

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	
RAM Size	1.5К х 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c658-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin N	umber				
Pin Name	PIC1	8C658	PIC1	8C858	Pin Type	Buffer Type	
	TQFP	PLCC	TQFP	PLCC	турс	iype	Description
							PORTG is a bi-directional I/O port
RG0/CANTX1	3	12	5	16			
RG0					I/O	ST	Digital I/O
CANTX1					0	CAN Bus	CAN bus output
RG1/CANTX2	4	13	6	17			
RG1					I/O	ST	Digital I/O
CANTX2					0	CAN Bus	Complimentary CAN bus output
	_						or CAN bus bit time clock
RG2/CANRX	5	14	7	18		ST	
RG2 CANRX					I/O I	CAN Bus	Digital I/O CAN bus input
	<u> </u>	45		10		ST	·
RG3	6	15	8	19	I/O	-	Digital I/O
RG4	8	17	10	21	I/O	ST	Digital I/O
							PORTH is a bi-directional I/O port.
RH0		—	79	10	I/O	ST	Digital I/O
RH1	—	—	80	11	I/O	ST	Digital I/O
RH2	—	—	1	12	I/O	ST	Digital I/O
RH3	—		2	13	I/O	ST	Digital I/O
RH4/AN12	_	—	22	34			
RH4					I/O	ST	Digital I/O
AN12					I	Analog	Analog input 12
RH5/AN13	—	—	21	33			
RH5					I/O	ST	Digital I/O
AN13					I	Analog	Analog input 13
RH6/AN14	—		20	32		о т	
RH6 AN14					I/O	ST	Digital I/O
					I	Analog	Analog input 14
RH7/AN15	_	—	19	31		ст	
RH7 AN15					I/O	ST Analog	Digital I/O Analog input 15
	L compatible	l ninnut	1	1		-	S compatible input or output
	nmitt Trigge					alog = Analog	
		i input wi		101013		alog – Analo	

0

 g = Analog input
 = Output
 = Open Drain (no P diode to VDD) OD

= Input = Power

I Ρ

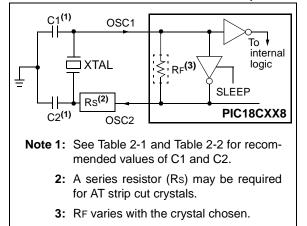
2.0 OSCILLATOR CONFIGURATIONS

2.1 Oscillator Types

The PIC18CXX8 can be operated in one of eight oscillator modes, programmable by three configuration bits (FOSC2, FOSC1, and FOSC0).

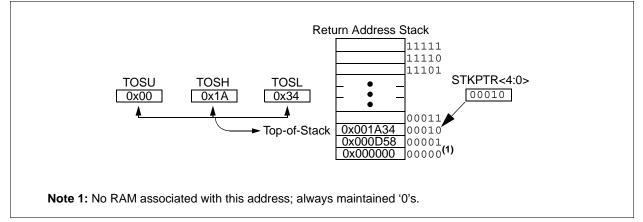
- 1. LP Low Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High Speed Crystal/Resonator
- 4. HS4 High Speed Crystal/Resonator with PLL enabled
- 5. RC External Resistor/Capacitor
- 6. RCIO External Resistor/Capacitor with I/O pin enabled
- 7. EC External Clock
- 8. ECIO External Clock with I/O pin enabled

2.2 <u>Crystal Oscillator/Ceramic</u> <u>Resonators</u>


In XT, LP, HS or HS4 (PLL) oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections. An external clock source may also be connected to the OSC1 pin, as shown in Figure 2-3 and Figure 2-4.

The PIC18CXX8 oscillator design requires the use of a parallel cut crystal.

Note:	Use of a series cut crystal may give a fre-
	quency out of the crystal manufacturer's
	specifications.


FIGURE 2-1: CRYS

: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

	R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	STKFUL	STKUNF	—	SP4	SP3	SP2	SP1	SP0		
	bit 7							bit 0		
bit 7	1 = Stack	Stack Full Fla became full o has not beco	or overflowed	-						
bit 6	STKUNF : Stack Underflow Flag bit 1 = Stack underflow occurred 0 = Stack underflow did not occur									
bit 5	Unimplem	ented: Read	as '0'							
bit 4-0	SP4:SP0: 8	Stack Pointer	Location bits	5						
	Note: Bit 7 and bit 6 can only be cleared in user software or by a POR.									
	Legend									
	R = Reada	able bit	W = Wri	table bit	U = Unimp	lemented b	oit, read as	'0'		
	- n = Value	at POR	'1' = Bit	is set	'0' = Bit is c	leared	C = Cleara	ble bit		

FIGURE 4-2: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

7.1 <u>Control Registers</u>

This section contains the control and status registers.

7.1.1 INTCON REGISTERS

The INTCON Registers are readable and writable registers, which contain various enable, priority, and flag bits.

REGISTER 7-1: INTCON REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF		
bit 7							bi		
GIF/GIFH:	Global Interru	int Enable b	it						
When IPEN = 0:									
1 = Enable	s all un-mask s all interrupt		i						
	<u>l = 1:</u> s all high prio s all high prio								
	: Peripheral Ir	• •							
When IPEN 1 = Enables	•	ed periphera							
	<u>I = 1:</u> s all low priori s all priority p								
1 = Enables	MR0 Overflov s the TMR0 o s the TMR0 o	verflow inter	rupt						
1 = Enables	T0 External In s the INT0 ex s the INT0 ex	ternal interru	ıpt						
1 = Enable	Port Change I s the RB port s the RB port	change inte	rrupt						
1 = TMR0 r	MR0 Overflov register has o register did no	verflowed (m		ed in softwa	ıre)				
1 = The IN	Γ0 External In Γ0 external in Γ0 external in	terrupt occu	rred (must be	e cleared in	software b	y reading P	ORTB)		
1 = At least	Port Change I t one of the R f the RB7:RB	B7:RB4 pins	changed sta		e cleared ir	n software)			
Legend:									
R = Readab	ole bit	W = Writ	table bit	U = Unimpl	lemented b	oit, read as '	0'		
			is set	'0' = Bit is o		x = Bit is u			

allows software polling.

the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature

PIR REGISTERS (CONT'D) **REGISTER 7-5:**

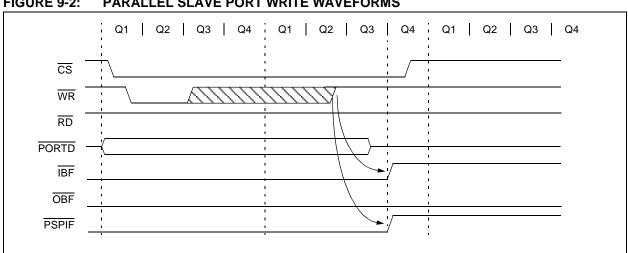
PIR2	bit 7	Unimplemented: Read as'0'
	bit 6	CMIF: Comparator Interrupt Flag bit 1 = Comparator input has changed 0 = Comparator input has not changed
	bit 5-4	Unimplemented: Read as'0'
	bit 3	 BCLIF: Bus Collision Interrupt Flag bit 1 = A Bus Collision occurred (must be cleared in software) 0 = No Bus Collision occurred
	bit 2	 LVDIF: Low Voltage Detect Interrupt Flag bit 1 = A low voltage condition occurred (must be cleared in software) 0 = The device voltage is above the Low Voltage Detect trip point
	bit 1	 TMR3IF: TMR3 Overflow Interrupt Flag bit 1 = TMR3 register overflowed (must be cleared in software) 0 = TMR3 register did not overflow
	bit 0	CCP2IF: CCPx Interrupt Flag bit <u>Capture Mode</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred <u>Compare Mode</u> 1 = A TMR1 register compare match occurred (must be cleared in software)

0 = No TMR1 register compare match occurred <u>PWM Mode</u>

Unused in this mode

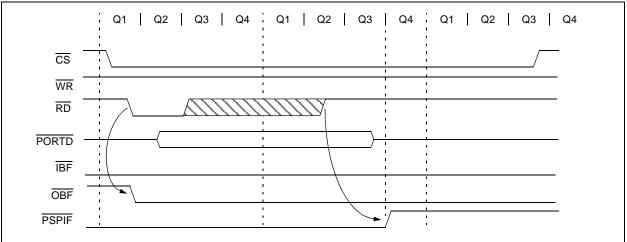
TABLE 8-7:	PORTD FUNCTIONS
-------------------	-----------------

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0.
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1.
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2.
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3.
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4.
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5.
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6.
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7.


Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port mode.

TABLE 8-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
LATD	LATD Data Output Register xxxx ut									uuuu uuuu
TRISD	SD PORTD Data Direction Register								1111 1111	1111 1111
PSPCON	IBF	OBF	IBOV	PSPMODE			_		0000	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

FIGURE 9-2: PARALLEL SLAVE PORT WRITE WAVEFORMS

FIGURE 9-3: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 9-1: **REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT**

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value o POR, B		Value oth RES	ner
PORTD	Port data	latch wh		XXXX X	xxx	uuuu	uuuu					
LATD	LATD Da	ita Output		XXXX X	xxx	uuuu	uuuu					
TRISD	PORTD Data Direction Bits									111	1111	1111
PORTE	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	0000 0	000	0000	0000
LATE	LATE Da	ta Output	Bits						XXXX X	xxx	uuuu	uuuu
TRISE	PORTE I	Data Dire	ction Bits						1111 1	111	1111	1111
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 0	00x	0000	000u
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0	000	0000	0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0	000	0000	0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0	000	0000	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

NOTES:

- **UA:** Update Address (10-bit I²C mode only) bit 1
 - 1 = Indicates that the user needs to update the address in the SSPADD register
 - 0 = Address does not need to be updated
- bit 0 BF: Buffer Full Status bit Receive (SPI and I²C modes)

 - 1 = Receive complete, SSPBUF is full
 0 = Receive not complete, SSPBUF is empty

Transmit (I²C mode only)

- 1 = Data Transmit in progress (does not include the ACK and STOP bits), SSPBUF is full
- 0 = Data Transmit complete (does not include the ACK and STOP bits), SSPBUF is empty

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 15-2: SSPCON1 REGISTER

	R/W-0							
Γ	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
	bit 7							bit 0

bit 7 WCOL: Write Collision Detect bit

Master mode:

- 1 = A write to the SSPBUF register was attempted while the I²C conditions were not valid for a transmission to be started
- $0 = No \ collision$

Slave mode:

- 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
- 0 = No collision

bit 6 SSPOV: Receive Overflow Indicator bit

In SPI mode:

- 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register. (Must be cleared in software.)
 0 = No overflow
- In l^2C mode:
- 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.)

0 = No overflow

bit 5 **SSPEN:** Synchronous Serial Port Enable bit

In both modes, when enabled, these pins must be properly configured as input or output. In SPI mode:

- 1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins

In I²C mode:

- 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins
- bit 4 **CKP:** Clock Polarity Select bit

In SPI mode:

- 1 = Idle state for clock is a high level
- 0 = Idle state for clock is a low level

In I²C Slave mode:

- SCK release control
- 1 = Enable clock
- 0 = Holds clock low (clock stretch). (Used to ensure data setup time.)

In I²C Master mode

Unused in this mode

15.3.6 SLEEP OPERATION

In Master mode, all module clocks are halted, and the transmission/reception will remain in that state until the device wakes from SLEEP. After the device returns to normal mode, the module will continue to transmit/receive data.

In Slave mode, the SPI transmit/receive shift register operates asynchronously to the device. This allows the device to be placed in SLEEP mode, and data to be shifted into the SPI transmit/receive shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and, if enabled, will wake the device from SLEEP.

15.3.7 EFFECTS OF A RESET

A RESET disables the MSSP module and terminates the current transfer.

15.3.8 BUS MODE COMPATIBILITY

Table 15-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 15-1:	SPI BUS MODES
-------------	---------------

Standard SPI Mode	Control E	Bits State		
Terminology	СКР	CKE		
0, 0	0	1		
0, 1	0	0		
1, 0	1	1		
1, 1	1	0		

There is also a SMP bit that controls when the data will be sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PO BO	R,		e on ther ETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000	0000	0000	0000
TRISC	PORTC Da	ata Direct	tion Regist	er					1111	1111	1111	1111
SSPBUF	Synchronc	ous Serial	Port Rece	eive Buffer	r/Transmit	Register			xxxx	xxxx	uuuu	uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000	0000	0000	0000
TRISA	—	PORTA	PORTA Data Direction Register ⁽¹⁾							1111	11	1111
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000	0000	0000	0000

TABLE 15-2: REGISTERS ASSOCIATED WITH SPI OPERATION

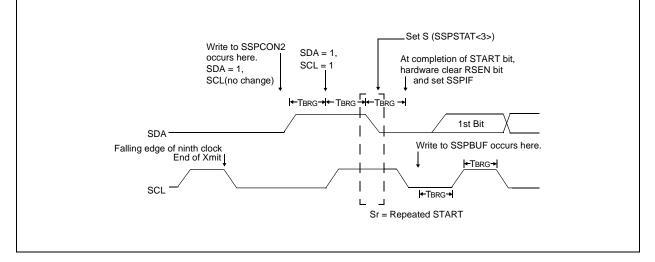
Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.

15.4.7 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2 register) is programmed high and the I²C logic module is in the IDLE state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the baud rate generator is re-loaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2 register) will be automatically cleared and the baud rate generator will not be reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT register) will be set. The SSPIF bit will not be set until the baud rate generator has timed-out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated START condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

15.4.7.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 15-14: REPEAT START CONDITION WAVEFORM

17.2.2 CAN TRANSMIT BUFFER REGISTERS

This section describes the CAN Transmit Buffer Register and the associated Transmit Buffer Control Registers.

SIER 17-4.	INDICON	I - IKANSI				SIER						
	U-0	R-0	R-0	R-0	R/W-0	U-0	R/W-0	R/W-0				
	_	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0				
	bit 7							bit 0				
bit 7	Unimplem	ented: Read	as '0'									
bit 6	1 = Messa	ansmission A ge was abort ge was not al	ed	s bit								
bit 5	1 = Messa	Transmission ge lost arbitra ge did not los	ation while be	eing sent								
bit 4	1 = A bus e	ransmission E error occurre error did not o	d while the m	essage was	0	ent						
bit 3	1 = Reque	 0 = A bus error did not occur while the message was being sent TXREQ: Transmit Request Status bit 1 = Requests sending a message. Clears the TXABT, TLARB, and TXERR bits 0 = Automatically cleared when the message is successfully sent 										
	Note:	Clearing this	bit in softwa	re, while the	bit is set, w	ill request a	a message	abort.				

REGISTER 17-4: TXBnCON – TRANSMIT BUFFER n CONTROL REGISTER

'0'

- bit 1-0 **TXPRI1:TXPRI0:** Transmit Priority bits
 - 11 = Priority Level 3 (Highest Priority)
 - 10 = Priority Level 2
 - 01 = Priority Level 1
 - 00 = Priority Level 0 (Lowest Priority)

Note: These bits set the order in which Transmit buffer will be transferred. They do not alter CAN message identifier.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x	a = Bit is unknown

REGISTER 17-5: TXBnSIDH: TRANSMIT BUFFER n STANDARDIDENTIFIER HIGH BYTEREGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 **SID10:SID3:** Standard Identifier bits, if EXIDE = 0 (TXBnSID Register). Extended Identifier bits EID28:EID21, if EXIDE = 1.

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

17.2.4 MESSAGE ACCEPTANCE FILTERS

bit 7-0

This subsection describes the Message Acceptance filters.

REGISTER 17-21: RXFnSIDH – RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER HIGH BYTE

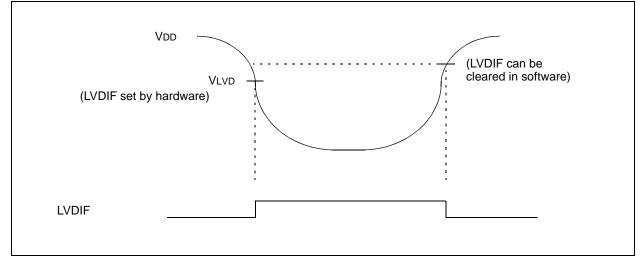
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 7							b
	.						
		Identifier Filte er bits EID28:	,				
Extended Ide	entifier Filte		EID21, if EXI	DEN = 1,	lemented I	bit, read as	·0'

REGISTER 17-22: RXFnSIDL – RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER LOW BYTE

	R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
	SID2	SID1	SID0	—	EXIDEN	_	EID17	EID16
	bit 7							bit 0
bit 7-5		: Standard Ide		,	-			
bit 4	Unimplem	ented: Read	as '0'					
bit 3	1 = Filter w	xtended Iden ill only accep ill only accep	t Extended I	D messages				
bit 2	Unimplem	ented: Read	as '0'					
bit 1-0	EID17:EID	16: Extended	Identifier Fi	lter bits				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 17-23: RXFnEIDH – RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER HIGH BYTE


| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 EID15:EID8: Extended Identifier Filter bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

NOTES:

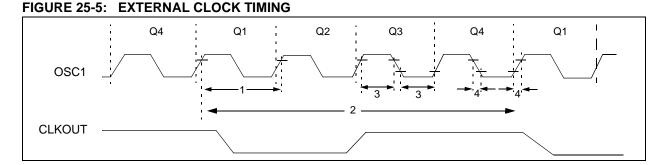

FIGURE 25-3: LOW VOLTAGE DETECT CHARACTERISTICS

TABLE 25-1: LOW VOLTAGE DETECT CHARACTERISTICS

			Standard Operating Co	nditions (u	nless other	wise state	ed)
			Operating temperature		TA ≤ +85°		
	I	1		-40°C ≤	Ta ≤ +125	℃ for ext	ended
Param No.	Symbol	Char	acteristic/	Min	Max	Units	Conditions
D420	Vlvd	LVD Voltage	LVDL<3:0> = 0100	2.5	∫2.66	V	
		C C	LVDL<3:0> = 01,01	12.7	2.86	V	
			LVDL<3:0> = 0110	2.8	2.98	V	
			LVDL<3:03=0441	3.0	3.2	V	
			LVPL<3:0x = 1000	3.3	3.52	V	
			LVDL 3:0> = 1001	3.5	3.72	V	
			LVDL<3:0> = 1010	3.6	3.84	V	
		\square	LVDL<3:0> = 1011	3.8	4.04	V	
			LVDL<3:0> = 1100	4.0	4.26	V	
			LVDL<3:0> = 1101	4.2	4.46	V	
			LVDL<3:0> = 1110	4.5	4.78	V	

25.3.3 TIMING DIAGRAMS AND SPECIFICATIONS

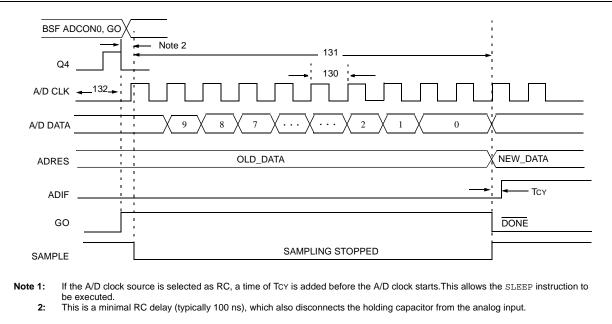


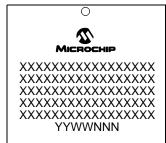
TABLE 25-4: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
1A	Fosc	External CLKIN	DC	40	MHz	XT osc
		Frequency ⁽¹⁾	DC	40	MHz	HS osc
			4	10	MHz	HS + PLL osc
			DC	40	kHz _/	LP-osq
			DC	40	MHz	EC
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC osc
			0.1	4	MHz	XT osc
			4	25	MHz `	HS osc
			4	\ (10 ²)	MHz	HS + PLL osc
			5	\ <u>\</u> 200 ~	kHz	LP osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	250	$\sqrt{-}$	ns	XT and RC osc
			40	_	ns	HS osc
			100	—	ns	HS + PLL osc
			5 5	—	μs	LP osc
			5	_	ns	EC
		Oscillator Period ⁽¹⁾	250	—	ns	RC osc
	\langle	∇	250	10,000	ns	XT osc
	Ň		100	10,000	ns	HS osc
``	$\langle \rangle \rangle$	\searrow	40	100	ns	HS + PLL osc
	$\backslash \langle$		5	—	μs	LP osc
2	TCY	Instruction Cycle Time ⁽¹⁾	100	_	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1)	30	—	ns	XT osc
	TosH	High or Low Time	2.5	—	ns	LP osc
			10	_	μs	HS osc
4	TosR,	External Clock in (OSC1)	—	20	ns	XT osc
	TosF	Rise or Fall Time	—	50	ns	LP osc
				7.5	ns	HS osc

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 25-22: A/D CONVERSION TIMING

TABLE 25-22:	A/D CONVERSION REQUIREMENTS
--------------	-----------------------------


Param No.	Sym- bol	Characteristic	Min	Max	Units	Conditions	
130	TAD	A/D clock period PIC18 C XX8	5	1.6	20 ⁽⁵⁾	μs	Tosc based, VREF \geq 3.0V
		PIC18LCXX	(8	3.0	20(5)	pt\$	Tosc based, VREF full range
		PIC18CXX8		2.0	6.0	Jμs	A/D RC mode
		PIC18LCXX	(8	3.0	9.0	μs	A/D RC mode
131	TCNV	Conversion time (not including acquisition time) ⁽¹⁾	$\overline{(n)}$	AN I	<u>j</u> 12	TAD	
132	TACQ	Acquisition time ⁽³⁾	77	15 10		μs μs	$\begin{array}{l} -40^{\circ}\text{C} \leq \text{Temp} \leq 125^{\circ}\text{C} \\ 0^{\circ}\text{C} \leq \text{Temp} \leq 125^{\circ}\text{C} \end{array}$
135	Tswc	Switching time from convert - sampl	le	_	(Note 4)		
136	Тамр	Amplifier settling time (Note 2)		1		μs	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).

Note 1: ADRES register may be read on the following TCY cycle.

- 2: See Section 18.0 for minimum conditions, when input voltage has changed more than 1 LSb.
- **3:** The time for the holding capacitor to acquire the "New" input voltage, when the voltage changes full scale after the conversion (AVDD to AVss, or AVss to AVDD). The source impedance (*Rs*) on the input channels is 50 Ω.
- **4:** On the next Q4 cycle of the device clock.
- 5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

Package Marking Information (Cont'd)

84-Lead PLCC

Example

PIC18CXX8 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office

PART NO. Device	X /XX XXX Temperature Package Pattern Range	 Examples: a) PIC18LC658 - I/L 301 = Industrial temp., PLCC package, Extended VDD limits, QTP pattern #301. b) PIC18LC858 - I/PT = Industrial temp., TQFP
Device	PIC18CXX8 ⁽¹⁾ , PIC18CXX8T ⁽²⁾ ; VDD range 4.2V to 5.5V PIC18LCXX5 ⁽¹⁾ , PIC18LCXX8T ⁽²⁾ ; VDD range 2.5V to 5.5V	 package, Extended VDD limits. c) PIC18C658 - E/L = Extended temp., PLCC package, normal VDD limits.
Temperature Range	$ \begin{array}{rcl} I &=& -40^\circ C \text{ to } +85^\circ C & (Industrial) \\ E &=& -40^\circ C \text{ to } +125^\circ C & (Extended) \end{array} $	
Package	CL = Windowed JCERPACK PT = TQFP (Thin Quad Flatpack) L = PLCC	 Note 1: C = Standard Voltage Range LC = Wide Voltage Range 2: T = in tape and reel PLCC, and TQFP packages only. 3: CL devices are UV erasable and can be pro- grammed to any device configuration. CL
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	devices meet the electrical requirement of each oscillator type (including LC devices).

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.