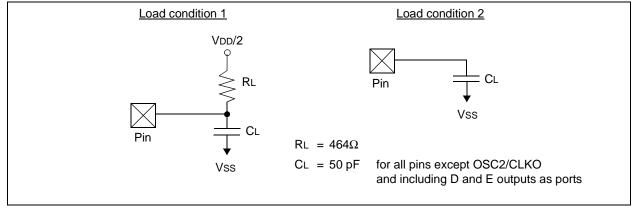
25.2 DC Characteristics: PIC18CXX8 (Industrial, Extended) and PIC18LCXX8 (Industrial)

DC CH	ARACTE	RISTICS		emperature -	40°C ≤	unless otherwise stated) TA \leq +85°C for industrial TA \leq +125°C for extended
Param No.	Symbol	Characteristic/ Device	Min	Мах	Units	Conditions
	VIL	Input Low Voltage				
		I/O ports:				
D030		with TTL buffer	Vss	0.15Vdd	V	XDD < 4.5V
D030A			_	0.8	X	4.5V ≤ VDD ≤ 5.5V
D031		with Schmitt Trigger buffer	Vss	0.2V,DD	R	
		RC3 and RC4	Vss	_0.3γ∂ρ	$\backslash \lor$	\searrow
D032		MCLR	Vss	0.2VQD	\ Y	·
D032A		OSC1 (in XT, HS and LP modes)	Vss	0.3VDD	V	
		and T1OSI	$\left \left(\right) \right\rangle$	$\langle \ \rangle $		
D033		OSC1(in RC mode) ⁽¹⁾	kss /		V	
	Viн	Input High Voltage	V/V/V	\bigvee		
		I/O ports:				
D040		with TTL buffer	0.25VDD + 0.8V	Vdd	V	Vdd < 4.5V
D040A			2.0	Vdd	V	$4.5V \le VDD \le 5.5V$
D041		with Schmitt Trigger buffer	0.8Vdd	Vdd	V	
		RC3 and RC4	0.7Vdd	Vdd	V	
D042		MELR	0.8Vdd	Vdd	V	
D042A	()	OSC1 (In XT, HS and LP modes) and T1OSI	0.7Vdd	Vdd	V	
D043 \		OSC1 (RC mode) ⁽¹⁾	0.9Vdd	Vdd	V	
	VHYS	Hysteresis of Schmitt Trigger Inp	uts			•
D050	, , , , , , , , , , , , , , , , , , ,		TBD	TBD	V	
	lı∟	Input Leakage Current ^(2,3)			1	1
D060		I/O ports	_	±1	μA	VSS \leq VPIN \leq VDD, Pin at hi-impedance
D061		MCLR	_	±5	μA	$Vss \le VPIN \le VDD$
D063		OSC1	_	_== ±5	μA	$Vss \le VPIN \le VDD$
	IPU	Weak Pull-up Current	1		1 1 1	
D070	-	•	50	400	μА	VDD = 5V. VPIN = VSS
D070	IPURB	PORTB weak pull-up current scillator configuration, the OSC1/CL	50 KL pin is a Sc	400 hmitt Trigger i	μA nout It	VDD = 5V, VPIN = V

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PICmicro device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.


25.3.2 TIMING CONDITIONS

The temperature and voltages specified in Table 25-3 apply to all timing specifications, unless otherwise noted. Figure 25-4 specifies the load conditions for the timing specifications.

TABLE 25-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions (unless otherwise stated)						
	Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial						
AC CHARACTERISTICS	$-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended						
	Operating voltage VDD range as described in DC spec Section 25.1.						
	LC parts operate for industrial temperatures only.						

FIGURE 25-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

