

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	32KB (16K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c658t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the following three devices:

- 1. PIC18C658
- 2. PIC18C858

The PIC18C658 is available in 64-pin TQFP and 68-pin PLCC packages. The PIC18C858 is available in 80-pin TQFP and 84-pin PLCC packages.

An overview of features is shown in Table 1-1.

TABLE 1-1:DEVICE FEATURES

The following two figures are device block diagrams sorted by pin count; 64/68-pin for Figure 1-1 and 80/84-pin for Figure 1-2. The 64/68-pin and 80/84-pin pinouts are listed in Table 1-2.

	Features		PIC18C658	PIC18C858
Operating Frequency			DC - 40 MHz	DC - 40 MHz
		Bytes	32 K	32 K
Program Memory	Internal	# of Single word Instructions	16384	16384
Data Memory (Byte	es)		1536	1536
Interrupt sources			21	21
I/O Ports			Ports A – G	Ports A – H, J, K
Timers			4	4
Capture/Compare/I	PWM module	S	2	2
Serial Communicat	ions		MSSP, CAN Addressable USART	MSSP, CAN Addressable USART
Parallel Communic	ations		PSP	PSP
10-bit Analog-to-Di	gital Module		12 input channels	16 input channels
Analog Comparato	rs		2	2
RESETS (and Dela	iys)		POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST)
Programmable Low	Voltage Det	ect	Yes	Yes
Programmable Bro	wn-out Reset		Yes	Yes
CAN Module			Yes	Yes
In-Circuit Serial Pro	ogramming (IC	CSP™)	Yes	Yes
Instruction Set			75 Instructions	75 Instructions
Packages			64-pin TQFP 68-pin CERQUAD (Windowed) 68-pin PLCC	80-pin TQFP 84-pin CERQUAD (Windowed) 84-pin PLCC

2.3 RC Oscillator

For timing insensitive applications, the "RC" and "RCIO" device options offer additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 2-2 shows how the R/C combination is connected.

In the RC oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic.

FIGURE 2-2: RC OSCILLATOR MODE

The RCIO oscillator mode functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

2.4 External Clock Input

The EC and ECIO oscillator modes require an external clock source to be connected to the OSC1 pin. The feedback device between OSC1 and OSC2 is turned off in these modes to save current. There is no oscillator start-up time required after a Power-on Reset or after a recovery from SLEEP mode.

In the EC oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 2-3 shows the pin connections for the EC oscillator mode.

FIGURE 2-3: EXTERNAL CLOCK INPUT OPERATION (EC OSC CONFIGURATION)

The ECIO oscillator mode functions like the EC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 2-4 shows the pin connections for the ECIO oscillator mode.

FIGURE 2-4: EXTERNAL CLOCK INPUT OPERATION (ECIO CONFIGURATION)

TARI F 4-3.	REGISTER	FILE SUMMARY
IADLL TJ.	ILCIOI LI	

Filename	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS ⁽³⁾
TOSU		_		Top-of-Stack	upper Byte (T	OS<20:16>)			0 0000	0 0000
TOSH	Top-of-Stack	High Byte (TOS	S<15:8>)						0000 0000	0000 0000
TOSL	Top-of-Stack Low Byte (TOS<7:0>)									0000 0000
STKPTR	STKFUL STKUNF — Return Stack Pointer									00-0 0000
PCLATU		—	bit 21 ⁽³⁾	Holding Regis	ster for PC<20):16>			00 0000	00 0000
PCLATH	Holding Regis	ster for PC<15:	8>						0000 0000	0000 0000
PCL	PC Low Byte	(PC<7:0>)							0000 0000	0000 0000
TBLPTRU			bit 21 ⁽²⁾	Program Men	nory Table Po	inter Upper By	rte (TBLPTR<2	20:16>)	0 0000	0 0000
TBLPTRH	Program Men	nory Table Poir	nter High Byte (TBLPTR<15:8>	>)				0000 0000	0000 0000
TBLPTRL	Program Men	nory Table Poir	nter Low Byte (1	BLPTR<7:0>)					0000 0000	0000 0000
TABLAT	Program Men	nory Table Lato	h						0000 0000	0000 0000
PRODH	Product Regis	ster High Byte							xxxx xxxx	uuuu uuuu
PRODL	Product Regis	ster Low Byte			-			-	xxxx xxxx	uuuu uuuu
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	1111 1111	1111 1111
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	1100 0000	1100 0000
INDF0	Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical register)								n/a	n/a
POSTINC0	Uses contents	s of FSR0 to a	ddress data me	mory - value of	FSR0 post-in	cremented (no	ot a physical re	egister)	n/a	n/a
POSTDEC0	Uses contents	s of FSR0 to a	ddress data me	mory - value of	FSR0 post-d	ecremented (r	ot a physical r	egister)	n/a	n/a
PREINC0	Uses contents	s of FSR0 to a	ddress data me	mory - value of	FSR0 pre-inc	cremented (no	t a physical reo	gister)	n/a	n/a
PLUSW0	Uses contents of FSR0 offse	s of FSR0 to ac et by WREG	ldress data mer	mory - value of	FSR0 pre-inc	remented (not	a physical reg	ister) - value	n/a	n/a
FSR0H				—	Indirect Data	a Memory Add	ress Pointer 0	High	0000	0000
FSR0L	Indirect Data	Memory Addre	ss Pointer 0 Lo	w Byte					xxxx xxxx	uuuu uuuu
WREG	Working Regi	ister							xxxx xxxx	uuuu uuuu
INDF1	Uses contents of FSR1 to address data memory - value of FSR1 not changed (not a physical register)							er)	n/a	n/a
POSTINC1	21 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register)							n/a	n/a	
POSTDEC1	C1 Uses contents of FSR1 to address data memory - value of FSR1 post-decremented (not a physical register)							n/a	n/a	
PREINC1	Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register)							gister)	n/a	n/a
PLUSW1	Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) - value of FSR1 offset by WREG								n/a	n/a
FSR1H			_		Indirect Data	Memory Add	ress Pointer 1	High	0000	0000
FSR1L	Indirect Data	Memory Addre	ss Pointer 1 Lo	w Byte					xxxx xxxx	uuuu uuuu
BSR	Bank Select Register									0000

Legend:

x = unknown, u = unchanged, - = unimplemented, q = value depends on condition Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'. Bit 21 of the TBLPTRU allows access to the device configuration bits. Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset. Note 1: 2:

3:

4: These registers are reserved on PIC18C658.

TABLE 8-1:	PORTA FUNCTIONS
-	

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit2	TTL	Input/output or analog input or VREF
RA3/AN3/VREF+	bit3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI	bit4	ST/OD	Input/output or external clock input for Timer0 output is open drain type.
RA5/SS/AN4/LVDIN	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input, or low voltage detect input.
OSC2/CLKO/RA6	bit6	TTL	OSC2 or clock output or I/O pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input, OD = Open Drain

TABLE 8-2: SUMMARY OF REGISTERS ASSOCIATED WITH	PORTA
---	-------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTA	—	RA6	RA5	RA4	RA3	RA2	RA1	RA0	-x0x 0000	-uuu uuuu
LATA	—	Latch A	Data Out	out Regist	er			-xxx xxxx	-uuu uuuu	
TRISA	—	PORTA	Data Dire	ction Regi	ister			-111 1111	-111 1111	
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by PORTA.

8.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding Data Direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATB register read and write the latched output value for PORTB.

CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
CLRF	LATB	; Alternate method
		; to clear output
		; data latches
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB3:RB0 as inputs
		; RB5:RB4 as outputs
		; RB7:RB6 as inputs

EXAMPLE 8-2: INITIALIZING PORTB

FIGURE 8-4: RB7:RB4 PINS BLOCK DIAGRAM

To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2 register).

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overrightarrow{\mathsf{RBPU}}$ (INTCON2 register). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'd together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON register).

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB (except with the MOVFF instruction). This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

FIGURE 8-5: RB3:RB0 PINS BLOCK DIAGRAM

FIGURE 10-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE

FIGURE 10-2: TIMER0 BLOCK DIAGRAM IN 16-BIT MODE

13.1 <u>Timer3 Operation</u>

Timer3 can operate in one of these modes:

- As a timer
- · As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON register).

When TMR3CS = 0, Timer3 increments every instruction cycle. When TMR3CS = 1, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer3 also has an internal "RESET input". This RESET can be generated by the CCP module (Section 13.0).

FIGURE 13-2: TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE

15.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received, simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL/LVOIN

Additionally, a fourth pin may be used when in any Slave mode of operation:

• Slave Select (SS) - RA5/SS/AN4

15.3.1 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits SSPCON1<5:0> and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock polarity (Idle state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock rate (Master mode only)
- Slave Select mode (Slave mode only)

Figure 15-1 shows the block diagram of the MSSP module, when in SPI mode.

FIGURE 15-1: MSSP BLOCK DIAGRAM (SPI MODE)

The MSSP consists of a transmit/receive Shift Register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit, BF (SSPSTAT register), and the interrupt flag bit, SSPIF (PIR registers), are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit, WCOL (SSPCON1 register), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

REGISTER 17-30:	BRGCON2 – BAUD RATE CONTROL REGISTER 2								
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	
	bit 7							bit 0	
bit 7	SEG2PHTS:	Phase S	eament 2 Tirr	ne Select bit					
2	1 = Freely pro	of PHF(ible 31 or Informa	ation Process	sing Time (IP	T) whichev	ver is greate	r	
bit 6	SAM: Sample	of the C	AN Bus Line	bit	sample point	· ,,	er is greate		
	0 = Bus line is	s sample	d once at the	sample poir	nt				
bit 5-3	SEG1PH2:SE 111 = Phase 110 = Phase 101 = Phase 100 = Phase 011 = Phase 010 = Phase 001 = Phase 000 = Phase	SEG1PH2:SEG1PH0: Phase Segment 1 bits 111 = Phase Segment 1 Time = 8 x TQ 110 = Phase Segment 1 Time = 7 x TQ 101 = Phase Segment 1 Time = 6 x TQ 100 = Phase Segment 1 Time = 5 x TQ 011 = Phase Segment 1 Time = 4 x TQ 010 = Phase Segment 1 Time = 3 x TQ 001 = Phase Segment 1 Time = 2 x TQ							
bit 2-0	PRSEG2:PRSEG0: Propagation Time Select bits 111 = Propagation Time = $8 \times TQ$ 110 = Propagation Time = $7 \times TQ$ 101 = Propagation Time = $6 \times TQ$ 100 = Propagation Time = $5 \times TQ$ 011 = Propagation Time = $4 \times TQ$ 010 = Propagation Time = $3 \times TQ$ 001 = Propagation Time = $2 \times TQ$ 000 = Propagation Time = $1 \times TQ$								
	Legend:								
	R = Readable	bit	W = Writat	ole bit	U = Unimp	olemented b	oit, read as '	0'	
	- n = Value at	POR	'1' = Bit is	set	'0' = Bit is	cleared	x = Bit is u	nknown	

Note: This register is only accessible in Configuration mode.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP			
	bit 7							bit 0			
bit 7	IRXIP: CAN	N Invalid Rec	eived Messa	ige Interrupt	Priority bit						
	1 = High priority										
hit 6	WAKIP: CAN Bus Activity Wake-up Interrupt Priority bit										
DILO	1 = High pr	riority	ny wake-up	menuprino	nity bit						
	0 = Low pri	iority									
bit 5	ERRIP: CA	N bus Error	Interrupt Pric	ority bit							
	1 = High pr	riority									
hit 1		AN Transmit	Puffor 2 Inte	struct Priority	hit						
DIL 4	1 = High pr	riority		Παρι Εποπιγ	DIL						
	0 = Low pri	iority									
bit 3	TXB1IP: C	AN Transmit	Buffer 1 Inte	rrupt Priority	bit						
	1 = High pr	riority									
L:4 J		IOFILY	Duffor 0 Into	reat Driarity	L:+						
DIT Z	1 = High pr	riority	Builer O line	πυρι Ρποπιγ	DI						
	0 = Low pri	iority									
bit 1	RXB1IP: C	AN Receive	Buffer 1 Inte	rrupt Priority	bit						
	1 = High pr	riority									
L:4 0					L !4						
DITU	1 = High pr	AN Receive	Buffer U Inter	rrupt Priority	DIT						
	0 = Low pri	iority									
	Legend:										
	R = Readat	ole bit	W = Writabl	e bit	U = Unimp	lemented b	oit, read as '	0'			
	- n = Value	at POR	'1' = Bit is se	et	'0' = Bit is (cleared	x = Bit is u	nknown			

REGISTER 17-35: IPR3 – PERIPHERAL INTERRUPT PRIORITY REGISTER

17.9 Programming Time Segments

Some requirements for programming of the time segments:

- Prop Seg + Phase Seg $1 \ge$ Phase Seg 2
- Phase Seg $2 \ge$ Sync Jump Width

For example, assuming that a 125 kHz CAN baud rate with FOSC = 20 MHz is desired:

Tosc = 50nsec, choose BRP<5:0> = 04h, then TQ = 500nsec. To obtain 125 kHz, the bit time must be 16 TQ.

Sync Seg = 1 TQ; Prop Seg = 2 TQ; So, setting Phase Seg 1 = 7 TQ would place the sample at 10 TQ after the transition. This would leave 6 TQ for Phase Seg 2.

Since Phase Seg 2 is 6, by the rules, SJW could be the maximum of 4 Tq. However, normally a large SJW is only necessary when the clock generation of the different nodes is inaccurate or unstable, such as using ceramic resonators. So an SJW of 1 is typically enough.

17.10 Oscillator Tolerance

The bit timing requirements allow ceramic resonators to be used in applications with transmission rates of up to 125 kbit/sec, as a rule of thumb. For the full bus speed range of the CAN protocol, a quartz oscillator is required. A maximum node-to-node oscillator variation of 1.7% is allowed.

17.11 Bit Timing Configuration Registers

The configuration registers (BRGCON1, BRGCON2, BRGCON3) control the bit timing for the CAN bus interface. These registers can only be modified when the PIC18CXX8 is in Configuration mode.

17.11.1 BRGCON1

The BRP bits control the baud rate prescaler. The SJW < 1:0 > bits select the synchronization jump width in terms of number of Tq's.

17.11.2 BRGCON2

The PRSEG bits set the length, in To's, of the propagation seament. The SEG1PH bits set the length, in TQ's. of phase segment 1. The SAM bit controls how many times the RXCAN pin is sampled. Setting this bit to a '1' causes the bus to be sampled three times; twice at TQ/2 before the sample point, and once at the normal sample point (which is at the end of phase segment 1). The value of the bus is determined to be the value read during at least two of the samples. If the SAM bit is set to a '0', then the RXCAN pin is sampled only once at the sample point. The SEG2PHTS bit controls how the length of phase segment 2 is determined. If this bit is set to a '1', then the length of phase segment 2 is determined by the SEG2PH bits of BRGCON3. If the SEG2PHTS bit is set to a '0', then the length of phase segment 2 is the greater of phase segment 1 and the information processing time (which is fixed at 2 TQ for the PIC18CXX8).

17.11.3 BRGCON3

The PHSEG2<2:0> bits set the length, in TQ's, of phase segment 2, if the SEG2PHTS bit is set to a '1'. If the SEG2PHTS bit is set to a '0', then the PHSEG2<2:0> bits have no effect.

18.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 12 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TAD:

- 2Tosc
- 4Tosc
- 8Tosc
- 16Tosc
- 32Tosc
- 64Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 18-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

18.3 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin defined as a digital input may cause the input buffer to consume current out of the device's specification limits.

TABLE 18-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	ource (TAD)	Maximum Device Frequency				
Operation	ADCS2:ADCS0	PIC18CXX8	PIC18LCXX8 ⁽⁶⁾			
2Tosc	000	1.25 MHz	666 kHz			
4Tosc	100	2.50 MHz	1.33 MHz			
8Tosc	001	5.00 MHz	2.67 MHz			
16Tosc	101	10.0 MHz	5.33 MHz			
32Tosc	010	20.0 MHz	10.67 MHz			
64Tosc	110	40.0 MHz	21.33 MHz			
RC	x11	—	—			

Note 1: The RC source has a typical TAD time of 4 ms.

2: The RC source has a typical TAD time of 6 ms.

- **3:** These values violate the minimum required TAD time.
- 4: For faster conversion times, the selection of another clock source is recommended.
- 5: For device frequencies above 1 MHz, the device must be in SLEEP for the entire conversion or the A/D accuracy may be out of specification.

6: This column is for the LC devices only.

19.9 <u>Analog Input Connection</u> <u>Considerations</u>

A simplified circuit for an analog input is shown in Figure 19-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6 V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 19-4: ANALOG INPUT MODEL

TABLE 19-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
VRCON	VREN	VROE	VRR	VRSS	VR3	VR2	VR1	VR0	0000 0000	0000 0000
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTIE	RBIE	TMR0IF	INTIF	RBIF	0000 000x	0000 000u
PIR2	—	CMIF	—	_	BCLIF	LVDIF	TMR3IF	CCP2IF	-0 0000	-0 0000
PIE2	—	CMIE	—	_	BCLIE	LVDIE	TMR3IE	CCP2IE	-0 0000	-0 0000
IPR2	—	CMIP	—	_	BCLIP	LVDIP	TMR3IP	CCP2IP	-1 1111	-1 1111
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	x000 0000	u000 0000
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx xxxx	uuuu uuuu
TRISF	PORTF D	Data Direc	tion Regist	ter					1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as "0"

REGISTER 22-5:	CONFIGU	RATION RE		4 LOW (CC	NFIG4L:	BYTE AD	ADDRESS 0x30000			
	U-0	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1		
	—	—	—	—	—	_	Reserved	STVREN		
	bit 7							bit 0		
bit 7-2	Unimplem	ented: Read	as '0'							
bit 1	Reserved:	Reserved: Maintain this bit set								
bit 0	STVREN: Stack Full/Underflow RESET Enable bit 1 = Stack Full/Underflow will cause RESET 0 = Stack Full/Underflow will not cause RESET									
	Legend:									

- n = Value when device	e is unprogrammed	u = Unchanged from programmed state
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
Logona.		

DAW	Decimal A	djust WRE	G Register	DE	CF	Decreme	nt f		
Syntax:	[<i>label</i>] DA	W		Syr	ntax:	[<i>label</i>] DECF f[,d[,a]]			
Operands:	None			Ор	erands:	$0 \le f \le 255$			
Operation:	If [WREG< then	If [WREG<3:0> >9] or [DC = 1] then (WREG<3:0>) + 6 \rightarrow W<3:0>;				d ∈ [0,1] a ∈ [0,1]	d ∈ [0,1] a ∈ [0,1]		
	(WREG<3				eration:	$(f) - 1 \rightarrow 0$	dest		
	else		.0	Sta	Status Affected:		V,Z		
	(WREG<3	$(0>) \rightarrow W<3$:0>;	End	oding:	0000	01da ff	ff ffff	
	If [WREG< (WREG<7 else (WREG<7	If [WREG<7:4>>9] or [C = 1] then (WREG<7:4>) + 6 \rightarrow WREG<7:4>; else (WREG<7:4>) \rightarrow WREG<7:4>;			scription:	Decrement register 'f'. If 'd' is 0, the result is stored in WREG. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected overriding			
Status Affected:	С		i			the BSR v	alue. If 'a' i	s 1, the Bank	
Encoding:	0000	0000 000	00 0111			will be sel	will be selected as per the BSR		
Description:	DAW adjus WREG res	DAW adjusts the eight bit value in WREG resulting from the earlier addition of two variables (each in packed BCD format) and produces a correct packed BCD result			rds:	value. 1			
	addition of				cles:	1			
	packed BC				Cycle Activity:				
Wordo			result.		Q1	Q2	Q3	Q4	
Cyclos:	1				Decode	Read	Process	Write to	
Cycles.						register i	Dala	destination	
Q Cycle Activity Q1	Q2	Q3	Q4	Exa	ample:	DECF	CNT		
Decode	Read	Process	Write		Before Instru	uction			
	register WREG	Data	WREG		CNT	= 0x01			
Example1:	DAW 				∠ After Instruc	= 0			
Before Insti WREG	uction = 0xA5				CNT	= 0x00			
С	= 0				Z	= 1			
DC	= 0								
After Instru- WREG C DC Example 2:	ction = 0x05 = 1 = 0								
Before Instru- WREG C DC After Instru- WREG C	ruction = 0xCE = 0 = 0 ction = 0x34 = 1								

GOT	ю	Unconditional Branch							
Synt	ax:	[label]	GOTO	k				Synta	
Operands:		$0 \le k \le 10$	48575					Oper	
Ope	ration:	$k \rightarrow PC < 2$	20:1>						
State	us Affected:	None						Oper	
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)) 1110) 1111	1111 k ₁₉ kkk	k ₇ kl kkk	kk :k	kkkk ₀ kkkk ₈		Statu Enco	
Deso	cription:	GOTO allov branch an byte mem value 'k' is GOTO is al instruction	GOTO allows an unconditional branch anywhere within entire 2M byte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction.						
Wor	ds:	2							
Cycl	es:	2							
QC	ycle Activity:			Word					
	Q1	Q2	Q3		Q4		-	Cycle	
	Decode	Read literal 'k'<7:0>,	No operation		Read literal 'k'<19:8>, Write to PC	QC	Q Cy		
	No operation	No operation	No operation		оре	No eration			
Example: GOTO THERE After Instruction PC = Address (THERE)								<u>Exan</u> I	

INC	=	Incremer	nt f							
Synt	ax:	[label]	[<i>label</i>] INCF f[,d[,a]]							
Ope	rands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Ope	ration:	(f) + 1 \rightarrow	dest							
Statu	us Affected:	C,DC,N,0	DV,Z							
Enco	oding:	0010	10da	ffff	ffff					
Desc	cription:	The content increment placed in result is p (default). Bank will the BSR v will be set value.	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, the Bank will be selected as per the BSR							
Word	ds:	1								
Cycl	es:	1	1							
QC	cle Activity:									
	Q1	Q2	Q	3	Q4					
	Decode	Read register 'f'	Proce Data	ess V a des	Vrite to stination					
<u>Exar</u>	<u>mple</u> :	INCF	CNT							
	Before Instru CNT Z C DC After Instruc	uction = 0xFF = 0 = ? = ? tion								

ter Instruction									
CNT	=	0x00							
Z	=	1							
С	=	1							
DC	=	1							

IORWF	=	Inc	lusive		EG v	vith	f	
Syntax	:	[la	ibel]	IORWF	f[,	d [,a	a]]	
Operands:			$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operat	ion:	(W	REG)	OR. (f) -	\rightarrow de	st		
Status	Affected:	N,2	<u>Z</u>					
Encodi	ng:	(0001	00da	fff	f	ffff	
Descrip	5001.	, the r d' is 1, egister cess B ing the nk will R valu	esult is p the resu r 'f' (defa ank will BSR va be selec e.	lt is p lt is p ult). I be se lue. I cted a	d in ' lace lf 'a' lecto f 'a' s pe	WREG. ed back is 0, the ed, over- is 1, the er the		
Words:		1						
Cycles	:	1						
Q Cycl	e Activity:							
	Q1	Q2		Q	Q3		Q4	
	Decode	R regi	ead ster 'f'	Proce Data	Process Data		Write to destination	
<u>Examp</u>	le:	IOI	RWF R	ESULT,	W			
Be	efore Instru RESULT WREG N Z ter Instruct RESULT WREG N	iction = = = = ion = = =	0x13 0x91 ? ? 0x13 0x93 1					
	Z	=	0					

26.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Graphs and Tables are not available at this time.

© 2000 Microchip Technology Inc.

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

		INCHES		MILLIMETERS*			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		64			64	
Pitch	р		.020			0.50	
Pins per Side	n1		16			16	
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039			1.00	
Foot Angle	¢	0	3.5	7	0	3.5	7
Overall Width	E	.463	.472	.482	11.75	12.00	12.25
Overall Length	D	.463	.472	.482	11.75	12.00	12.25
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10
Lead Thickness	С	.005	.007	.009	0.13	0.18	0.23
Lead Width	В	.007	.009	.011	0.17	0.22	0.27
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-085

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.

001024

Trademarks: The Microchip name, logo, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, KEELOQ, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. Total Endurance, ICSP, In-Circuit Serial Programming, FilterLab, MXDEV, microID, *FlexROM*, *fuzzyLAB*, MPASM, MPLINK, MPLIB, PICDEM, ICEPIC and Migratable Memory are trademarks and SQTP is a service mark of Microchip in the U.S.A.

All other trademarks mentioned herein are the property of their respective companies.