

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c658t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.3 PUSH AND POP INSTRUCTIONS

Since the Top-of-Stack (TOS) is readable and writable, the ability to push values onto the stack and pull values off the stack without disturbing normal program execution is a desirable option. To push the current PC value onto the stack, a PUSH instruction can be executed. This will increment the stack pointer and load the current PC value onto the stack. TOSU, TOSH and TOSL can then be modified to place a return address on the stack.

The POP instruction discards the current TOS by decrementing the stack pointer. The previous value pushed onto the stack then becomes the TOS value.

4.2.4 STACK FULL/UNDERFLOW RESETS

These RESETs are enabled by programming the STVREN configuration bit. When the STVREN bit is disabled, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device RESET. When the STVREN bit is enabled, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device RESET. The STKFUL or STKUNF bits are only cleared by the user software or a POR.

4.3 Fast Register Stack

A "fast return" option is available for interrupts and calls. A fast register stack is provided for the STATUS, WREG and BSR registers and is only one layer in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the fast register stack are then loaded back into the working registers if the fast return instruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably for low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten.

If high priority interrupts are not disabled during low priority interrupts, users must save the key registers in software during a low priority interrupt.

If no interrupts are used, the fast register stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a fast call instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1	
RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

Filename	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS ⁽³⁾		
CCPR1H	Capture/Com	Capture/Compare/PWM Register 1 High Byte										
CCPR1L	Capture/Com		xxxx xxxx	uuuu uuuu								
CCP1CON	—	—	DC1B1	DC1B0	CCPM3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000		
CCPR2H	Capture/Com	Capture/Compare/PWM Register 2 High Byte										
CCPR2L	Capture/Com	pare/PWM Reg	gister 2 Low Byt	te					xxxx xxxx	uuuu uuuu		
CCP2CON	—	—	DC2B1	DC2B0	CCPM3	CCP2M2	CCP2M1	CCP2M0	0000 0000	0000 0000		
VRCON	VREN	VROEN	VRR	VRSS	VR3	VR2	VR1	VR0	0000 0000	0000 0000		
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000		
TMR3H	Timer3 Regis	ter High Byte							xxxx xxxx	uuuu uuuu		
TMR3L	Timer3 Regis	ter Low Byte							xxxx xxxx	uuuu uuuu		
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	uuuu uuuu		
PSPCON	IBF	OBF	IBOV	PSPMODE	_	—	_		0000	0000		
SPBRG	USART Baud	Rate Generate	or						0000 0000	0000 0000		
RCREG	USART Rece	ive Register							0000 0000	0000 0000		
TXREG	USART Trans	smit Register							0000 0000	0000 0000		
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010		
RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x		
IPR3	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP	1111 1111	1111 1111		
PIR3	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF	TXB0IF	RXB1IF	RXB0IF	0000 0000	0000 0000		
PIE3	IRXIE	WAKIE	ERRIE	TXB2IE	TXB1IE	TXB0IE	RXB1IE	RXB0IE	0000 0000	0000 0000		
IPR2	—	CMIP	_	—	BCLIP	LVDIP	TMR3IP	CCP2IP	-1 1111	-1 1111		
PIR2	—	CMIF	—	—	BCLIF	LVDIF	TMR3IF	CCP2IF	-0 0000	-0 0000		
PIE2	—	CMIE	—	—	BCLIE	LVDIE	TMR3IE	CCP2IE	-0 0000	-0 0000		
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	1111 1111		
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000		
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000		
TRISJ ⁽⁴⁾	Data Direction	n Control Regis	ster for PORTJ						1111 1111	1111 1111		
TRISH ⁽⁴⁾	Data Direction	n Control Regis	ster for PORTH						1111 1111	1111 1111		
TRISG	Data Direction Control Register for PORTG									1 1111		
TRISF	Data Direction	n Control Regis	ster for PORTF						1111 1111	1111 1111		
TRISE	Data Direction	n Control Regis	ster for PORTE						1111 1111	1111 1111		
TRISD	Data Direction	n Control Regis	ster for PORTD						1111 1111	1111 1111		
TRISC	Data Direction	n Control Regis	ster for PORTC						1111 1111	1111 1111		
TRISB	Data Direction	n Control Regis	ster for PORTB						1111 1111	1111 1111		
TRISA	—	Bit 6 ⁽¹⁾	Data Direction	Control Regist	er for PORTA				11 1111	11 1111		

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.

4: These registers are reserved on PIC18C658.

5.2.2.1 Long Write Operation

The long write is what actually programs words of data into the internal memory. When a TBLWT to the MSB of the write block occurs, instruction execution is halted. During this time, programming voltage and the data stored in internal latches is applied to program memory.

For a long write to occur:

- 1. MCLR/VPP pin must be at the programming voltage
- 2. LWRT bit must be set
- 3. TBLWT to the address of the MSB of the write block

If the LWRT bit is clear, a short write will occur and program memory will not be changed. If the TBLWT is not to the MSB of the write block, then the programming phase is not initiated.

Setting the LWRT bit enables long writes when the MCLR pin is taken to VPP voltage. Once the LWRT bit is set, it can be cleared only by performing a POR or MCLR Reset.

To ensure that the memory location has been well programmed, a minimum programming time is required. The long write can be terminated after the programming time has expired by a RESET or an interrupt. Having only one interrupt source enabled to terminate the long write, ensures that no unintended interrupts will prematurely terminate the long write.

5.2.2.2 Sequence of Events

The sequence of events for programming an internal program memory location should be:

- 1. Enable the interrupt that terminates the long write. Disable all other interrupts.
- 2. Clear the source interrupt flag.
- 3. If Interrupt Service Routine execution is desired when the device wakes, enable global interrupts.
- 4. Set LWRT bit in the RCON register.
- 5. Raise MCLR/VPP pin to the programming voltage, VPP.
- 6. Clear the WDT (if enabled).
- 7. Set the interrupt source to interrupt at the required time.
- 8. Execute the Table Write for the lower (even) byte. This will be a short write.
- 9. Execute the Table Write for the upper (odd) byte. This will be a long write. The controller will HALT while programming. The interrupt wakes the controller.
- 10. If GIE was set, service the interrupt request.
- 11. Go to 7 if more bytes to be programmed.
- 12. Lower MCLR/VPP pin to VDD.
- 13. Verify the memory location (table read).
- 14. Reset the device.

5.2.3 LONG WRITE INTERRUPTS

The long write must be terminated by a RESET or any interrupt.

The interrupt source must have its interrupt enable bit set. When the source sets its interrupt flag, programming will terminate. This will occur regardless of the settings of interrupt priority bits, the GIE/GIEH bit or the PIE/GIEL bit.

Depending on the states of interrupt priority bits, the GIE/GIEH bit or the PIE/GIEL bit, program execution can either be vectored to the high or low priority Interrupt Service Routine (ISR), or continue execution from where programming commenced.

In either case, the interrupt flag will not be cleared when programming is terminated and will need to be cleared by the software.

5.3 <u>Unexpected Termination of Write</u> <u>Operations</u>

If a write is terminated by an unplanned event such as loss of power, an unexpected RESET, or an interrupt that was not disabled, the memory location just programmed should be verified and reprogrammed if needed.

GIE/ GIEH	PIE/ GIEL	Priority	Interrupt Enable	Interrupt Flag	Action
Х	Х	Х	0 (default)	Х	Long write continues even if interrupt flag becomes set during SLEEP.
X	Х	х	1	0	Long write continues, will wake when the interrupt flag is set.
0 (default)	0 (default)	х	1	1	Terminates long write, executes next instruction. Interrupt flag not cleared.
0 (default)	1	1 high priority (default)	1	1	Terminates long write, executes next instruction. Interrupt flag not cleared.
1	0 (default)	0 Iow	1	1	Terminates long write, executes next instruction. Interrupt flag not cleared.
0 (default)	1	0 Iow	1	1	Terminates long write, branches to low priority interrupt vector. Interrupt flag can be cleared by ISR.
1	0 (default)	1 high priority (default)	1	1	Terminates long write, branches to high priority interrupt vector. Interrupt flag can be cleared by ISR.

TABLE 5-2: SLEEP MODE, INTERRUPT ENABLE BITS AND INTERRUPT RESULTS

REGISTER 7-5: PIR REGISTERS (CONT'D)

PIR3	bit 7	IRXIF: Invalid Message Received Interrupt Flag bit 1 = An invalid message has occurred on the CAN bus 0 = An invalid message has not occurred on the CAN bus								
	bit 6	 WAKIF: Bus Activity Wake-up Interrupt Flag bit 1 = Activity on the CAN bus has occurred 0 = Activity on the CAN bus has not occurred 								
	bit 5	ERRIF: CAN Bus Error Interrupt Flag bit 1 = An error has occurred in the CAN module (multiple sources) 0 = An error has not occurred in the CAN module								
	bit 4	TXB2IF: Transmit Buffer 2 Interrupt Flag bit 1 = Transmit Buffer 2 has completed transmission of a message, and may be reloade 0 = Transmit Buffer 2 has not completed transmission of a message								
	bit 3	TXB1IF: Transmit Buffer 1 Interrupt Flag bit 1 = Transmit Buffer 1 has completed transmission of a message, and may be reloaded 0 = Transmit Buffer 1 has not completed transmission of a message								
	bit 2	TXB0IF: Transmit Buffer 0 Interrupt Flag bit 1 = Transmit Buffer 0 has completed transmission of a message, and may be reloaded 0 = Transmit Buffer 0 has not completed transmission of a message								
	bit 1	RXB1IF: Receive Buffer 1 Interrupt Flag bit 1 = Receive Buffer 1 has received a new message 0 = Receive Buffer 1 has not received a new message								
	bit 0	RXB0IF: Receive Buffer 0 Interrupt Flag bit 1 = Receive Buffer 0 has received a new message 0 = Receive Buffer 0 has not received a new message								
		Legend:								
		R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$								

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented I	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Name	Bit#	Buffer Type	Function
RG0/CANTX0	bit0	ST	Input/output port pin or CAN bus transmit output.
RG1/CANTX1	bit1	ST	Input/output port pin or CAN bus complimentary transmit output or CAN bus bit time clock.
RG2/CANRX	bit2	ST	Input/output port pin or CAN bus receive input.
RG3	bit3	ST	Input/output port pin.
RG4	bit4	ST	Input/output port pin.

TABLE 8-13: PORTG FUNCTIONS

Legend: ST = Schmitt Trigger input

Note: Refer to "CAN Module", Section 17.0 for usage of CAN pin functions.

TABLE 8-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
TRISG	PORTG D	ata Direct	ion Control		1 1111	1 1111				
PORTG	Read POF	RTG pin / V		x xxxx	u uuuu					
LATG	Read POF	RTG Data	Latch/Write		x xxxx	u uuuu				
CIOCON	TX1SRC	TX1EN	ENDRHI	CANCAP		—		—	0000	0000

Legend: x = unknown, u = unchanged

NOTES:

14.3.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE registers) clear to avoid false interrupts and should clear the flag bit CCP1IF, following any such change in operating mode.

14.3.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 14-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

14.3.5 CAN MESSAGE RECEIVED

The CAN capture event occurs when a message is received in either receive buffer. The CAN module provides a rising edge to the CCP module to cause a capture event. This feature is provided to time-stamp the received CAN messages.

EXAMPLE 14-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON, F	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load WREG with the
		;	new prescaler mode
		;	value and CCP ON
MOVWF	CCP1CON	;	Load CCP1CON with
		;	this value

FIGURE 14-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

bit 3 - 0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

- 0000 = SPI Master mode, clock = Fosc/4
- 0001 = SPI Master mode, clock = Fosc/16
- 0010 = SPI Master mode, clock = Fosc/64
- 0011 = SPI Master mode, clock = TMR2 output/2
- $0100 = SPI Slave mode, clock = SCK pin. \overline{SS} pin control enabled.$
- $0101 = SPI Slave mode, clock = SCK pin. \overline{SS} pin control disabled. \overline{SS} can be used as I/O pin.$
- $0110 = I^2C$ Slave mode, 7-bit address
- $0111 = I^2C$ Slave mode, 10-bit address
- 1000 = I²C Master mode, clock = Fosc / (4 * (SSPADD+1))
- 1001 = Reserved
- 1010 = Reserved
- $1011 = I^2C$ firmware controlled Master mode (Slave idle)
- 1100 = Reserved
- 1101 = Reserved
- $1110 = I^2C$ Slave mode, 7-bit address with START and STOP bit interrupts enabled
- 1111 = I^2C Slave mode, 10-bit address with START and STOP bit interrupts enabled

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

15.4.15 MULTI-MASTER MODE

In Multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET, or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit (SSPSTAT register) is set, or the bus is idle with both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In Multi-master operation, the SDA line must be monitored for arbitration, to see if the signal level is the expected output level. This check is performed in hardware, with the result placed in the BCLIF bit.

Arbitration can be lost in the following states:

- Address transfer
- Data transfer
- A START condition
- A Repeated START condition
- An Acknowledge condition

15.4.16 MULTI -MASTER COMMUNICATION, BUS COLLISION, AND BUS ARBITRATION

Multi-master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag (BCLIF) and reset the I^2C port to its IDLE state. (Figure 15-20).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF bit is cleared, the SDA and SCL lines are de-asserted, and the SSPBUF can be written to. When the user services the bus collision interrupt service routine, and if the I²C bus is free, the user can resume communication by asserting a START condition.

If a START, Repeated START, STOP, or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are de-asserted, and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision interrupt service routine, and if the l^2C bus is free, the user can resume communication by asserting a START condition.

The master will continue to monitor the SDA and SCL pins. If a STOP condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-master mode, the interrupt generation on the detection of START and STOP conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is idle and the S and P bits are cleared.

FIGURE 15-20: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

REGISTER 17-9:	TXBnDm -	- TRANSM	IT BUFFE	R n DATA I	FIELD BYT	E m REG	ISTER	
	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	TXBnDm7	TXBnDm6	TXBnDm5	TXBnDm4	TXBnDm3	TXBnDm2	TXBnDm1	TXBnDm0
	bit 7							bit 0
bit 1-0	TXBnDm7: Each Transr TXB0D0 to	TXBnDm0: nit Buffer ha TXB0D7.	Transmit Bu s an array o	ıffer n Data F f registers. F	Field Byte m for example,	bits (where Transmit b	e 0≤n<3 and uffer 0 has 7	0 <m<8) ′ registers:</m<8)
	Legend:							
	R = Readab	ole bit	W = Writab	ole bit	U = Unim	plemented b	oit, read as '	0'
	- n = Value	at POR	'1' = Bit is s	set	'0' = Bit is	cleared	x = Bit is u	nknown

REGISTER 17-10: TXBnDLC – TRANSMIT BUFFER n DATA LENGTH CODE REGISTER

	U-0	R/W-x	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x			
	_	TXRTR	_	—	DLC3	DLC2	DLC1	DLC0			
	bit 7							bit 0			
bit 7	Unimplem	ented: Read	as '0'								
bit 6	TXRTR: Transmission Frame Remote Transmission Request bit 1 = Transmitted message will have TXRTR bit set 0 = Transmitted message will have TXRTR bit cleared.										
bit 5-4	Unimplem	ented: Read	as '0'								
bit 3-0	Unimplemented: Read as '0' DLC3:DLC0: Data Length Code bits 1111 = Reserved 1100 = Reserved 1001 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Data Length = 8 bytes 0111 = Data Length = 7 bytes 0110 = Data Length = 6 bytes 0101 = Data Length = 5 bytes 0101 = Data Length = 4 bytes 0111 = Data Length = 3 bytes 0111 = Data Length = 2 bytes 0011 = Data Length = 1 bytes 0000 = Data Length = 0 bytes										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

17.2.3 CAN RECEIVE BUFFER REGISTERS

This section shows the Receive Buffer registers with its associated control registers.

	R/C-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R-0	R/W-0			
	RXFUL	RXM1	RXM0	_	RXRTRRO	RXB0DBEN	JTOFF	FILHIT0			
	bit 7							bit 0			
oit 7	RXFUL: R	eceive Full	Status bit	wined me							
	1 = Receiv 0 = Receiv	e buller cor	poen to rec	eived me	v message						
	Note:	This bit is s	set by the C	AN modu	le and should	be cleared by	software aft	er the buffer			
		is read.									
it C E			o Duffor Mo	da hita							
11 0-5	11 = Recei	ive all mess	ages (inclu	ide bits	e with errors)						
	10 = Rece i	ive only vali	id message	es with ext	tended identif	ier					
	01 = Recei	ive only vali	id message	es with sta	indard identifi	er					
oit 4		ented: Rea	niessages ad as '0'								
bit 3	RXRTRRO	: Receive F	Remote Tra	insfer Rec	uest Read O	nlv bit					
	1 = Remote	e transfer re	equest								
	0 = No rem	note transfe	r request								
it 2	RXB0DBE	N: Receive	Buffer 0 D	ouble Buf	fer Enable bit						
		e Buπer 0 c ceive Buffer	verflow will	to Rece	Receive Buπe ive Buffer 1	P 1					
oit 1	JTOFF: Ju	JTOFF: Jump Table Offset bit (read only copy of RX0DBEN)									
	1 = Allows	1 = Allows Jump Table offset between 6 and 7									
	0 = Allows Jump Table offset between 1 and 0										
	Note:	This bit allo	ows same f	ilter iump	table for both	RXB0CON ar	nd RXB1CO	N.			
oit 0	FILHITO: F	ilter Hit bit									
	This bit indicates which acceptance filter enabled the message reception into receive buffer 0										
	1 = Accept 0 = Accept	1 = Acceptance Filter 1 (RXF1) 0 = Acceptance Filter 0 (RXF0)									
			- (
	Legend:										
	R = Reada	ble bit	W = Writ	table bit	U = Ui	nimplemented	bit, read as	'0'			
	- n = Value	at POR	'1' = Bit i	is set	'0' = B	it is cleared	x = Bit is ι	unknown			

REGISTER 17-12: RXB0CON - RECEIVE BUFFER 0 CONTROL REGISTER

18.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The analog-to-digital (A/D) converter module has twelve inputs for the PIC18C658 devices and sixteen for the PIC18C858 devices. This module has the ADCON0, ADCON1, and ADCON2 registers.

The A/D allows conversion of an analog input signal to a corresponding 10-bit digital number.

The A/D module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 18-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 18-2, configures the functions of the port pins. The ADCON2, shown in Register 16-3, configures the A/D clock source and justification.

REGISTER 18-1: ADCON0 REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-2

2 CHS3:CHS0: Analog Channel Select bits

0000 = channel 00, (AN0)
0001 = channel 01, (AN1)
0010 = channel 02, (AN2)
0011 = channel 03, (AN3)
0100 = channel 04, (AN4)
0101 = channel 05, (AN5)
0110 = channel 06, (AN6)
0111 = channel 07, (AN7)
1000 = channel 08, (AN8)
1001 = channel 09, (AN9)
1010 = channel 10, (AN10)
1011 = channel 11, (AN11)
1100 = channel 12, (AN12) ⁽¹⁾
1101 = channel 13, (AN13) ⁽¹⁾
1110 = channel 14, (AN14) ⁽¹⁾
1111 = channel 15, (AN15) ⁽¹⁾

Note 1: These channels are not available on the PIC18C658 devices.

bit 1

- 1 = A/D conversion in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion is complete.
- 0 = A/D conversion not in progress

GO/DONE: A/D Conversion Status bit

bit 0 ADON: A/D On bit

When ADON = 1

- 1 = A/D converter module is operating
- 0 = A/D converter module is shut off and consumes no operating current

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

19.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR registers) is the comparator interrupt flag. The CMIF bit must be RESET by clearing '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE registers) and the PEIE bit (INTCON register) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change in the CMCON register								
	(C1OUT or C2OUT) should occur when a								
	read operation is being executed (start of								
	the Q2 cycle), then the CMIF (PIR regis-								
	ters) interrupt flag may not get set.								

The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition, and allow flag bit CMIF to be cleared.

19.7 <u>Comparator Operation During SLEEP</u>

When a comparator is active and the device is placed in SLEEP mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from SLEEP mode, when enabled. While the comparator is powered up, higher SLEEP currents than shown in the power-down current specification will occur. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in SLEEP mode, turn off the comparators, CM<2:0> = 111, before entering SLEEP. If the device wakes up from SLEEP, the contents of the CMCON register are not affected.

19.8 Effects of a RESET

A device RESET forces the CMCON register to its RESET state, causing the comparator module to be in the comparator RESET mode, CM<2:0> = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at RESET time. The comparators will be powered down during the RESET interval.

NOTES:

FIGURE 25-3: LOW VOLTAGE DETECT CHARACTERISTICS

TABLE 25-1: LOW VOLTAGE DETECT CHARACTERISTICS

			Standard Operating Conditions (unless otherwise stated)					
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
				-40°C ≤	Ta ≤ +125	℃ for ext	ended	
Param No.	Symbol	Char	acteristic/	Min	Max	Units	Conditions	
D420	Vlvd	LVD Voltage	LVDL<3:0> = 0100	25	∫2.66	V		
			LVDL<3:0> = 01,01	12.7	2.86	V		
			LVDL<3:0> = 0110	2.8	2.98	V		
			LVDL<3:0x=\0441	3.0	3.2	V		
			LVPL<3:0x = 1000	3.3	3.52	V		
		/	12VDL 3:0> = 1001	3.5	3.72	V		
			LVDL<3:0> = 1010	3.6	3.84	V		
		$\left(\bigcirc \right) $	LVDL<3:0> = 1011	3.8	4.04	V		
			LVDL<3:0> = 1100	4.0	4.26	V		
			LVDL<3:0> = 1101	4.2	4.46	V		
			LVDL<3:0> = 1110	4.5	4.78	V		

25.3.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 25-4: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
1A	Fosc	External CLKIN	DC	40	MHz	XT osc
		Frequency ⁽¹⁾	DC	40	MHz	HS osc
			4	10	MHz	HS + PL⊾osc
			DC	40	kHz _ح	LP-osd
			DC	40	MHz	EC
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RCosc
			0.1	4	MHz	XT osc
			4	25	MHz	HS osc
			4	\ \t0	MHz	HS + PLL osc
			5	/ /200 ~	kHz	LP osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	<u>, 250</u>)	\checkmark –	ns	XT and RC osc
			\\ 4 0\\>	—	ns	HS osc
			100	—	ns	HS + PLL osc
			5 5	—	μs	LP osc
			5	_	ns	EC
		Oscillator Period ⁽¹⁾	250	—	ns	RC osc
	\langle	∇	250	10,000	ns	XT osc
			100	10,000	ns	HS osc
	$\langle \mathbf{V} \rangle$	\square	40	100	ns	HS + PLL osc
	$\backslash \langle$		5	—	μs	LP osc
2	TCY	Instruction Cycle Time ⁽¹⁾	100	_	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1)	30	—	ns	XT osc
	TosH	High or Low Time	2.5	—	ns	LP osc
			10		μs	HS osc
4	TosR,	External Clock in (OSC1)	—	20	ns	XT osc
	TosF	Rise or Fall Time	—	50	ns	LP osc
			—	7.5	ns	HS osc

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 25-22: A/D CONVERSION TIMING

TABLE 25-22: A/D CONVERSION REQUIREMENTS

Param No.	Sym- bol	Characteristic	Min	Мах	Units	Conditions
130	TAD	A/D clock period PIC18CXX8	1.6	20 ⁽⁵⁾	μs	Tosc based, VREF \geq 3.0V
		PIC18 LC XX8	3.0	20(5)	pts	Tosc based, VREF full range
		PIC18 C XX8	2.0	6.0	Jμs	A/D RC mode
		PIC18LCXX8	3.0	9.0	μs	A/D RC mode
131	TCNV	Conversion time (not including acquisition time) ⁽¹⁾	(A)	5 12	TAD	
132	TACQ	Acquisition time ⁽³⁾	15 10	—	μs μs	$\begin{array}{l} -40^{\circ}C \leq Temp \leq 125^{\circ}C \\ 0^{\circ}C \leq Temp \leq 125^{\circ}C \end{array}$
135	Tswc	Switching time from convert - sample	—	(Note 4)		
136	Тамр	Amplifier settling (Ime (Note 2)	1	_	μs	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).

Note 1: ADRES register may be read on the following TCY cycle.

- 2: See Section 18.0 for minimum conditions, when input voltage has changed more than 1 LSb.
- **3:** The time for the holding capacitor to acquire the "New" input voltage, when the voltage changes full scale after the conversion (AVDD to AVss, or AVss to AVDD). The source impedance (*Rs*) on the input channels is 50 Ω.
- **4:** On the next Q4 cycle of the device clock.
- 5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

80-Lead Plastic Thin Quad Flatpack (PT) 12x12x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

	Units	INCHES			MILLIMETERS*		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		80			80	
Pitch	р		.020			0.50	
Pins per Side	n1		20			20	
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039			1.00	
Foot Angle	φ	0	3.5	7	0	3.5	7
Overall Width	E	.541	.551	.561	13.75	14.00	14.25
Overall Length	D	.541	.551	.561	13.75	14.00	14.25
Molded Package Width	E1	.463	.472	.482	11.75	12.00	12.25
Molded Package Length	D1	.463	.472	.482	11.75	12.00	12.25
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.007	.009	.011	0.17	0.22	0.27
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026

Drawing No. C04-092

NOTES: