
Microchip Technology - PIC18C858-I/PT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity CANbus, I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 68

Program Memory Size 32KB (16K x 16)

Program Memory Type OTP

EEPROM Size -

RAM Size 1.5K x 8

Voltage - Supply (Vcc/Vdd) 4.2V ~ 5.5V

Data Converters A/D 16x10b

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 80-TQFP

Supplier Device Package 80-TQFP (12x12)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18c858-i-pt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18c858-i-pt-4425811
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18CXX8
PORTE is a bi-directional I/O port

RE0/RD
RE0
RD

2 11 4 15
I/O
I

ST
TTL

Digital I/O
Read control for parallel slave port
(See WR and CS pins)

RE1/WR
RE1
WR

1 10 3 14
I/O
I

ST
TTL

Digital I/O
Write control for parallel slave port
(See CS and RD pins)

RE2/CS
RE2
CS

64 9 78 9
I/O
I

ST
TTL

Digital I/O
Chip select control for parallel slave
port (See RD and WR)

RE3 63 8 77 8 I/O ST Digital I/O

RE4 62 7 76 7 I/O ST Digital I/O

RE5 61 6 75 6 I/O ST Digital I/O

RE6 60 5 74 5 I/O ST Digital I/O

RE7/CCP2
RE7
CCP2

59 4 73 4
I/O
I/O

ST
ST

Digital I/O
Capture2 input, Compare2 output,
PWM2 output

TABLE 1-2: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name

Pin Number
Pin

Type
Buffer
Type

PIC18C658 PIC18C858

TQFP PLCC TQFP PLCC Description

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS levels Analog = Analog input
I = Input O = Output
P = Power OD = Open Drain (no P diode to VDD)
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 17

PIC18CXX8
4.7.1 TWO WORD INSTRUCTIONS

The PIC18CXX8 devices have 4 two word instructions:
MOVFF, CALL, GOTO and LFSR. The second word of
these instructions has the 4 MSB’s set to 1’s and is a
special kind of NOP instruction. The lower 12 bits of the
second word contain data to be used by the instruction.
If the first word of the instruction is executed, the data
in the second word is accessed. If the second word of
the instruction is executed by itself (first word was
skipped), it will execute as a NOP. This action is neces-
sary when the two word instruction is preceded by a
conditional instruction that changes the PC. A program
example that demonstrates this concept is shown in
Example 4-3. Refer to Section 19.0 for further details of
the instruction set.

4.8 Lookup Tables

Lookup tables are implemented two ways. These are:

• Computed GOTO
• Table Reads

4.8.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset
to the program counter (ADDWF PCL).

A lookup table can be formed with an ADDWF PCL
instruction and a group of RETLW 0xnn instructions.
WREG is loaded with an offset into the table before exe-
cuting a call to that table. The first instruction of the called
routine is the ADDWF PCL instruction. The next instruc-
tion executed will be one of the RETLW 0xnn instruc-
tions that returns the value 0xnn to the calling function.

The offset value (value in WREG) specifies the number
of bytes that the program counter should advance.

In this method, only one data byte may be stored in
each instruction location and room on the return
address stack is required.

4.8.2 TABLE READS/TABLE WRITES

A better method of storing data in program memory
allows 2 bytes of data to be stored in each instruction
location.

Lookup table data may be stored as 2 bytes per pro-
gram word by using table reads and writes. The table
pointer (TBLPTR) specifies the byte address and the
table latch (TABLAT) contains the data that is read
from, or written to, program memory. Data is trans-
ferred to/from program memory one byte at a time.

A description of the Table Read/Table Write operation
is shown in Section 5.0.

EXAMPLE 4-3: TWO WORD INSTRUCTIONS

Warning: The LSb of PCL is fixed to a value of ‘0’.
Hence, computed GOTO to an odd
address is not possible.

CASE 1:
Object Code Source Code

0110 0110 0000 0000 TSTFSZ REG1 ; is RAM location 0?
1100 0001 0010 0011 MOVFF REG1, REG2 ; No, execute 2-word instruction
1111 0100 0101 0110 ; 2nd operand holds address of REG2
0010 0100 0000 0000 ADDWF REG3 ; continue code

CASE 2:
Object Code Source Code

0110 0110 0000 0000 TSTFSZ REG1 ; is RAM location 0?
1100 0001 0010 0011 MOVFF REG1, REG2 ; Yes
1111 0100 0101 0110 ; 2nd operand becomes NOP
0010 0100 0000 0000 ADDWF REG3 ; continue code
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 47

PIC18CXX8
4.9 Data Memory Organization

The data memory is implemented as static RAM. Each
register in the data memory has a 12-bit address,
allowing up to 4096 bytes of data memory. Figure 4-4
shows the data memory organization for the
PIC18CXX8 devices.

The data memory map is divided into as many as 16
banks that contain 256 bytes each. The lower 4 bits of
the Bank Select Register (BSR<3:0>) select which
bank will be accessed. The upper 4 bits for the BSR are
not implemented.

The data memory contains Special Function Registers
(SFR) and General Purpose Registers (GPR). The
SFR’s are used for control and status of the controller
and peripheral functions, while GPR’s are used for data
storage and scratch pad operations in the user’s appli-
cation. The SFR’s start at the last location of Bank 15
(0xFFF) and grow downwards. GPR’s start at the first
location of Bank 0 and grow upwards. Any read of an
unimplemented location will read as ’0’s.

The entire data memory may be accessed directly or
indirectly. Direct addressing may require the use of the
BSR register. Indirect addressing requires the use of
the File Select Register (FSR). Each FSR holds a
12-bit address value that can be used to access any
location in the Data Memory map without banking.

The instruction set and architecture allow operations
across all banks. This may be accomplished by indirect
addressing or by the use of the MOVFF instruction. The
MOVFF instruction is a two word/two cycle instruction
that moves a value from one register to another.

To ensure that commonly used registers (SFR’s and
select GPR’s) can be accessed in a single cycle,
regardless of the current BSR values, an Access Bank
is implemented. A segment of Bank 0 and a segment of
Bank 15 comprise the Access RAM. Section 4.10 pro-
vides a detailed description of the Access RAM.

4.9.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly or indi-
rectly. Indirect addressing operates through the File
Select Registers (FSR). The operation of indirect
addressing is shown in Section 4.12.

Enhanced MCU devices may have banked memory in
the GPR area. GPR’s are not initialized by a Power-on
Reset and are unchanged on all other RESETS.

Data RAM is available for use as GPR registers by all
instructions. Bank 15 (0xF00 to 0xFFF) contains
SFR’s. All other banks of data memory contain GPR
registers starting with bank 0.

4.9.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFR’s) are registers
used by the CPU and Peripheral Modules for control-
ling the desired operation of the device. These regis-
ters are implemented as static RAM. A list of these
registers is given in Table 4-2.

The SFR’s can be classified into two sets: those asso-
ciated with the “core” function and those related to the
peripheral functions. Those registers related to the
“core” are described in this section, while those related
to the operation of the peripheral features are
described in the section of that peripheral feature.

The SFR’s are typically distributed among the peripher-
als whose functions they control.

The unused SFR locations will be unimplemented and
read as '0's. See Table 4-2 for addresses for the SFR’s.
DS30475A-page 48 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8
TABLE 4-2: SPECIAL FUNCTION REGISTER MAP

Address Name Address Name Address Name Address Name

FFFh TOSU FDFh INDF2(2) FBFh CCPR1H F9Fh IPR1

FFEh TOSH FDEh POSTINC2(2) FBEh CCPR1L F9Eh PIR1

FFDh TOSL FDDh POSTDEC2(2) FBDh CCP1CON F9Dh PIE1

FFCh STKPTR FDCh PREINC2(2) FBCh CCPR2H F9Ch —

FFBh PCLATU FDBh PLUSW2(2) FBBh CCPR2L F9Bh —

FFAh PCLATH FDAh FSR2H FBAh CCP2CON F9Ah TRISJ(5)

FF9h PCL FD9h FSR2L FB9h — F99h TRISH(5)

FF8h TBLPTRU FD8h STATUS FB8h — F98h TRISG

FF7h TBLPTRH FD7h TMR0H FB7h — F97h TRISF

FF6h TBLPTRL FD6h TMR0L FB6h — F96h TRISE

FF5h TABLAT FD5h T0CON FB5h CVRCON F95h TRISD

FF4h PRODH FD4h — FB4h CMCON F94h TRISC

FF3h PRODL FD3h OSCCON FB3h TMR3H F93h TRISB

FF2h INTCON FD2h LVDCON FB2h TMR3L F92h TRISA

FF1h INTCON2 FD1h WDTCON FB1h T3CON F91h LATJ(5)

FF0h INTCON3 FD0h RCON FB0h PSPCON F90h LATH(5)

FEFh INDF0(2) FCFh TMR1H FAFh SPBRG F8Fh LATG

FEEh POSTINC0(2) FCEh TMR1L FAEh RCREG F8Eh LATF

FEDh POSTDEC0(2) FCDh T1CON FADh TXREG F8Dh LATE

FECh PREINC0(2) FCCh TMR2 FACh TXSTA F8Ch LATD

FEBh PLUSW0(2) FCBh PR2 FABh RCSTA F8Bh LATC

FEAh FSR0H FCAh T2CON FAAh — F8Ah LATB

FE9h FSR0L FC9h SSPBUF FA9h — F89h LATA

FE8h WREG FC8h SSPADD FA8h — F88h PORTJ(5)

FE7h INDF1(2) FC7h SSPSTAT FA7h — F87h PORTH(5)

FE6h POSTINC1(2) FC6h SSPCON1 FA6h — F86h PORTG

FE5h POSTDEC1(2) FC5h SSPCON2 FA5h IPR3 F85h PORTF

FE4h PREINC1(2) FC4h ADRESH FA4h PIR3 F84h PORTE

FE3h PLUSW1(2) FC3h ADRESL FA3h PIE3 F83h PORTD

FE2h FSR1H FC2h ADCON0 FA2h IPR2 F82h PORTC

FE1h FSR1L FC1h ADCON1 FA1h PIR2 F81h PORTB

FE0h BSR FC0h ADCON2 FA0h PIE2 F80h PORTA

Note 1: Unimplemented registers are read as ’0’.
2: This is not a physical register.
3: Contents of register is dependent on WIN2:WIN0 bits in CANCON register.

4: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given
for each instance of the CANSTAT register due to the Microchip Header file requirement.

5: Available on PIC18C858 only.
DS30475A-page 50 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8
4.12 Indirect Addressing, INDF and FSR
Registers

Indirect addressing is a mode of addressing data mem-
ory, where the data memory address in the instruction
is not fixed. A SFR register is used as a pointer to the
data memory location that is to be read or written.
Since this pointer is in RAM, the contents can be mod-
ified by the program. This can be useful for data tables
in the data memory and for software stacks. Figure 4-6
shows the operation of indirect addressing. This shows
the moving of the value to the data memory address
specified by the value of the FSR register.

Indirect addressing is possible by using one of the
INDF registers. Any instruction using the INDF register
actually accesses the register indicated by the File
Select Register, FSR. Reading the INDF register itself
indirectly (FSR = ’0’) will read 00h. Writing to the INDF
register indirectly results in a no-operation. The FSR
register contains a 12-bit address, which is shown in
Figure 4-6.

The INDFn (0 ≤ n ≤ 2) register is not a physical register.
Addressing INDFn actually addresses the register
whose address is contained in the FSRn register
(FSRn is a pointer). This is indirect addressing.

Example 4-4 shows a simple use of indirect addressing
to clear the RAM in Bank 1 (locations 100h-1FFh) in a
minimum number of instructions.

EXAMPLE 4-4: HOW TO CLEAR RAM
(BANK 1) USING INDIRECT
ADDRESSING

There are three indirect addressing registers. To
address the entire data memory space (4096 bytes),
these registers are 12-bit wide. To store the 12-bits of
addressing information, two 8-bit registers are
required. These indirect addressing registers are:

1. FSR0: composed of FSR0H:FSR0L
2. FSR1: composed of FSR1H:FSR1L

3. FSR2: composed of FSR2H:FSR2L

In addition, there are registers INDF0, INDF1 and
INDF2, which are not physically implemented. Reading
or writing to these registers activates indirect address-
ing, with the value in the corresponding FSR register
being the address of the data.

If an instruction writes a value to INDF0, the value will
be written to the address indicated by FSR0H:FSR0L.
A read from INDF1 reads the data from the address
indicated by FSR1H:FSR1L. INDFn can be used in
code anywhere an operand can be used.

If INDF0, INDF1 or INDF2 are read indirectly via an
FSR, all ’0’s are read (zero bit is set). Similarly, if
INDF0, INDF1 or INDF2 are written to indirectly, the
operation will be equivalent to a NOP instruction and the
STATUS bits are not affected.

4.12.1 INDIRECT ADDRESSING OPERATION

Each FSR register has an INDF register associated with
it, plus four additional register addresses. Performing an
operation on one of these five registers determines how
the FSR will be modified during indirect addressing.

When data access is done to one of the five INDFn
locations, the address selected will configure the FSRn
register to:

• Do nothing to FSRn after an indirect access (no
change) - INDFn

• Auto-decrement FSRn after an indirect access
(post-decrement) - POSTDECn

• Auto-increment FSRn after an indirect access
(post-increment) - POSTINCn

• Auto-increment FSRn before an indirect access
(pre-increment) - PREINCn

• Use the value in the WREG register as an offset
to FSRn. Do not modify the value of the WREG or
the FSRn register after an indirect access (no
change) - PLUSWn

When using the auto-increment or auto-decrement
features, the effect on the FSR is not reflected in the
STATUS register. For example, if the indirect address
causes the FSR to equal '0', the Z bit will not be set.

Incrementing or decrementing an FSR affects all 12
bits. That is, when FSRnL overflows from an increment,
FSRnH will be incremented automatically.

Adding these features allows the FSRn to be used as a
software stack pointer in addition to its uses for table
operations in data memory.

Each FSR has an address associated with it that per-
forms an indexed indirect access. When a data access
to this INDFn location (PLUSWn) occurs, the FSRn is
configured to add the 2’s complement value in the
WREG register and the value in FSR to form the
address before an indirect access. The FSR value is
not changed.

If an FSR register contains a value that indicates one of
the INDFn, an indirect read will read 00h (zero bit is
set), while an indirect write will be equivalent to a NOP
(STATUS bits are not affected).

If an indirect addressing operation is done where the
target address is an FSRnH or FSRnL register, the
write operation will dominate over the pre- or
post-increment/decrement functions.

LFSR FSR0, 0x100 ;
NEXT CLRF POSTINC0 ; Clear INDF

; register
; & inc pointer

BTFSS FSR0H, 1 ; All done
; w/ Bank1?

GOTO NEXT ; NO, clear next
CONTINUE ;

: ; YES, continue
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 61

PIC18CXX8
8.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide bi-directional port. The corre-
sponding Data Direction register is TRISB. Setting a
TRISB bit (=1) will make the corresponding PORTB pin
an input (i.e., put the corresponding output driver in a
hi-impedance mode). Clearing a TRISB bit (=0) will
make the corresponding PORTB pin an output (i.e.,
put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATB register
read and write the latched output value for PORTB.

EXAMPLE 8-2: INITIALIZING PORTB

FIGURE 8-4: RB7:RB4 PINS BLOCK
DIAGRAM

Each of the PORTB pins has a weak internal pull-up. A
single control bit can turn on all the pull-ups. This is per-
formed by clearing bit RBPU (INTCON2 register). The
weak pull-up is automatically turned off when the port
pin is configured as an output. The pull-ups are dis-
abled on a Power-on Reset.

Four of PORTB’s pins, RB7:RB4, have an
interrupt-on-change feature. Only pins configured as
inputs can cause this interrupt to occur (i.e., any
RB7:RB4 pin configured as an output is excluded from
the interrupt-on-change comparison). The input pins
(of RB7:RB4) are compared with the old value latched
on the last read of PORTB. The “mismatch” outputs of
RB7:RB4 are OR’d together to generate the RB Port
Change Interrupt with flag bit RBIF (INTCON register).

This interrupt can wake the device from SLEEP. The
user, in the Interrupt Service Routine, can clear the
interrupt in the following manner:

a) Any read or write of PORTB (except with the
MOVFF instruction). This will end the mismatch
condition.

b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF.
Reading PORTB will end the mismatch condition and
allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for
wake-up on key depression operation and operations
where PORTB is only used for the interrupt on change
feature. Polling of PORTB is not recommended while
using the interrupt-on-change feature.

FIGURE 8-5: RB3:RB0 PINS BLOCK
DIAGRAM

CLRF PORTB ; Initialize PORTB by

 ; clearing output

 ; data latches

CLRF LATB ; Alternate method

 ; to clear output

 ; data latches

MOVLW 0xCF ; Value used to

 ; initialize data

 ; direction

MOVWF TRISB ; Set RB3:RB0 as inputs

 ; RB5:RB4 as outputs

 ; RB7:RB6 as inputs

Data Latch

From other

RBPU(2)

P

VDD

I/O pin(1)
QD

CK

QD

CK

Q D

EN

Q D

EN

Data Bus

WR LATB

WR TRISB

Set RBIF

TRIS Latch

RD TRISB

RD PORTB

RB7:RB4 pins

Weak
Pull-up

RD PORTB

Latch

TTL
Input
Buffer ST

Buffer

RBx/INTx

Q3

Q1

RD LATB

or
WR PORTB

Note 1: I/O pins have diode protection to VDD and VSS.
2: To enable weak pull-ups, set the appropriate TRIS

bit(s) and clear the RBPU bit (INTCON2 register).

Data Latch

RBPU(2)

P

VDD

QD

CK

QD

CK

Q D

EN

Data Bus

WR Port

WR TRIS

RD TRIS

RD Port

Weak
Pull-up

RD Port

RBx/INTx

I/O Pin(1)

TTL
Input
Buffer

Schmitt Trigger
Buffer

TRIS Latch

Note 1: I/O pins have diode protection to VDD and VSS.
2: To enable weak pull-ups, set the appropriate TRIS

bit(s) and clear the RBPU bit (INTCON2 register).
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 91

PIC18CXX8
13.2 Timer1 Oscillator

The Timer1 oscillator may be used as the clock source
for Timer3. The Timer1 oscillator is enabled by setting
the T1OSCEN bit (T1CON Register). The oscillator is
a low power oscillator rated up to 200 kHz. Refer to
“Timer1 Module”, Section 11.0 for Timer1 oscillator
details.

13.3 Timer3 Interrupt

The TMR3 Register pair (TMR3H:TMR3L) increments
from 0000h to FFFFh and rolls over to 0000h. The
TMR3 Interrupt, if enabled, is generated on overflow
which is latched in interrupt flag bit TMR3IF (PIR Reg-
isters). This interrupt can be enabled/disabled by set-
ting/clearing TMR3 interrupt enable bit TMR3IE (PIE
Registers).

13.4 Resetting Timer3 Using a CCP Trigger
Output

If the CCP module is configured in Compare mode to
generate a “special event trigger" (CCP1M3:CCP1M0
= 1011), this signal will reset Timer3.

Timer3 must be configured for either timer or Synchro-
nized Counter mode to take advantage of this feature. If
Timer3 is running in Asynchronous Counter mode, this
RESET operation may not work. In the event that a write
to Timer3 coincides with a special event trigger from
CCP1, the write will take precedence. In this mode of
operation, the CCPR1H:CCPR1L registers pair
becomes the period register for Timer3. Refer to
“Capture/Compare/PWM (CCP) Modules”, Section 14.0
for CCP details.

TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Note: The special event triggers from the CCP
module will not set interrupt flag bit
TMR3IF (PIR registers).

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on

POR,
BOR

Value on
all other
RESETS

INTCON GIE/
GIEH

PEIE/
GIEL

TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 0000 000u

PIR2 — CMIF — — BCLIF LVDIF TMR3IF CCP2IF -0-- 0000 -0-- 0000

PIE2 — CMIE — — BCLIE LVDIE TMR3IE CCP2IE -0-- 0000 -0-- 0000

IPR2 — CMIP — — BCLIP LVDIP TMR3IP CCP2IP -0-- 0000 -0-- 0000

TMR3L Holding register for the Least Significant Byte of the 16-bit TMR3 register xxxx xxxx uuuu uuuu

TMR3H Holding register for the Most Significant Byte of the 16-bit TMR3 register xxxx xxxx uuuu uuuu

T1CON RD16 — T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu

T3CON RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 125

PIC18CXX8
15.4.16.2 Bus Collision During a Repeated START
Condition

During a Repeated START condition, a bus collision
occurs if:

a) A low level is sampled on SDA when SCL goes
from low level to high level.

b) SCL goes low before SDA is asserted low, indi-
cating that another master is attempting to trans-
mit a data ’1’.

When the user de-asserts SDA and the pin is allowed
to float high, the BRG is loaded with SSPADD<6:0>
and counts down to 0. The SCL pin is then de-asserted,
and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e, another
master is attempting to transmit a data ’0’, see
Figure 15-24). If SDA is sampled high, the BRG is

reloaded and begins counting. If SDA goes from high to
low before the BRG times out, no bus collision occurs
because no two masters can assert SDA at exactly the
same time.

If SCL goes from high to low before the BRG times out
and SDA has not already been asserted, a bus collision
occurs. In this case, another master is attempting to
transmit a data ’1’ during the Repeated START condi-
tion (Figure 15-25).

If at the end of the BRG time-out both SCL and SDA are
still high, the SDA pin is driven low and the BRG is
reloaded and begins counting. At the end of the count,
regardless of the status of the SCL pin, the SCL pin is
driven low and the Repeated START condition is
complete.

FIGURE 15-24: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 15-25: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

SDA

SCL

RSEN

BCLIF

S

SSPIF

Sample SDA when SCL goes high.
If SDA = 0, set BCLIF and release SDA and SCL.

Cleared in software.

'0'

'0'

SDA

SCL

BCLIF

RSEN

S

SSPIF

Interrupt cleared
in software.

SCL goes low before SDA.
Set BCLIF, release SDA and SCL.

TBRG TBRG

’0’
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 165

PIC18CXX8
15.4.16.3 Bus Collision During a STOP Condition

Bus collision occurs during a STOP condition if:

a) After the SDA pin has been de-asserted and
allowed to float high, SDA is sampled low after
the BRG has timed out.

b) After the SCL pin is de-asserted, SCL is sam-
pled low before SDA goes high.

The STOP condition begins with SDA asserted low.
When SDA is sampled low, the SCL pin is allowed to
float. When the pin is sampled high (clock arbitration),
the baud rate generator is loaded with SSPADD<6:0>
and counts down to 0. After the BRG times out, SDA is
sampled. If SDA is sampled low, a bus collision has
occurred. This is due to another master attempting to
drive a data ’0’ (Figure 15-26). If the SCL pin is sampled
low before SDA is allowed to float high, a bus collision
occurs. This is another case of another master attempt-
ing to drive a data ’0’ (Figure 15-27).

FIGURE 15-26: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 15-27: BUS COLLISION DURING A STOP CONDITION (CASE 2)

SDA

SCL

BCLIF

PEN

P

SSPIF

TBRG TBRG TBRG

SDA asserted low

SDA sampled
low after TBRG,
set BCLIF

’0’

’0’

SDA

SCL

BCLIF

PEN

P

SSPIF

TBRG TBRG TBRG

Assert SDA SCL goes low before SDA goes high,
set BCLIF

’0’

’0’
DS30475A-page 166 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8
REGISTER 17-13: RXB1CON – RECEIVE BUFFER 1 CONTROL REGISTER

REGISTER 17-14: RXBnSIDH – RECEIVE BUFFER n STANDARD IDENTIFIER HIGH BYTE
REGISTER

R/C-0 R/W-0 R/W-0 U-0 R-0 R-0 R-0 R-0
RXFUL RXM1 RXM0 — RXRTRRO FILHIT2 FILHIT1 FILHIT0

bit 7 bit 0

bit 7 RXFUL: Receive Full Status bit
1 = Receive buffer contains a received message
0 = Receive buffer is open to receive a new message

Note: This bit is set by the CAN module and should be cleared by software after the buffer
is read.

bit 6-5 RXM1:RXM0: Receive Buffer Mode bits
11 = Receive all messages (including those with errors)
10 = Receive only valid messages with extended identifier
01 = Receive only valid messages with standard identifier
00 = Receive all valid messages

bit 4 Unimplemented: Read as ’0’

bit 3 RXRTRRO: Receive Remote Transfer Request bit (read only)
1 = Remote transfer request
0 = No remote transfer request

bit 2-0 FILHIT2:FILHIT0: Filter Hit bits
These bits indicate which acceptance filter enabled the last message reception into Receive
Buffer 1.
111 = Reserved
110 = Reserved
101 = Acceptance Filter 5 (RXF5)
100 = Acceptance Filter 4 (RXF4)
011 = Acceptance Filter 3 (RXF3)
010 = Acceptance Filter 2 (RXF2)
001 = Acceptance Filter 1 (RXF1) only possible when RXB0DBEN bit is set
000 = Acceptance Filter 0 (RXF0) only possible when RXB0DBEN bit is set

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3

bit 7 bit 0

bit 7-0 SID10:SID3: Standard Identifier bits, if EXID = 0 (RXBnSIDL Register).
Extended Identifier bits EID28:EID21, if EXID = 1.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 195

PIC18CXX8
17.2.6 CAN MODULE I/O CONTROL REGISTER

This subsection describes the CAN Module I/O Control
register.

REGISTER 17-32: CIOCON – CAN I/O CONTROL REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0

TX1SRC TX1EN ENDRHI CANCAP — — — —

bit 7 bit 0

bit 7 TX1SRC: CAN TX1 Pin Data Source
1 = CAN TX1 pin will output the CAN clock
0 = CAN TX1 pin will output TXD

bit 6 TX1EN: CAN TX1 Pin Enable
1 = CAN TX1 pin will output TXD or CAN clock
0 = CAN TX1 pin will have digital I/O function

bit 5 ENDRHI: Enable Drive High
1 = CAN TX0, CAN TX1 pins will drive VDD when recessive
0 = CAN TX0, CAN TX1 pins will tri-state when recessive

bit 4 CANCAP: CAN Message Receive Capture Enable
1 = Enable CAN capture
0 = Disable CAN capture

bit 3-0 Unimplemented: Read as ’0’

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 205

PIC18CXX8
17.2.7 CAN INTERRUPT REGISTERS

REGISTER 17-33: PIR3 – PERIPHERAL INTERRUPT FLAG REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IRXIF WAKIF ERRIF TXB2IF TXB1IF TXB0IF RXB1IF RXB0IF

bit 7 bit 0

bit 7 IRXIF: CAN Invalid Received Message Interrupt Flag bit
1 = An invalid message has occurred on the CAN bus
0 = No invalid message on CAN bus

bit 6 WAKIF: CAN Bus Activity Wake-up Interrupt Flag bit
1 = Activity on CAN bus has occurred
0 = No activity on CAN bus

bit 5 ERRIF: CAN Bus Error Interrupt Flag bit
1 = An error has occurred in the CAN module (multiple sources)
0 = No CAN module errors

bit 4 TXB2IF: CAN Transmit Buffer 2 Interrupt Flag bit
1 = Transmit Buffer 2 has completed transmission of a message, and may be re-loaded
0 = Transmit Buffer 2 has not completed transmission of a message

bit 3 TXB1IF: CAN Transmit Buffer 1 Interrupt Flag bit
1 = Transmit Buffer 1 has completed transmission of a message, and may be re-loaded
0 = Transmit Buffer 1 has not completed transmission of a message

bit 2 TXB0IF: CAN Transmit Buffer 0 Interrupt Flag bit
1 = Transmit Buffer 0 has completed transmission of a message, and may be re-loaded
0 = Transmit Buffer 0 has not completed transmission of a message

bit 1 RXB1IF: CAN Receive Buffer 1 Interrupt Flag bit
1 = Receive Buffer 1 has received a new message
0 = Receive Buffer 1 has not received a new message

bit 0 RXB0IF: CAN Receive Buffer 0 Interrupt Flag bit
1 = Receive Buffer 0 has received a new message
0 = Receive Buffer 0 has not received a new message

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
DS30475A-page 206 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8
17.6 Message Acceptance Filters and
Masks

The Message Acceptance Filters and Masks are used
to determine if a message in the message assembly
buffer should be loaded into either of the receive buff-
ers. Once a valid message has been received into the
MAB, the identifier fields of the message are compared
to the filter values. If there is a match, that message will
be loaded into the appropriate receive buffer. The filter
masks are used to determine which bits in the identifier
are examined with the filters. A truth table is shown
below in Table 17-2 that indicates how each bit in the
identifier is compared to the masks and filters to deter-
mine if a the message should be loaded into a receive
buffer. The mask essentially determines which bits to
apply the acceptance filters to. If any mask bit is set to
a zero, then that bit will automatically be accepted,
regardless of the filter bit.

TABLE 17-2: FILTER/MASK TRUTH TABLE

As shown in the Receive Buffers Block Diagram
(Figure 17-3), acceptance filters RXF0 and RXF1, and
filter mask RXM0 are associated with RXB0. Filters
RXF2, RXF3, RXF4, and RXF5 and mask RXM1 are
associated with RXB1. When a filter matches and a
message is loaded into the receive buffer, the filter
number that enabled the message reception is loaded
into the FILHIT bit(s). For RXB1, the RXB1CON regis-
ter contains the FILHIT<2:0> bits. They are coded as
follows:

• 101 = Acceptance Filter 5 (RXF5)
• 100 = Acceptance Filter 4 (RXF4)
• 011 = Acceptance Filter 3 (RXF3)

• 010 = Acceptance Filter 2 (RXF2)
• 001 = Acceptance Filter 1 (RXF1)
• 000 = Acceptance Filter 0 (RXF0)

The coding of the RXB0DBEN bit enables these three
bits to be used similarly to the FILHIT bits and to distin-
guish a hit on filter RXF0 and RXF1, in either RXB0, or
after a roll over into RXB1.

• 111 = Acceptance Filter 1 (RXF1)
• 110 = Acceptance Filter 0 (RXF0)

• 001 = Acceptance Filter 1 (RXF1)
• 000 = Acceptance Filter 0

If the RXB0DBEN bit is clear, there are six codes cor-
responding to the six filters. If the RXB0DBEN bit is set,
there are six codes corresponding to the six filters, plus
two additional codes corresponding to RXF0 and RXF1
filters that roll over into RXB1.

If more than one acceptance filter matches, the FILHIT
bits will encode the binary value of the lowest num-
bered filter that matched. In other words, if filter RXF2
and filter RXF4 match, FILHIT will be loaded with the
value for RXF2. This essentially prioritizes the accep-
tance filters with a lower number filter having higher pri-
ority. Messages are compared to filters in ascending
order of filter number.

The mask and filter registers can only be modified
when the PIC18CXX8 is in Configuration mode. The
mask and filter registers cannot be read outside of Con-
figuration mode. When outside of Configuration mode,
all mask and filter registers will be read as ‘0’.

Mask
bit n

Filter bit n
Message
Identifier
bit n001

Accept or
Reject
bit n

0 X X Accept

1 0 0 Accept

1 0 1 Reject

1 1 0 Reject

1 1 1 Accept

Legend: X = don’t care

Note: 000 and 001 can only occur if the
RXB0DBEN bit is set in the RXB0CON
register, allowing RXB0 messages to roll
over into RXB1.
DS30475A-page 216 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8
REGISTER 22-5: CONFIGURATION REGISTER 4 LOW (CONFIG4L: BYTE ADDRESS 0x300006)
U-0 U-0 U-0 U-0 U-0 U-0 R/P-1 R/P-1

— — — — — — Reserved STVREN

bit 7 bit 0

bit 7-2 Unimplemented: Read as ’0’

bit 1 Reserved: Maintain this bit set

bit 0 STVREN: Stack Full/Underflow RESET Enable bit
1 = Stack Full/Underflow will cause RESET
0 = Stack Full/Underflow will not cause RESET

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

- n = Value when device is unprogrammed u = Unchanged from programmed state
DS30475A-page 254 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8

RCALL Relative Call

Syntax: [label] RCALL n

Operands: -1024 ≤ n ≤ 1023

Operation: (PC) + 2 → TOS,
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1101 1nnn nnnn nnnn

Description: Subroutine call with a jump up to
1K from the current location. First,
return address (PC+2) is pushed
onto the stack. Then, add the 2’s
complement number ’2n’ to the PC.
Since the PC will have incremented
to fetch the next instruction, the
new address will be PC+2+2n.
This instruction is a two-cycle
instruction.

Words: 1

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal
’n’

Push PC to
stack

Process
Data

Write to PC

No
operation

No
operation

No
operation

No
operation

Example: HERE RCALL Jump

Before Instruction
PC = Address(HERE)

After Instruction
PC = Address(Jump)
TOS = Address (HERE+2)

RESET Reset

Syntax: [label] RESET

Operands: None

Operation: Reset all registers and flags that
are affected by a MCLR Reset.

Status Affected: All

Encoding: 0000 0000 1111 1111

Description: This instruction provides a way to
execute a MCLR Reset in software.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Start

reset
No

operation
No

operation

Example: RESET

After Instruction
Registers = Reset Value
Flags* = Reset Value
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 291

PIC18CXX8

RLNCF Rotate Left f (no carry)

Syntax: [label] RLNCF f [,d [,a]]

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f<n>) → dest<n+1>,
(f<7>) → dest<0>

Status Affected: N,Z

Encoding: 0100 01da ffff ffff

Description: The contents of register ’f’ are
rotated one bit to the left. If ’d’ is 0
the result is placed in WREG. If ’d’
is 1, the result is stored back in reg-
ister 'f' (default). If ’a’ is 0, the
Access Bank will be selected, over-
riding the BSR value. If ’a’ is 1, the
Bank will be selected as per the
BSR value.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ’f’

Process
Data

Write to
destination

Example: RLNCF REG

Before Instruction
REG = 1010 1011
N = ?
Z = ?

After Instruction
REG = 0101 0111
N = 0
Z = 0

register f

RRCF Rotate Right f through Carry

Syntax: [label] RRCF f [,d [,a]]

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f<n>) → dest<n-1>,
(f<0>) → C,
(C) → dest<7>

Status Affected: C,N,Z

Encoding: 0011 00da ffff ffff

Description: The contents of register 'f' are
rotated one bit to the right through
the Carry Flag. If 'd' is 0, the result
is placed in WREG. If 'd' is 1, the
result is placed back in register 'f'
(default). If ’a’ is 0, the Access
Bank will be selected, overriding
the BSR value. If ’a’ is 1, the Bank
will be selected as per the BSR
value.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ’f’

Process
Data

Write to
destination

Example: RRCF REG, W

Before Instruction
REG = 1110 0110
C = 0
N = ?
Z = ?

After Instruction
REG = 1110 0110
WREG = 0111 0011
C = 0
N = 0
Z = 0

C register f
DS30475A-page 294 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8
25.3 AC (Timing) Characteristics

25.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created fol-
lowing one of the following formats:

1. TppS2ppS 3. TCC:ST (I2C specifications only)
2. TppS 4. Ts (I2C specifications only)

T
F Frequency T Time
Lowercase letters (pp) and their meanings:

pp
cc CCP1 osc OSC1
ck CLKO rd RD

cs CS rw RD or WR
di SDI sc SCK
do SDO ss SS

dt Data-in t0 T0CKI
io I/O port t1 T1CKI
mc MCLR wr WR

Uppercase letters and their meanings:
S

F Fall P Period

H High R Rise
I Invalid (Hi-impedance) V Valid
L Low Z Hi-impedance

I2C only
AA output access High High
BUF Bus free Low Low

TCC:ST (I2C specifications only)
CC

HD Hold SU Setup

ST
DAT DATA input hold STO STOP condition
STA START condition
DS30475A-page 320 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8
25.3.2 TIMING CONDITIONS

The temperature and voltages specified in Table 25-3
apply to all timing specifications, unless otherwise
noted. Figure 25-4 specifies the load conditions for the
timing specifications.

TABLE 25-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

FIGURE 25-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

AC CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for industrial

-40°C ≤ TA ≤ +125°C for extended
Operating voltage VDD range as described in DC spec Section 25.1.
LC parts operate for industrial temperatures only.

VDD/2

CL

RL

Pin

Pin

VSS

VSS

CL

RL = 464Ω

CL = 50 pF for all pins except OSC2/CLKO
and including D and E outputs as ports

Load condition 1 Load condition 2
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 321

PIC18CXX8
FIGURE 25-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING

FIGURE 25-8: BROWN-OUT RESET TIMING

TABLE 25-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param.
No.

Symbol Characteristic Min Typ Max Units Conditions

30 TmcL MCLR Pulse Width (low) 2 — — µs

31 TWDT Watchdog Timer Time-out Period
(No Prescaler)

7 18 33 ms

32 TOST Oscillation Start-up Timer Period 1024TOSC — 1024TOSC — TOSC = OSC1 period

33 TPWRT Power up Timer Period 28 72 132 ms

34 TIOZ I/O Hi-impedance from MCLR Low
or Watchdog Timer Reset

— 2 — µs

35 TBOR Brown-out Reset Pulse Width 200 — — µs VDD ≤ BVDD (See
D005)

36 TIVRST Time for Internal Reference
Voltage to become stable

— 20 50 µs

VDD

MCLR

Internal
POR

PWRT
Time-out

OSC
Time-out

Internal
Reset

Watchdog
Timer
Reset

33

32

30

31
34

I/O Pins

34

Note: Refer to Figure 25-4 for load conditions.

VDD
BVDD

35
VBGAP = 1.2V

VIRVST

Enable Internal Reference Voltage

Internal Reference Voltage stable 36
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 325

PIC18CXX8

t
l.

.

FIGURE 25-19: MASTER SSP I2C BUS DATA TIMING

TABLE 25-18: MASTER SSP I2C BUS DATA REQUIREMENTS
Param.
No.

Symbol Characteristic Min Max Units Conditions

100 THIGH Clock high time 100 kHz mode 2(TOSC)(BRG + 1) — ms
400 kHz mode 2(TOSC)(BRG + 1) — ms

1 MHz mode(1) 2(TOSC)(BRG + 1) — ms

101 TLOW Clock low time 100 kHz mode 2(TOSC)(BRG + 1) — ms
400 kHz mode 2(TOSC)(BRG + 1) — ms

1 MHz mode(1) 2(TOSC)(BRG + 1) — ms

102 TR SDA and SCL
rise time

100 kHz mode — 1000 ns Cb is specified to be from
10 to 400 pF 400 kHz mode 20 + 0.1Cb 300 ns

1 MHz mode(1) — 300 ns

103 TF SDA and SCL
fall time

100 kHz mode — 300 ns Cb is specified to be from
10 to 400 pF 400 kHz mode 20 + 0.1Cb 300 ns

1 MHz mode(1) — 100 ns

90 TSU:STA START condition
setup time

100 kHz mode 2(TOSC)(BRG + 1) — ms Only relevant for
Repeated START
condition

400 kHz mode 2(TOSC)(BRG + 1) — ms

1 MHz mode(1) 2(TOSC)(BRG + 1) — ms

91 THD:STA START condition
hold time

100 kHz mode 2(TOSC)(BRG + 1) — ms After this period the first
clock pulse is generated400 kHz mode 2(TOSC)(BRG + 1) — ms

1 MHz mode(1) 2(TOSC)(BRG + 1) — ms

106 THD:DAT Data input
hold time

100 kHz mode 0 — ns
400 kHz mode 0 0.9 ms

1 MHz mode(1) TBD — ns

107 TSU:DAT Data input
setup time

100 kHz mode 250 — ns (Note 2)
400 kHz mode 100 — ns

1 MHz mode(1) TBD — ns

92 TSU:STO STOP condition
setup time

100 kHz mode 2(TOSC)(BRG + 1) — ms
400 kHz mode 2(TOSC)(BRG + 1) — ms

1 MHz mode(1) 2(TOSC)(BRG + 1) — ms

109 TAA Output valid from
clock

100 kHz mode — 3500 ns
400 kHz mode — 1000 ns

1 MHz mode(1) — — ns

110 TBUF Bus free time 100 kHz mode 4.7 — ms Time the bus must be free
before a new transmis-
sion can start

400 kHz mode 1.3 — ms

1 MHz mode(1) TBD — ms
D102 Cb Bus capacitive loading — 400 pF

Note 1: Maximum pin capacitance = 10 pF for all I2C pins.
2: A fast mode I2C bus device can be used in a standard mode I2C bus system, but parameter #107 ≥ 250 ns mus

then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signa
If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.
Before the SCL line is released, parameter #102+ parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode)

Note: Refer to Figure 25-4 for load conditions.

90
91 92

100

101

103

106
107

109 109 110

102

SCL

SDA
In

SDA
Out
DS30475A-page 336 Advanced Information  2000 Microchip Technology Inc.

