

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c658-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	Appli Dev	cable ices	Power-on Reset, Brown-out Reset	MCLR Reset WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt
TRISJ ⁽⁷⁾	-	858	1111 1111	1111 1111	uuuu uuuu
TRISH ⁽⁷⁾	-	858	1111 1111	1111 1111	uuuu uuuu
TRISG	658	858	1 1111	1 1111	u uuuu
TRISF	658	858	1111 1111	1111 1111	uuuu uuuu
TRISE	658	858	1111 1111	1111 1111	uuuu uuuu
TRISD	658	858	1111 1111	1111 1111	uuuu uuuu
TRISC	658	858	1111 1111	1111 1111	uuuu uuuu
TRISB	658	858	1111 1111	1111 1111	uuuu uuuu
TRISA ⁽⁵⁾	658	858	-111 1111 ⁽⁵⁾	-111 1111 ⁽⁵⁾	-uuu uuuu ⁽⁵⁾
LATJ ⁽⁷⁾	-	858	XXXX XXXX	uuuu uuuu	սսսս սսսս
LATH ⁽⁷⁾	-	858	XXXX XXXX	uuuu uuuu	uuuu uuuu
LATG	658	858	x xxxx	u uuuu	u uuuu
LATF	658	858	XXXX XXXX	uuuu uuuu	սսսս սսսս
LATE	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
LATD	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
LATC	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
LATB	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
LATA ⁽⁵⁾	658	858	-xxx xxxx ⁽⁵⁾	-uuu uuuu ⁽⁵⁾	-uuu uuuu ⁽⁵⁾
PORTJ ⁽⁷⁾	-	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTH ⁽⁷⁾	-	858	0000 xxxx	0000 uuuu	uuuu uuuu
PORTG	658	858	x xxxx	u uuuu	u uuuu
PORTF	658	858	x000 0000	u000 0000	uuuu uuuu
PORTE	658	858	00 xxxx	uuuu u000	uuuu uuuu
PORTD	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTB	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA ⁽⁵⁾	658	858	-x0x 0000 ⁽⁵⁾	-u0u 0000 ⁽⁵⁾	-uuu uuuu ⁽⁵⁾
TRISK	658	858	1111 1111	1111 1111	uuuu uuuu
LATK	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTK	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXERRCNT	658	858	0000 0000	0000 0000	uuuu uuuu
RXERRCNT	658	858	0000 0000	0000 0000	uuuu uuuu
COMSTAT	658	858	0000 0000	0000 0000	սսսս սսսս
CIOCON	658	858	1000	1000	uuuu
BRGCON3	658	858	-0000	-0000	-uuuu
BRGCON2	658	858	0000 0000	0000 0000	นนนน นนนน
BRGCON1	658	858	0000 0000	0000 0000	uuuu uuuu

 TABLE 3-3:
 INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition **Note 1:** One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 3-2 for RESET value for specific condition.
- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
- 6: The long write enable is only reset on a POR or MCLR.
- 7: Available on PIC18C858 only.

Address	Name	Address	Name	Ad	dress	Name	Addre	SS	Name
F7Fh	TRISK ⁽⁵⁾	F5Fh	—		F3Fh	_	F1	Fh	RXM1EID0
F7Eh	LATK ⁽⁵⁾	F5Eh	CANSTATRO0 ⁽⁴⁾		F3Eh	CANSTATRO2 ⁽⁴⁾	F1	Eh	RXM1EID8
F7Dh	PORTK ⁽⁵⁾	F5Dh	RXB1D7		F3Dh	TXB1D7	F1	Dh	RXM1SIDL
F7Ch	_	F5Ch	RXB1D6		F3Ch	TXB1D6	F1	Ch	RXM1SIDH
F7Bh	_	F5Bh	RXB1D5		F3Bh	TXB1D5	F1	Bh	RXM0EID0
F7Ah		F5Ah	RXB1D4		F3Ah	TXB1D4	F1	Ah	RXM0EID8
F79h	_	F59h	RXB1D3		F39h	TXB1D3	F1	9h	RXM0SIDL
F78h	_	F58h	RXB1D2		F38h	TXB1D2	F1	8h	RXM0SIDH
F77h		F57h	RXB1D1		F37h	TXB1D1	F1	7h	RXF5EID0
F76h	TXERRCNT	F56h	RXB1D0		F36h	TXB1D0	F1	6h	RXF5EID8
F75h	RXERRCNT	F55h	RXB1DLC		F35h	TXB1DLC	F1	5h	RXF5SIDL
F74h	COMSTAT	F54h	RXB1EIDL		F34h	TXB1EIDL	F1	4h	RXF5SIDH
F73h	CIOCON	F53h	RXB1EIDH		F33h	TXB1EIDH	F1	3h	RXF4EID0
F72h	BRGCON3	F52h	RXB1SIDL		F32h	TXB1SIDL	F1	2h	RXF4EID8
F71h	BRGCON2	F51h	RXB1SIDH		F31h	TXB1SIDH	F	l1h	RXF4SIDL
F70h	BRGCON1	F50h	RXB1CON		F30h	TXB1CON	F1	0h	RXF4SIDH
F6Fh	CANCON	F4Fh	_		F2Fh	_	FC	Fh	RXF3EID0
F6Eh	CANSTAT	F4Eh	CANSTATRO1 ⁽⁴⁾		F2Eh	CANSTATRO3 ⁽⁴⁾	FO	Eh	RXF3EID8
F6Dh	RXB0D7 ⁽³⁾	F4Dh	TXB0D7		F2Dh	TXB2D7	F0	Dh	RXF3SIDL
F6Ch	RXB0D6 ⁽³⁾	F4Ch	TXB0D6		F2Ch	TXB2D6	F0	Ch	RXF3SIDH
F6Bh	RXB0D5 ⁽³⁾	F4Bh	TXB0D5		F2Bh	TXB2D5	FO	Bh	RXF2EID0
F6Ah	RXB0D4 ⁽³⁾	F4Ah	TXB0D4		F2Ah	TXB2D4	FO	Ah	RXF2EID8
F69h	RXB0D3 ⁽³⁾	F49h	TXB0D3		F29h	TXB2D3	FC)9h	RXF2SIDL
F68h	RXB0D2 ⁽³⁾	F48h	TXB0D2		F28h	TXB2D2	FC)8h	RXF2SIDH
F67h	RXB0D1 ⁽³⁾	F47h	TXB0D1		F27h	TXB2D1	FC)7h	RXF1EID0
F66h	RXB0D0 ⁽³⁾	F46h	TXB0D0		F26h	TXB2D0	FC)6h	RXF1EID8
F65h	RXB0DLC ⁽³⁾	F45h	TXB0DLC		F25h	TXB2DLC	FC)5h	RXF1SIDL
F64h	RXB0EIDL ⁽³⁾	F44h	TXB0EIDL		F24h	TXB2EIDL	FC)4h	RXF1SIDH
F63h	RXB0EIDH ⁽³⁾	F43h	TXB0EIDH		F23h	TXB2EIDH	FC)3h	RXF0EIDL
F62h	RXB0SIDL ⁽³⁾	F42h	TXB0SIDL		F22h	TXB2SIDL	FC)2h	RXF0EIDH
F61h	RXB0SIDH(3)	F41h	TXB0SIDH		F21h	TXB2SIDH	FC)1h	RXF0SIDL
F60h	RXB0CON ⁽³⁾	F40h	TXB0CON		F20h	TXB2CON	FC	00h	RXF0SIDH

Note: Shaded registers are available in Bank 15, while the rest are in Access Bank low.

Note 1: Unimplemented registers are read as '0'.

- 2: This is not a physical register.
- 3: Contents of register is dependent on WIN2:WIN0 bits in CANCON register.
- **4:** CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the CANSTAT register due to the Microchip Header file requirement.
- 5: Available on PIC18C858 only.

Filename	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS ⁽³⁾
CCPR1H	Capture/Com	pare/PWM Reg	gister 1 High By	rte					xxxx xxxx	uuuu uuuu
CCPR1L	Capture/Com	pare/PWM Reg	gister 1 Low By	te					xxxx xxxx	uuuu uuuu
CCP1CON	—	—	DC1B1	DC1B0	CCPM3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCPR2H	Capture/Com	pare/PWM Reg	gister 2 High By	rte					xxxx xxxx	uuuu uuuu
CCPR2L	Capture/Com	pare/PWM Reg	gister 2 Low Byt	te					xxxx xxxx	uuuu uuuu
CCP2CON	—	—	DC2B1	DC2B0	CCPM3	CCP2M2	CCP2M1	CCP2M0	0000 0000	0000 0000
VRCON	VREN	VROEN	VRR	VRSS	VR3	VR2	VR1	VR0	0000 0000	0000 0000
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
TMR3H	Timer3 Regis	ter High Byte							xxxx xxxx	uuuu uuuu
TMR3L	Timer3 Regis	ter Low Byte							xxxx xxxx	uuuu uuuu
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	uuuu uuuu
PSPCON	IBF	OBF	IBOV	PSPMODE	_	—	_	—	0000	0000
SPBRG	USART Baud	Rate Generate	or						0000 0000	0000 0000
RCREG	USART Rece	ive Register							0000 0000	0000 0000
TXREG	USART Trans	smit Register							0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
IPR3	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP	1111 1111	1111 1111
PIR3	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF	TXB0IF	RXB1IF	RXB0IF	0000 0000	0000 0000
PIE3	IRXIE	WAKIE	ERRIE	TXB2IE	TXB1IE	TXB0IE	RXB1IE	RXB0IE	0000 0000	0000 0000
IPR2	—	CMIP	_	—	BCLIP	LVDIP	TMR3IP	CCP2IP	-1 1111	-1 1111
PIR2	—	CMIF	—	—	BCLIF	LVDIF	TMR3IF	CCP2IF	-0 0000	-0 0000
PIE2	—	CMIE	—	—	BCLIE	LVDIE	TMR3IE	CCP2IE	-0 0000	-0 0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	1111 1111
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
TRISJ ⁽⁴⁾	Data Direction	n Control Regis	ster for PORTJ						1111 1111	1111 1111
TRISH ⁽⁴⁾	Data Direction	n Control Regis	ster for PORTH						1111 1111	1111 1111
TRISG	—	—	_	Data Direction	n Control Reg	ister for PORT	G		1 1111	1 1111
TRISF	Data Direction	n Control Regis	ster for PORTF						1111 1111	1111 1111
TRISE	Data Direction	n Control Regis	ster for PORTE						1111 1111	1111 1111
TRISD	Data Direction	n Control Regis	ster for PORTD						1111 1111	1111 1111
TRISC	Data Direction	n Control Regis	ster for PORTC						1111 1111	1111 1111
TRISB	Data Direction	n Control Regis	ster for PORTB						1111 1111	1111 1111
TRISA	—	Bit 6 ⁽¹⁾	Data Direction	Control Regist	er for PORTA				11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.

4: These registers are reserved on PIC18C658.

PIR REGISTERS 7.1.2

The Peripheral Interrupt Request (PIR) registers contain the individual flag bits for the peripheral interrupts (Register 7-5). Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Request (Flag) registers (PIR1, PIR2, PIR3).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON register).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt, and after servicing that interrupt.

7.1.3 PIE REGISTERS

The Peripheral Interrupt Enable (PIE) registers contain the individual enable bits for the peripheral interrupts (Register 7-5). Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Enable registers (PIE1, PIE2, PIE3). When IPEN is clear, the PEIE bit must be set to enable any of these peripheral interrupts.

7.1.4 **IPR REGISTERS**

The Interrupt Priority (IPR) registers contain the individual priority bits for the peripheral interrupts (Register 7-7). Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Priority registers (IPR1, IPR2, IPR3). The operation of the priority bits requires that the Interrupt Priority Enable bit (IPEN) be set.

7.1.5 RCON REGISTER

The Reset Control (RCON) register contains the bit that is used to enable prioritized interrupts (IPEN).

REGISTER 7

R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	R
IPEN	LWRT	_	RI	ТО	PD	POR	E
bit 7							
IPEN: In 1 = Ena 0 = Disa	terrupt Priority Ible priority leve able priority lev	Enable bit els on interru els on interru	ots pts (16CXX)	K compatibil	ity mode)		
LWRT: L For detai	ong Write Enat Is of bit operati	ole on see Regis	iter 4-3				
Unimple	mented: Read	as '0'					
RI: RESE	T Instruction F Is of bit operati	lag bit on see Regis	iter 4-3				
TO: Wate For detail	chdog Time-ou Is of bit operati	t Flag bit on see Regis	iter 4-3				
PD: Pow For detai	er-down Detec Is of bit operati	tion Flag bit on see Regis	iter 4-3				
POR: Po For detai	wer-on Reset S Is of bit operati	Status bit on see Regis	iter 4-3				
BOR: Br For detai	own-out Reset Is of bit operati	Status bit on see Regis	ter 4-3				
Legend:							
R = Rea	dable bit	W = Wri	table bit	U = Unimp	lemented b	oit, read as	'0'
				'0' - Bit ic	alaarad	v – Dit io u	مرب ا مر

Name	Bit#	Buffer	Function
RB0/INT0	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt 0 input. Internal software programmable weak pull-up.
RB1/INT1	bit1	TTL/ST ⁽¹⁾	Input/output pin or external interrupt 1 input. Internal software programmable weak pull-up.
RB2/INT2	bit2	TTL/ST ⁽¹⁾	Input/output pin or external interrupt 2 input. Internal software programmable weak pull-up.
RB3/INT3	bit3	TTL/ST ⁽¹⁾	Input/output pin or external interrupt 3 input. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

TABLE 8-3: PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 8-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
LATB	LATB Da	ata Output R	egister						XXXX XXXX	uuuu uuuu
TRISB	PORTB	Data Directio	on Register						1111 1111	1111 1111
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	1111 1111	1111 1111
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	1100 0000	1100 0000

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

15.2 Control Registers

The MSSP module has three associated registers. These include a status register and two control registers.

REGISTER 15-1: SSPSTAT REGISTER

Register 15-1 shows the MSSP Status Register (SSPSTAT), Register 15-2 shows the MSSP Control Register 1 (SSPCON1), and Register 15-3 shows the MSSP Control Register 2 (SSPCON2).

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	Р	S	R/W	UA	BF
	bit 7							bit 0
bit 7	SMP: Sam	ple bit						
	SPI Master	<u>r mode</u>						
	1 = Input d	lata sampled a	at end of dat	a output time	l.			
	0 = Input d	lata sampled a	at middle of o	data output ti	me			
	SPI Slave	<u>mode</u>						
	SMP must	be cleared wi	hen SPI is us	sed in Slave	mode			
	In I ² C Mas	ter or Slave m	node:					
	1= Slew ra	te control disa	abled for star	ndard speed	mode (100	kHz and 1	MHz)	
h:+ C				i speed mode	e (400 kmz)			
DIT 6	CKE: SPIN	Clock Edge S	elect					
	$\frac{CRP = 0}{1 - Data tr}$	ansmitted on	risina edae a	of SCK				
	0 = Data tr	ansmitted on	falling edge	of SCK				
	<u>CKP = 1</u>		0 0					
	1 = Data tr	ansmitted on	falling edge	of SCK				
	0 <u>=</u> Data tr	ansmitted on	rising edge o	of SCK				
bit 5	D/A: Data/	Address bit (I	² C mode onl	y)				
	1 = Indicat	es that the las	st byte receiv	ed or transm	itted was d	ata		
	0 = Indicate	es that the las	st byte receiv	ed or transm	litted was a	ddress		
bit 4	P: STOP b	oit ank This hit	a alaanad w		Duna advila in	, dia a la d		
		only. I his bit	IS Cleared Wr	nen the IVISS	P module is	s disabled,		seared.)
	1 = Indication	es that a STO bit was not de	P DIT NAS DE	en detected i	ast (this bit	IS U ON RI	ESET)	
hit 3	S START	bit was not at						
bit 5	(I ² C mode	only. This bit	is cleared wh	nen the MSS	P module is	s disabled,	SSPEN is o	cleared.)
	1 = Indicat	es that a STA	RT bit has be	een detected	last (this b	it is '0' on F	RESET)	,
	0 = START	Fbit was not d	letected last		,		,	
bit 2	R/W: Read	d/Write bit info	rmation (I ² C	mode only)				
	This bit hol	ds the R/W bi	t information	following the	last addres	s match. T	his bit is onl	y valid from
	the addres	s match to the	e next STAR	T bit, STOP b	oit, or not A	CK bit.		
	In I ² C Slav	<u>e mode:</u>						
	1 = Read							
	0 = vrite	tormodo						
	1 - Transm	<u>nit is in progre</u>	cc					
	0 = Transm	nit is not in progre	aress					
	OR-ing	this bit with S	SEN, RSEN,	PEN, RCEN	, or ACKEN	I will indica	te if the MS	SP is in
	IDLE m	node.						

15.4.10 ACKNOWLEDGE SEQUENCE TIMING

An acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit ACKEN (SSPCON2 register). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge Data bit (ACKDT) is presented on the SDA pin. If the user wishes to generate an acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an acknowledge sequence. The baud rate generator then counts for one rollover period (TBRG) and the SCL pin is de-asserted (pulled high). When the SCL pin is sampled high (clock arbitration), the baud rate generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off and the MSSP module then goes into IDLE mode (Figure 15-17).

15.4.10.1 WCOL Status Flag

If the user writes the SSPBUF when an acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

15.4.11 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2 register). At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to 0. When the baud rate generator times out, the SCL pin will be brought high, and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT register) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 15-18).

15.4.11.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-17: ACKNOWLEDGE SEQUENCE WAVEFORM

	INADIIDEC							
	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0
	bit 7							bit 0
bit 7	Unimplem	ented: Read	as '0'					
bit 6	RXRTR: Re 1 = Remote 0 = No rem	eceiver Reme e transfer req lote transfer i	ote Transmis uest request	sion Reques	st bit			
bit 5	RB1: Rese Reserved b	rved bit 1 by CAN Spec	and read as	'0'				
bit 4	RB0: Rese Reserved b	rved bit 0 by CAN Spec	and read as	'0'				
bit 3-0	DLC3:DLC 1111 = Inv 1100 = Inv 1001 = Inv 1001 = Inv 1001 = Inv 1000 = Dav 0111 = Dav 0101 = Dav 0101 = Dav 0011 = Dav 0011 = Dav 0001 = Dav 0001 = Dav	0 : Data Leng alid alid alid alid alid alid alid alid	th Code bits bytes bytes bytes bytes bytes bytes bytes bytes bytes bytes					
	Legend:							
	R = Readal	ole bit	W = Writabl	e bit	U = Unimp	lemented b	oit, read as '	0'
	- n = Value	at POR	'1' = Bit is se	et	'0' = Bit is o	cleared	x = Bit is u	nknown

REGISTER 17-19: RXBnDm – RECEIVE BUFFER n DATA FIELD BYTE m REGISTER

	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	RXBnDm7	RXBnDm6	RXBnDm5	RXBnDm4	RXBnDm3	RXBnDm2	RXBnDm1	RXBnDm0
	bit 7							bit 0
bit 7-0	RXBnDm7	:RXBnDm0	: Receive Bu	uffer n Data	Field Byte m	ı bits (where	e 0≤n<1 and	0 <m<7)< td=""></m<7)<>
	Each Rece RXB0D0 to	ive Buffer ha RXB0D7.	as an array o	of registers.	For example	, Receive b	uffer 0 has 8	3 registers:
	Legend:							
	R = Reada	ble bit	W = Writal	ble bit	U = Unim	plemented	bit, read as	'0'
	- n = Value	at POR	'1' = Bit is	set	'0' = Bit is	s cleared	x = Bit is u	nknown

17.2.4 MESSAGE ACCEPTANCE FILTERS

bit 7-0

This subsection describes the Message Acceptance filters.

REGISTER 17-21: RXFnSIDH – RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER HIGH BYTE

N/ VV-X	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID
bit 7							
	.		white if EVI				
SID10:SID3: Extended Ide	: Standard I entifier Filte	r bits EID28:	EID21, if EXI	DEN = 0. IDEN = 1,			
SID10:SID3: Extended Ide Legend:	: Standard I entifier Filte	r bits EID28:	EID21, if EXI	DEN = 0. IDEN = 1,			
SID10:SID3: Extended Ide Legend: R = Readabl	e bit	W = Writabl	EID21, if EXI	U = Unimp	plemented	bit, read as	·'O'

REGISTER 17-22: RXFnSIDL – RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER LOW BYTE

	R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
	SID2	SID1	SID0	—	EXIDEN	_	EID17	EID16
	bit 7							bit 0
bit 7-5	SID2:SID0: Standard Identifier Filter bits, if EXIDEN = 0. Extended Identifier Filter bits EID20:EID18, if EXIDEN = 0.							
bit 4	Unimplemented: Read as '0'							
bit 3	EXIDEN: Extended Identifier Filter Enable bit 1 = Filter will only accept Extended ID messages 0 = Filter will only accept Standard ID messages							
bit 2	Unimplemented: Read as '0'							
bit 1-0	EID17:EID	16: Extended	Identifier Fi	lter bits				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 17-23: RXFnEIDH – RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER HIGH BYTE

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 EID15:EID8: Extended Identifier Filter bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

17.5 <u>Message Reception</u>

17.5.1 RECEIVE MESSAGE BUFFERING

The PIC18CXX8 includes two full receive buffers with multiple acceptance filters for each. There is also a separate Message Assembly Buffer (MAB), which acts as a third receive buffer (see Figure 17-3).

17.5.2 RECEIVE BUFFERS

Of the three receive buffers, the MAB is always committed to receiving the next message from the bus. The remaining two receive buffers are called RXB0 and RXB1 and can receive a complete message from the protocol engine. The MCU can access one buffer while the other buffer is available for message reception, or holding a previously received message.

The MAB assembles all messages received. These messages will be transferred to the RXBN buffers, only if the acceptance filter criteria are met.

Note: The entire contents of the MAB is moved into the receive buffer once a message is accepted. This means that regardless of the type of identifier (standard or extended) and the number of data bytes received, the entire receive buffer is overwritten with the MAB contents. Therefore, the contents of all registers in the buffer must be assumed to have been modified when any message is received.

When a message is moved into either of the receive buffers, the appropriate RXBnIF bit is set. This bit must be cleared by the MCU when it has completed processing the message in the buffer, in order to allow a new message to be received into the buffer. This bit provides a positive lockout to ensure that the MCU has finished with the message before the PIC18CXX8 attempts to load a new message into the receive buffer. If the RXBnIE bit is set, an interrupt will be generated to indicate that a valid message has been received.

17.5.3 RECEIVE PRIORITY

RXB0 is the higher priority buffer and has two message acceptance filters associated with it. RXB1 is the lower priority buffer and has four acceptance filters associated with it. The lower number of acceptance filters makes the match on RXB0 more restrictive and implies a higher priority for that buffer. Additionally, the RXB0CON register can be configured such that if RXB0 contains a valid message, and another valid message is received, an overflow error will not occur and the new message will be moved into RXB1, regardless of the acceptance criteria of RXB1. There are also two programmable acceptance filter masks available, one for each receive buffer (see Section 4.5).

When a message is received, bits <3:0> of the RXBNCON register will indicate the acceptance filter number that enabled reception, and whether the received message is a remote transfer request.

The RXM bits set special receive modes. Normally, these bits are set to 00 to enable reception of all valid messages, as determined by the appropriate acceptance filters. In this case, the determination of whether or not to receive standard or extended messages is determined by the EXIDE bit in the acceptance filter register. If the RXM bits are set to 01 or 10, the receiver will accept only messages with standard or extended identifiers, respectively. If an acceptance filter has the EXIDE bit set such that it does not correspond with the RXM mode, that acceptance filter is rendered useless. These two modes of RXM bits can be used in systems where it is known that only standard or extended messages will be on the bus. If the RXM bits are set to 11, the buffer will receive all messages, regardless of the values of the acceptance filters. Also, if a message has an error before the end of frame, that portion of the message assembled in the MAB before the error frame, will be loaded into the buffer. This mode has some value in debugging a CAN system and would not be used in an actual system environment.

18.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 18-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is $2.5k\Omega$. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin. To calculate the minimum acquisition time, Equation 18-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 18-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	120 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V ightarrow Rss = 7 \ k\Omega$
Temperature	=	50°C (system max.)
Vhold	=	0V @ time = 0

EQUATION 18-1: ACQUISITION TIME

TACO	-	Amplifier Settling Time +
intog		Holding Canadian Time +
		remperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 18-2: A/D MINIMUM CHARGING TIME

VHOLD	=	(VREF - (VREF/2048)) • (1 - e ^{(-Tc/Chold(Ric + Rss + Rs))})
or		
Tc	=	-(120 pF)(1 kΩ + Rss + Rs) ln(1/2047)

EXAMPLE 18-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ =	TAMP + TC + TCOFF
Temperatur	e coefficient is only required for temperatures > 25°C.
TACQ =	2 μs + Tc + [(Temp - 25°C)(0.05 μs/°C)]
Tc =	-CHOLD (RIC + RSS + RS) ln(1/2047) -120 pF (1 k Ω + 7 k Ω + 2.5 k Ω) ln(0.0004885) -120 pF (10.5 k Ω) ln(0.0004885) -1.26 μ s (-7.6241) 9.61 μ s
TACQ =	2 μs + 9.61 μs + [(50°C - 25°C)(0.05 μs/°C)] 11.61 μs + 1.25 μs 12.86 μs

19.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select these modes. Figure 19-1 shows the eight possible modes. The TRISF register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Electrical Specifications (Section 25.0).

Note: Comparator interrupts should be disabled during a Comparator mode change. Otherwise, a false interrupt may occur.

FIGURE 20-1: VOLTAGE REFERENCE BLOCK DIAGRAM

NOTES:

BTF	sc	Bit Test File, Skip if Clear				
Synt	ax:	[label] BT	[label] BTFSC f, b [,a]			
Operands:		$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0, 1]$			
Ope	ration:	skip if (f) = 0			
Statu	us Affected:	None				
Enco	oding:	1011	bbba ff:	ff ffff		
Desc	cription:	If bit 'b' in re next instruc	egister 'f' is 0, tion is skippe	then the		
		If bit 'b' is 0, then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two- cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, the Bank will be selected as per the BSR value				
Word	ds:	1				
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction						
QC	cle Activity:					
	Q1	Q2	Q3	Q4		
	Decode	Read	Process	No		
lf ski	D:	register i	Dala	operation		
	Q1	Q2	Q3	Q4		
	No	No	No	No		
	operation	operation	operation	operation		
IT SKI	p and followe	a by 2-word		04		
	No	QZ No	Q3 No	Q4		
	operation	operation	operation	operation		
	No operation	No operation	No operation	No operation		
<u>Exar</u>	Example: HERE BTFSC FLAG, 1, ACCESS FALSE : TRUE :					
	Before Instru PC	ction = add	ress (HERE)			
	After Instruction If FLAG<1> = 0; PC = address (TRUE) If FLAG<1> = 1; PC = address (FALSE)					

BTFSS	le, Skip if Se	t			
Syntax:	[label] B	FFSS f, b [,a]			
Operands:	0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]				
Operation:	skip if (f <b:< td=""><td>>) = 1</td><td></td></b:<>	>) = 1			
Status Affected:	None				
Encoding:	1010	bbba ff	ff ffff		
Description:	If bit 'b' in re instruction	egister 'f' is 1 t is skipped.	then the next		
	If bit 'b' is 1 fetched du tion execut NOP is exe a two-cycle Access Ba riding the E Bank will b value.	If bit 'b' is 1, then the next instruction fetched during the current instruc- tion execution, is discarded and an NOP is executed instead, making this a two-cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, the Bank will be selected as per the BSR			
Words:	1				
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.					
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Read	Process Data	No		
If skip:	regiotor r	Data	oporation		
Q1	Q2	Q3	Q4		
No	No	No	No		
operation	operation	operation	operation		
If skip and follow	ed by 2-word	instruction:	04		
		Q3	Q4		
operation	operation	operation	operation		
No	No	No	No		
operation	operation	operation	operation		
Example: HERE BTFSS FLAG, 1, ACCESS FALSE : TRUE :					
Before Instru PC	uction = ado	iress (HERE)			
After Instruction If FLAG<1> = 0; PC = address (FALSE) If FLAG<1> = 1; PC = address (TRUE)					

FIGURE 25-2: PIC18LCXX8 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

FIGURE 25-16: I²C BUS START/STOP BITS TIMING

TABLE 25-15: I²C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Parm. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz møde D	4700	—	ns	Only relevant for Repeated
		Setup time	400 kHz mode	6 00	—		START condition
91	THD:STA	START condition	100 WHZ mode	4000	—	ns	After this period, the first
		Hold time	400 kHz mode	600	—		clock pulse is generated
92	Tsu:sto	STOP condition	100 kHz mode	4700	—	ns	
		Setup time	400 kHz mode	600	—		
93	THD:STO	STOR epindition	100 kHz mode	4000	_	ns	
		Hold time	400 kHz mode	600	_		

FIGURE 25-21: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 25-20: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TdtV2ckl	SYNC RCV (Master & Slave) Data-hold before CK (OF hold time)	10	_	ns	
126	TckL2dtl	Data-hold after CK	15	_	ns	
		∇				

84-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

Units		INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		68			68	
Pitch	р		.050			1.27	
Pins per Side	n1		17			17	
Overall Height	А	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	E	.985	.990	.995	25.02	25.15	25.27
Overall Length	D	.985	.990	.995	25.02	25.15	25.27
Molded Package Width	E1	.950	.954	.958	24.13	24.23	24.33
Molded Package Length	D1	.950	.954	.958	24.13	24.23	24.33
Footprint Width	E2	.890	.920	.930	22.61	23.37	23.62
Footprint Length	D2	.890	.920	.930	22.61	23.37	23.62
Lead Thickness	с	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-047 Drawing No. C04-093

NOTES: