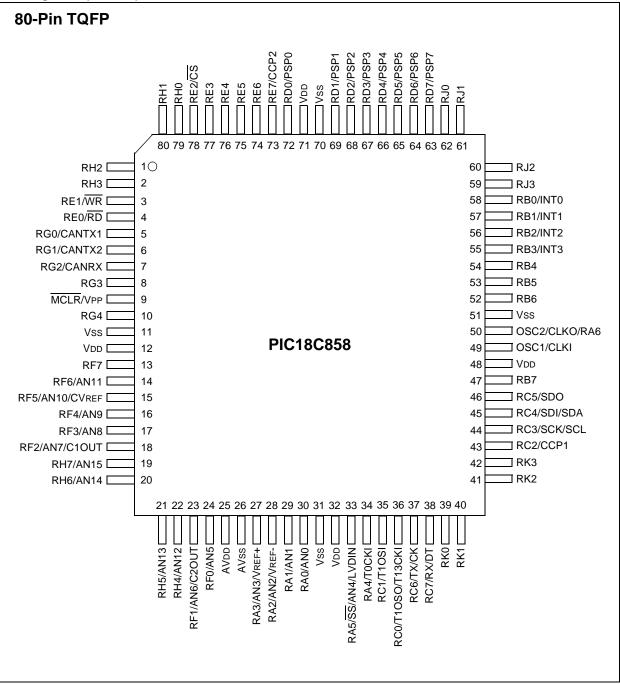


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c858t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Cont.'d)

TABLE 3-3										
Register		cable ices	Power-on Reset, Brown-out Reset	MCLR Reset WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt					
TOSU	OSU 658 858		0 0000	0 0000	0 uuuu ⁽³⁾					
TOSH	658	858	0000 0000	0000 0000	uuuu uuuu ⁽³⁾					
TOSL	658	858	0000 0000	0000 0000	uuuu uuuu ⁽³⁾					
STKPTR	658	858	00-0 0000	00-0 0000	uu-u uuuu ⁽³⁾					
PCLATU	658	858	0 0000	0 0000	u uuuu					
PCLATH	658	858	0000 0000	0000 0000	uuuu uuuu					
PCL	658	858	0000 0000	0000 0000	PC + 2 ⁽²⁾					
TBLPTRU	658	858	00 0000	00 0000	uu uuuu					
TBLPTRH	658	858	0000 0000	0000 0000	uuuu uuuu					
TBLPTRL	658	858	0000 0000	0000 0000	uuuu uuuu					
TABLAT	658	858	0000 0000	0000 0000	uuuu uuuu					
PRODH	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu					
PRODL	658	858	XXXX XXXX	uuuu uuuu	uuuu uuuu					
INTCON	658	858	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾					
INTCON2	658	858	1111 1111	1111 1111	uuuu uuuu ⁽¹⁾					
INTCON3	658	858	1100 0000	1100 0000	uuuu uuuu ⁽¹⁾					
INDF0	658	858	N/A	N/A	N/A					
POSTINC0	658	858	N/A	N/A	N/A					
POSTDEC0	658	858	N/A	N/A	N/A					
PREINC0	658	858	N/A	N/A	N/A					
PLUSW0	658	858	N/A	N/A	N/A					
FSR0H	658	858	0000	0000	uuuu					
FSR0L	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu					
WREG	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu					
INDF1	658	858	N/A	N/A	N/A					
POSTINC1	658	858	N/A	N/A	N/A					
POSTDEC1	658	858	N/A	N/A	N/A					
PREINC1	658	858	N/A	N/A	N/A					
PLUSW1	658	858	N/A	N/A	N/A					

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition **Note 1:** One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.

6: The long write enable is only reset on a POR or $\overline{\text{MCLR}}$.

7: Available on PIC18C858 only.

Filename	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS ⁽³⁾
LATJ ⁽⁴⁾	Read PORTJ		xxxx xxxx	uuuu uuuu						
LATH ⁽⁴⁾	Read PORTH	xxxx xxxx	uuuu uuuu							
LATG	_	_		Read PORTG	B Data Latch,	Write PORTG	Data Latch		x xxxx	u uuuu
LATF	Read PORTF	Data Latch, W	/rite PORTF Da	ta Latch					xxxx xxxx	uuuu uuuu
LATE	Read PORTE	Data Latch, W	/rite PORTE Da	ta Latch					xxxx xxxx	uuuu uuuu
LATD	Read PORTD	Data Latch, W	/rite PORTD Da	ata Latch					xxxx xxxx	uuuu uuuu
LATC	Read PORTC	Data Latch, W	/rite PORTC Da	ata Latch					xxxx xxxx	uuuu uuuu
LATB	Read PORTB	Data Latch, W	/rite PORTB Da	ta Latch					xxxx xxxx	uuuu uuuu
LATA	_	Bit 6 ⁽¹⁾	Read PORTA	Data Latch, Wr	ite PORTA Da	ata Latch			xx xxxx	uu uuuu
PORTJ ⁽⁴⁾	Read PORTJ	pins, Write PC	RTJ Data Latch	ı					xxxx xxxx	uuuu uuuu
PORTH ⁽⁴⁾	Read PORTH	l pins, Write PO	ORTH Data Late	ch					xxxx xxxx	uuuu uuuu
PORTG	_	_		Read PORTO	6 pins, Write F	ORTG Data L	.atch		x xxxx	uuuu uuuu
PORTF	Read PORTF	pins, Write PC	ORTF Data Latc	h					0000 0000	0000 0000
PORTE	Read PORTE	pins, Write PC	ORTE Data Lato	:h					xxxx xxxx	uuuu uuuu
PORTD	Read PORTD	pins, Write PC	ORTD Data Late	ch					xxxx xxxx	uuuu uuuu
PORTC	Read PORTC	pins, Write PO	ORTC Data Late	ch					xxxx xxxx	uuuu uuuu
PORTB	Read PORTB	pins, Write PC	ORTB Data Lato	:h					xxxx xxxx	uuuu uuuu
PORTA	_	Bit 6 ⁽¹⁾	Read PORTA	pins, Write POI	RTA Data Late	ch			0x 0000	0u 0000
TRISK ⁽⁴⁾	Data Directior	n Control Regis	ster for PORTK						1111 1111	1111 1111
LATK ⁽⁴⁾	Read PORTK	Data Latch, W	/rite PORTK Da	ta Latch					xxxx xxxx	uuuu uuuu
PORTK ⁽⁴⁾	Read PORTK	pins, Write PC	ORTK Data Lato	:h					xxxx xxxx	uuuu uuuu
TXERRCNT	TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0	0000 0000	0000 0000
RXERRCNT	REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0	0000 0000	0000 0000
COMSTAT	RXB00VFL	RXB10VFL	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000 0000	0000 0000
CIOCON	TX1SRC	TX1EN	ENDRHI	CANCAP	—	—	—	—	1000	1000
BRGCON3	—	WAKFIL	—	—	—	SEG2PH2	SEG2PH1	SEG2PH0	-0000	-0000
BRGCON2	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	0000 0000	0000 0000
BRGCON1	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000 0000	0000 0000
CANCON	REQOP2	REQOP1	REQOP0	ABAT	WIN2	WIN1	WIN0	_	xxxx xxx-	uuuu uuu-
CANSTAT	OPMODE2	OPMODE1	OPMODE0	—	ICODE2	ICODE1	ICOED0	_	xxx- xxx-	uuu- uuu-

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.
4: These registers are reserved on PIC18C658.

		R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
IPR1		PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP			
		bit 7							bit 0			
		U-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1			
IPR2		_	CMIP	—		BCLIP	LVDIP	TMR3IP	CCP2IP			
		bit 7							bit 0			
		R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
IPR3		IVRP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP			
		bit 7							bit 0			
IPR1	bit 7	PSPIP: Pa 1 = High p	rallel Slave P	ort Read/Wr	ite Interrupt I	Priority bit						
		1 = 1 light p 0 = Low pi	•									
	bit 6	-	Converter Int	errupt Priori	ty bit							
		1 = High p										
		0 = Low pr	•									
	bit 5	1 = High p	RT Receive	Interrupt Pric	ority bit							
		0 = Low pr										
	bit 4		RT Transmit	Interrupt Price	ority bit							
		1 = High p	•									
	bit 3		ster Synchro	noue Sorial I	Dort Interrupt	Driority hit						
	DIL 3	1 = High p		nous Senai i								
		0 = Low pr										
	bit 2		CP1 Interrup	t Priority bit								
		1 = High p 0 = Low pi										
	bit 1	•	MR2 to PR2	Match Interr	upt Priority b	t						
		1 = High p	riority			-						
		0 = Low pr	-									
	bit 0		MR1 Overflov	w Interrupt P	riority bit							
		1 = High p 0 = Low pi	,									
		r	,									

REGISTER 7-7: IPR REGISTERS

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T13CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1/Timer3 clock input.
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input.
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	bit3	ST	Input/output port pin or Synchronous Serial clock for SPI/I ² C.
RC4/SDI/SDA	bit4	ST	Input/output port pin or SPI Data in (SPI mode) or Data I/O (I ² C mode).
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output.
RC6/TX/CK	bit6	ST	Input/output port pin Addressable USART Asynchronous Transmit or Addressable USART Synchronous Clock.
RC7/RX/DT	bit7	ST	Input/output port pin Addressable USART Asynchronous Receive or Addressable USART Synchronous Data.

TABLE 8-5: PORTC FUNCTIONS

Legend: ST = Schmitt Trigger input

TABLE 8-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
LATC	LATC D	ata Outpu		xxxx xxxx	uuuu uuuu					
TRISC	PORTC	Data Dire	ection Reg		1111 1111	1111 1111				

Legend: x = unknown, u = unchanged

10.0 TIMER0 MODULE

The Timer0 module has the following features:

- Software selectable as an 8-bit or 16-bit timer/counter
- Readable and writable
- Dedicated 8-bit software programmable prescaler
- Clock source selectable to be external or internal
- Interrupt on overflow from FFh to 00h in 8-bit mode and FFFFh to 0000h in 16-bit mode
- Edge select for external clock

REGISTER 10-1: TOCON REGISTER

Register 10-1 shows the Timer0 Control register (T0CON).

Figure 10-1 shows a simplified block diagram of the Timer0 module in 8-bit mode and Figure 10-1 shows a simplified block diagram of the Timer0 module in 16-bit mode.

The TOCON register is a readable and writable register that controls all the aspects of Timer0, including the prescale selection.

Note: Timer0 is enabled on POR.

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0				
	bit 7							bit 0				
bit 7	TMR0ON: T 1 = Enables 0 = Stops Ti		Control bit									
bit 6	1 = Timer0 i	08BIT: Timer0 8-bit/16-bit Control bit = Timer0 is configured as an 8-bit timer/counter = Timer0 is configured as a 16-bit timer/counter										
bit 5	1 = Transitio	0CS : Timer0 Clock Source Select bit = Transition on T0CKI pin = Internal instruction cycle clock (CLKOUT)										
bit 4	1 = Increme	TOSE : Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin										
bit 3	ן TImer0 I = T) Prescaler A prescaler is N prescaler is a	IOT assigned	d. Timer0 clo								
bit 2-0	T0PS2:T0P	S0 : Timer0 P	rescaler Sele	ect bits								
	110 = 1:128 101 = 1:64 100 = 1:32 011 = 1:16 010 = 1:8 001 = 1:4	prescale val prescale val prescale val prescale val prescale val prescale val prescale val prescale val prescale val	ue ie ie e e									
	Logondi]				
	Legend: R = Readab	le hit	W = Writ	ahla hit	II – Unimp	lamantad h	it, read as '	n'				
	r = readab		vv = vvrit	anie ni	o = ommp		in, reau as t	J				

- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

14.1 CCP1 Module

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

14.2 CCP2 Module

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

TABLE 14-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

14.3 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on pin RC2/CCP1. An event is defined as:

- · every falling edge
- · every rising edge
- every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR registers) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

14.3.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 is configured as an out-
	put, a write to the port can cause a capture
	condition.

14.3.2 TIMER1/TIMER3 MODE SELECTION

The timers used with the capture feature (either Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer used with each CCP module is selected in the T3CON register.

TABLE 14-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	TMR1 or TMR3 time-base. Time-base can be different for each CCP.
Capture	Compare	The compare could be configured for the special event trigger, which clears either TMR1 or TMR3, depending upon which time-base is used.
Compare	Compare	The compare(s) could be configured for the special event trigger, which clears TMR1 or TMR3 depending upon which time-base is used.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

16.3 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA register). In addition, enable bit SPEN (RCSTA register) is set, in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA register).

16.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 16-1. The heart of the transmitter is the Transmit (serial) Shift register (TSR). The shift register obtains its data from the Read/Write Transmit Buffer register (TXREG). The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TcY), the TXREG is empty and interrupt bit TXIF (PIR registers) is set. The interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE registers). Flag bit TXIF will be set, regardless of the state of enable bit TXIE, and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA register) shows the status of the TSR register. TRMT is a read only bit, which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory, so it is not available to the user.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 16.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	x000 000x	0000 000u
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	x00- 0000	0000 -00x
TXREG	USART Transmit Register									0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	ADDEN	BRGH	TRMT	TX9D	0000 0010	0000 0010
SPBRG	Baud Rate	Generator Re	egister	-	-				0000 0000	0000 0000

TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.

NOTES:

17.2.5 CAN BAUD RATE REGISTERS

This subsection describes the CAN Baud Rate registers.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 BRP0 SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 bit 7 bit 0 bit 7-6 SJW1:SJW0: Synchronized Jump Width bits 11 = Synchronization Jump Width Time = $4 \times TQ$ 10 = Synchronization Jump Width Time = $3 \times TQ$ 01 = Synchronization Jump Width Time = $2 \times TQ$ 00 = Synchronization Jump Width Time = 1 x TQ bit 5-0 BRP5:BRP0: Baud Rate Prescaler bits 111111 = TQ = (2 x 64)/FOSC 111110 = TQ = (2 x 63)/FOSC 000001 = TQ = (2 x 2)/FOSC 000000 = Tq = (2 x 1)/Fosc Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

REGISTER 17-29: BRGCON1 – BAUD RATE CONTROL REGISTER 1

Note: This register is only accessible in Configuration mode.

17.9 Programming Time Segments

Some requirements for programming of the time segments:

- Prop Seg + Phase Seg $1 \ge$ Phase Seg 2
- Phase Seg $2 \ge$ Sync Jump Width

For example, assuming that a 125 kHz CAN baud rate with FOSC = 20 MHz is desired:

Tosc = 50nsec, choose BRP<5:0> = 04h, then TQ = 500nsec. To obtain 125 kHz, the bit time must be 16 TQ.

Sync Seg = 1 TQ; Prop Seg = 2 TQ; So, setting Phase Seg 1 = 7 TQ would place the sample at 10 TQ after the transition. This would leave 6 TQ for Phase Seg 2.

Since Phase Seg 2 is 6, by the rules, SJW could be the maximum of 4 Tq. However, normally a large SJW is only necessary when the clock generation of the different nodes is inaccurate or unstable, such as using ceramic resonators. So an SJW of 1 is typically enough.

17.10 Oscillator Tolerance

The bit timing requirements allow ceramic resonators to be used in applications with transmission rates of up to 125 kbit/sec, as a rule of thumb. For the full bus speed range of the CAN protocol, a quartz oscillator is required. A maximum node-to-node oscillator variation of 1.7% is allowed.

17.11 Bit Timing Configuration Registers

The configuration registers (BRGCON1, BRGCON2, BRGCON3) control the bit timing for the CAN bus interface. These registers can only be modified when the PIC18CXX8 is in Configuration mode.

17.11.1 BRGCON1

The BRP bits control the baud rate prescaler. The SJW < 1:0 > bits select the synchronization jump width in terms of number of Tq's.

17.11.2 BRGCON2

The PRSEG bits set the length, in To's, of the propagation seament. The SEG1PH bits set the length, in TQ's. of phase segment 1. The SAM bit controls how many times the RXCAN pin is sampled. Setting this bit to a '1' causes the bus to be sampled three times; twice at TQ/2 before the sample point, and once at the normal sample point (which is at the end of phase segment 1). The value of the bus is determined to be the value read during at least two of the samples. If the SAM bit is set to a '0', then the RXCAN pin is sampled only once at the sample point. The SEG2PHTS bit controls how the length of phase segment 2 is determined. If this bit is set to a '1', then the length of phase segment 2 is determined by the SEG2PH bits of BRGCON3. If the SEG2PHTS bit is set to a '0', then the length of phase segment 2 is the greater of phase segment 1 and the information processing time (which is fixed at 2 TQ for the PIC18CXX8).

17.11.3 BRGCON3

The PHSEG2<2:0> bits set the length, in TQ's, of phase segment 2, if the SEG2PHTS bit is set to a '1'. If the SEG2PHTS bit is set to a '0', then the PHSEG2<2:0> bits have no effect.

x = Bit is unknown

REGISTER 18-3: ADCON2 REGISTER

- n = Value at POR

	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	ADFM	—	—	—	—	ADCS2	ADCS1	ADCS0
	bit 7							bit 0
bit 7			mat Select b	oit				
	1 = Right ju							
	0 = Left jus	stified						
bit 6-3	Unimplem	ented: Rea	d as '0'					
bit 2-0	ADCS1:AD	DCS0: A/D (Conversion C	Clock Select	bits			
	000 = Fos	c/2						
	001 = FOS	C/8						
	010 = FOS	c/32						
	011 = FRC	(clock deriv	ed from an F	RC oscillator	= 1 MHz ma	ax)		
	100 = FOS	c/4						
	101 = Fos	c/16						
	110 = FOS	c/64						
	111 = FRC	(clock deriv	ed from an F	RC oscillator	= 1 MHz ma	ax)		
	_							
	Legend:							
	R = Readal	ble bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as '	0'

'0' = Bit is cleared

'1' = Bit is set

22.3.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If an interrupt condition (interrupt flag bit and interrupt enable bits are set) occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt condition occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overrightarrow{PD} bit. If the \overrightarrow{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

FIGURE 22-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT^(1,2)

3: TOST = 1024TOSC (drawing not to scale). This delay will not occur for RC and EC osc modes.

4: CLKOUT is not available in these oscillator modes, but shown here for timing reference.

24.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC16F877 and can be used to develop this and other PICmicro microcontrollers from the PIC16CXXX family. The MPLAB ICD utilizes the incircuit debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost effective in-circuit FLASH programming and debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time. The MPLAB ICD is also a programmer for the FLASH PIC16F87X family.

24.9 <u>PRO MATE II Universal Device</u> <u>Programmer</u>

The PRO MATE II universal device programmer is a full featured programmer, capable of operating in standalone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PICmicro devices. It can also set code-protect bits in this mode.

24.10 <u>PICSTART Plus Entry Level</u> <u>Development Programmer</u>

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

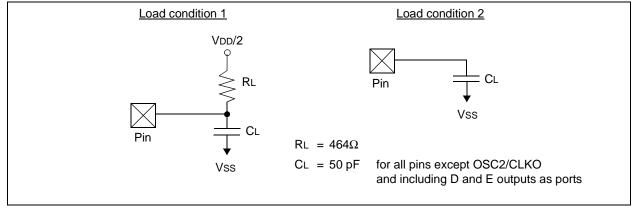
The PICSTART Plus development programmer supports all PICmicro devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

24.11 <u>PICDEM 1 Low Cost PICmicro</u> <u>Demonstration Board</u>

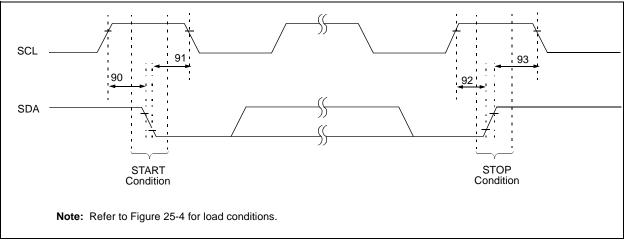
The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

24.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I^2C^{TM} bus and separate headers for connection to an LCD module and a keypad.


25.3.2 TIMING CONDITIONS

The temperature and voltages specified in Table 25-3 apply to all timing specifications, unless otherwise noted. Figure 25-4 specifies the load conditions for the timing specifications.


TABLE 25-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions (unless otherwise stated)				
	Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial				
AC CHARACTERISTICS	$-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended				
	Operating voltage VDD range as described in DC spec Section 25.1.				
	LC parts operate for industrial temperatures only.				

FIGURE 25-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

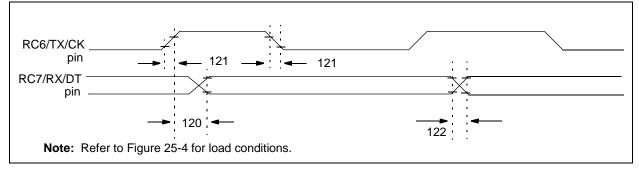

FIGURE 25-16: I²C BUS START/STOP BITS TIMING

TABLE 25-15: I²C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Parm. No.	Symbol	Characteristic		Min	Max	Units	Conditions	
90	TSU:STA	START condition	100 kHz møde 🖒	4700		ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	—		START condition	
91	THD:STA	START condition	100 MHZ mode	4000	_	ns	After this period, the first	
		Hold time	400 kHz mode	600			clock pulse is generated	
92	TSU:STO	STOP condition	100 kHz mode	4700		ns		
		Setup time	400 kHz mode	600	_			
93	THD:STO	STOReprodution	100 kHz mode	4000	_	ns		
		Hold time	400 kHz mode	600	_			

FIGURE 25-20: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 25-19: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param. No.	Symbol	Characteristic	B	Min	Мах	Units	Conditions
120	TckH2dtV	SYNC XMIT (Master & Slave)	A L				
		Clock high to data-out valid	PIC18 C XX8	—	40	ns	
		nTMULL	PIC18 LC XX8	_	100	ns	
121	Tckrf	Clock out rise time and fall time	PIC18 C XX8	_	20	ns	
			PIC18 LC XX8	_	50	ns	
122	Tdtrf	Data-out rise time and fall time	PIC18 C XX8	—	20	ns	
		×	PIC18 LC XX8	_	50	ns	

SSPOV	
SSPSTAT	
SSPSTAT Register	
R/ W Bit	148, 149
Stuff Error	
SUBLW	
SUBWF	297, 298
SUBWFB	
SWAPF	
Synchronization	
Synchronization Rules	
Synchronization Segment	219
Synchronous Serial Port. See SSP	

Т

TABLRD
TABLWT
Time Quanta219
Timer Modules
Timer3
Block Diagram124
Timer0
Clock Source Edge Select (T0SE Bit)
Clock Source Select (T0CS Bit)
Overflow Interrupt
Prescaler. See Prescaler, Timer0
Timing Diagram
Timer1
Block Diagram
Oscillator
Overflow Interrupt
Prescaler. See Prescaler, Timer1
Special Event Trigger (CCP)
Timing Diagram
TMR1H Register
TMR1L Register
TMR3L Register
Timer2
Block Diagram
Postscaler. See Postscaler, Timer2
PR2 Register
Prescaler. See Prescaler, Timer2
SSP Clock Shift
TMR2 Register
TMR2 to PR2 Match Interrupt 121, 122, 132
Timer3
Oscillator123, 125
Overflow Interrupt123, 125
Special Event Trigger (CCP) 125
TMR3H Register123
Timing Diagrams
Acknowledge Sequence Timing159
Baud Rate Generator with Clock Arbitration
BRG Reset Due to SDA Collision164
Bus Collision
START Condition Timing163
Bus Collision During a RESTART Condition
(Case 1)165
Bus Collision During a RESTART Condition
(Case2)165
Bus Collision During a START Condition (SCL = 0) 164
Bus Collision During a STOP Condition
Bus Collision for Transmit and Acknowledge 162
I ² C Bus Data
I ² C Master Mode First Start bit timing
I ² C Master Mode Reception timing
I ² C Master Mode Transmission timing
-

Master Mode Transmit Clock Arbitration
Repeat Start Condition155
Slave Synchronization144
Slow Rise Time
SPI Mode Timing (Master Mode) SPI Mode
Master Mode Timing Diagram
SPI Mode Timing (Slave Mode with CKE = 0) 145
SPI Mode Timing (Slave Mode with CKE = 1) 145
Stop Condition Receive or Transmit
Time-out Sequence on Power-up
USART Asynchronous Master Transmission 174
USART Asynchronous Reception 176
USART Synchronous Reception
USART Synchronous Transmission
Wake-up from SLEEP via Interrupt
Timing Diagrams and Specifications
A/D Conversion
Brown-out Reset (BOR) 325
Capture/Compare/PWM (CCP)
CLKOUT and I/O 324
External Clock 322
I ² C Bus Data
I ² C Bus START/STOP Bits
Oscillator Start-up Timer (OST) 325
Parallel Slave Port (PSP) 328
Power-up Timer (PWRT) 325
Reset
Timer0 and Timer1 326
USART Synchronous Receive (Master/Slave) 338
USART Synchronous Transmission (Master/Slave) 337
Watchdog Timer (WDT) 325
Transmit Interrupt 225
Transmit Message Aborting 211
Transmit Message Buffering
Transmit Message Buffers
Transmit Message flowchart
Transmit Message Priority
Transmitter Error Passive
Transmitter Warning
TRISE Register
TSTFSZ
TXSTA Register
BRGH Bit 169

U

Universal Synchronous Asynchronous Receiver Transmitter. See USART

USART 167
Asynchronous Mode 173
Master Transmission 174
Receive Block Diagram 175
Reception176
Transmit Block Diagram 173
Baud Rate Generator (BRG) 169
Baud Rate Error, Calculating
Baud Rate Formula 169
High Baud Rate Select (BRGH Bit) 169
Sampling 169
Serial Port Enable (SPEN Bit) 167
Synchronous Master Mode 177
Reception179
Timing Diagram, Synchronous Receive
Timing Diagram, Synchronous Transmission 337
Transmission178
Synchronous Slave Mode 180

NOTES:

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3838 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Dayton Two Prestige Place, Suite 130 Miamisburg, OH 45342

Tel: 937-291-1654 Fax: 937-291-9175 Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles 18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto 6285 Northam Drive, Suite 108

Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

China - Beijing Microchip Technology Beijing Office Unit 915 New China Hong Kong Manhattan Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Shanghai Microchip Technology Shanghai Office Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

Hong Kong

Microchip Asia Pacific RM 2101, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India Microchip Technology Inc. India Liaison Office

Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062 Japan Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934

ASIA/PACIFIC (continued)

Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 EUROPE

Denmark

Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy Arizona Microchip Technology SRL Centro Direzionale Colleoni

Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 United Kingdom Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU

Tel: 44 118 921 5869 Fax: 44-118 921-5820

10/01/00

Microchip received QS-9000 quality system certification for its worldwide headquarters design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro[®] 8-bit MCUs, KEELOQ[®] code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 11/00 🤹 Printed on recycled paper.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

Advanced Information

