

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c858t-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 RESET

The PIC18CXX8 differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) Watchdog Timer (WDT) Reset (during normal operation)
- e) Programmable Brown-out Reset (PBOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

Most registers are unaffected by a RESET. Their status is unknown on POR and unchanged by all other RESETs. The other registers are forced to a "RESET" state on Power-on Reset, MCLR, WDT Reset, Brown-out Reset, MCLR Reset during SLEEP and by the RESET instruction.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR are set or cleared differently in different RESET situations, as indicated in Table 3-2. These bits are used in software to determine the nature of the RESET. See Table 3-3 for a full description of the RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 3-1.

The Enhanced MCU devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

A WDT Reset does not drive MCLR pin low.

FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

4.0 MEMORY ORGANIZATION

There are two memory blocks in Enhanced MCU devices. These memory blocks are:

- Program Memory
- Data Memory

Each block has its own bus so that concurrent access can occur.

4.1 Program Memory Organization

The PIC18CXX8 devices have a 21-bit program counter that is capable of addressing the 2 Mbyte program memory space.

The reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h. Figure 4-1 shows the diagram for program memory map and stack for the PIC18C658 and PIC18C858.

4.1.1 INTERNAL PROGRAM MEMORY OPERATION

All devices have 32 Kbytes of internal EPROM program memory. This means that the PIC18CXX8 devices can store up to 16K of single word instructions. Accessing a location between the physically implemented memory and the 2 Mbyte address will cause a read of all '0's (a NOP instruction).

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR PIC18C658/858

FIGURE 4-4: DATA MEMORY MAP FOR PIC18C658/858

NOTES:

8.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bi-directional port. The corresponding Data Direction register is TRISC. Setting a TRISC bit (=1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISC bit (=0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATC register, read and write the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (Table 8-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.

EXAMPLE 8-3: INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC3:RC0 as inputs
		; RC5:RC4 as outputs
		; RC7:RC6 as inputs

FIGURE 9-2: PARALLEL SLAVE PORT WRITE WAVEFORMS

FIGURE 9-3: PARALLEL SLAVE PORT READ WAVEFORMS

REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT TABLE 9-1:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTD	Port data	latch wh		xxxx xxxx	uuuu uuuu					
LATD	LATD Da	ita Output	Bits						xxxx xxxx	uuuu uuuu
TRISD	PORTD I	Data Dire	ction Bits						1111 1111	1111 1111
PORTE	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	0000 0000	0000 0000
LATE	LATE Da	ta Output	Bits						xxxx xxxx	uuuu uuuu
TRISE	PORTE I	Data Dire	ction Bits						1111 1111	1111 1111
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

REGISTER 15-2: SSPCON1 REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |

bit 7 WCOL: Write Collision Detect bit

Master mode:

- 1 = A write to the SSPBUF register was attempted while the I²C conditions were not valid for a transmission to be started
- $0 = No \ collision$

Slave mode:

- 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
- 0 = No collision

bit 6 SSPOV: Receive Overflow Indicator bit

In SPI mode:

- 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register. (Must be cleared in software.)
 0 = No overflow
- In l^2C mode:
- 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.)

0 = No overflow

bit 5 **SSPEN:** Synchronous Serial Port Enable bit

In both modes, when enabled, these pins must be properly configured as input or output. In SPI mode:

- 1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins

In I²C mode:

- 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins
- bit 4 **CKP:** Clock Polarity Select bit

In SPI mode:

- 1 = Idle state for clock is a high level
- 0 = Idle state for clock is a low level

In I²C Slave mode:

- SCK release control
- 1 = Enable clock
- 0 = Holds clock low (clock stretch). (Used to ensure data setup time.)

In I²C Master mode

Unused in this mode

15.3.6 SLEEP OPERATION

In Master mode, all module clocks are halted, and the transmission/reception will remain in that state until the device wakes from SLEEP. After the device returns to normal mode, the module will continue to transmit/receive data.

In Slave mode, the SPI transmit/receive shift register operates asynchronously to the device. This allows the device to be placed in SLEEP mode, and data to be shifted into the SPI transmit/receive shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and, if enabled, will wake the device from SLEEP.

15.3.7 EFFECTS OF A RESET

A RESET disables the MSSP module and terminates the current transfer.

15.3.8 BUS MODE COMPATIBILITY

Table 15-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 15-1:	SPI BUS MODES
-------------	---------------

Standard SPI Mode	Control E	Bits State
Terminology	СКР	CKE
0, 0	0	1
0, 1	0	0
1, 0	1	1
1, 1	1	0

There is also a SMP bit that controls when the data will be sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
TRISC	PORTC D	ata Direc	tion Regist	er					1111 1111	1111 1111
SSPBUF	Synchrono	ous Seria	I Port Rece	eive Buffer	r/Transmit	Register			xxxx xxxx	uuuu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISA	—	PORTA	PORTA Data Direction Register ⁽¹⁾							11 1111
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

TABLE 15-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.

15.4 MSSP I²C Operation

The MSSP module in I²C mode, fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware to determine a free bus (Multi-master mode). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

The MSSP module functions are enabled by setting MSSP Enable bit SSPEN (SSPCON1 register).

FIGURE 15-6: MSSP BLOCK DIAGRAM (I²C MODE)

The MSSP module has these six registers for $\mathsf{I}^2\mathsf{C}$ operation:

- MSSP Control Register1 (SSPCON1)
- MSSP Control Register2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)

The SSPCON1 register allows control of the I^2C operation. The SSPM3:SSPM0 mode selection bits (SSPCON1 register) allow one of the following I^2C modes to be selected:

- I²C Master mode, clock = OSC/4 (SSPADD +1)
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with START and STOP bit interrupts enabled
- I²C Slave mode (10-bit address), with START and STOP bit interrupts enabled
- I²C Firmware controlled master operation, slave is idle

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

15.4.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

If either or both of the following conditions are true, the MSSP module will not give this ACK pulse:

- a) The buffer full bit BF (SSPCON1 register) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON1 register) was set before the transfer was received.

In this event, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR registers) is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, is shown in timing parameter #100 and parameter #101.

15.4.5 BAUD RATE GENERATOR

In I²C Master mode, the reload value for the BRG is located in the lower 7 bits of the SSPADD register (Figure 15-11). When the BRG is loaded with this value, the BRG counts down to 0 and stops until another reload has taken place. The BRG count is dec-

remented twice per instruction cycle (TCY) on the Q2 and Q4 clocks. In I^2C Master mode, the BRG is reloaded automatically. If Clock Arbitration is taking place, for instance, the BRG will be reloaded when the SCL pin is sampled high (Figure 15-12).

FIGURE 15-11: BAUD RATE GENERATOR BLOCK DIAGRAM

FIGURE 15-12: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

FIGURE 15-15: I²C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)

REGISTER 16-2: RCSTA REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x				
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
	bit 7							bit 0				
bit 7	SPEN: Serial Port Enable bit 1 = Serial port enabled (Configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled											
bit 6	RX9 : 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception											
bit 5	SREN : Sing <u>Asynchrone</u> Don't care	SREN: Single Receive Enable bit Asynchronous mode Don't care										
	<u>Synchrono</u> 1 = Enable 0 = Disable This bit	<u>Synchronous mode - Master</u> 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete.										
	<u>Synchrono</u> Unused in t	us mode - Sla this mode	ave									
bit 4	CREN : Cor <u>Asynchrono</u> 1 = Enable 0 = Disable	ntinuous Rece ous mode s continuous es continuous	eive Enable receive receive	bit								
	Synchronor 1 = Enable 0 = Disable	<u>us mode</u> s continuous es continuous	receive until receive	enable bit C	REN is clea	red (CREN	loverrides	SREN)				
bit 3	ADDEN: Ad Asynchrond 1 = Enable is set 0 = Disable	ddress Detec <u>ous mode 9-b</u> s address de s address de	t Enable bit <u>it (RX9 = 1)</u> tection, enab tection, all b	ble interrupt a	and load of t	he receive inth bit can	buffer whe	n RSR<8> s parity bit				
bit 2	FERR: Fran 1 = Framin 0 = No fran	ming Error bit g error (Can I ning error	be updated b	by reading R	CREG regist	ter and rec	eive next v	alid byte)				
bit 1	OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error											
bit 0	RX9D: 9th	bit of receive	d data, can b	be Address/E	Data bit or a	parity bit						
	Legend:											

0			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

17.2.3 CAN RECEIVE BUFFER REGISTERS

This section shows the Receive Buffer registers with its associated control registers.

	R/C-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R-0	R/W-0
	RXFUL	RXM1	RXM0	_	RXRTRRO	RXB0DBEN	JTOFF	FILHIT0
	bit 7							bit 0
oit 7	RXFUL: R	eceive Full	Status bit	wined me				
	1 = Receiv 0 = Receiv	e buller cor	poen to rec	eived me	v message			
		0.00.00						
	Note:	This bit is s	set by the C	AN modu	le and should	be cleared by	software aft	er the buffer
		is read.						
it C E			o Duffor Mo	da hita				
11 0-5	11 = Recei	ive all mess	ages (inclu	ide bits	e with errors)			
	10 = Rece i	ive only vali	id message	es with ext	tended identif	ier		
	01 = Recei	ive only vali	id message	es with sta	indard identifi	er		
oit 4		ented: Rea	niessages ad as '0'					
vit 3	RXRTRRO	: Receive F	Remote Tra	insfer Rec	uest Read O	nlv bit		
	1 = Remote	e transfer re	equest					
	0 = No rem	note transfe	r request					
it 2	RXB0DBE	N: Receive	Buffer 0 D	ouble Buf	fer Enable bit			
	1 = Receiv 0 = No Rec	e Buffer 0 c ceive Buffer	verflow will	to Rece	Receive Buffe ive Buffer 1	er 1		
oit 1	JTOFF: Ju	mp Table C	Offset bit (re	ad only c	opy of RX0DE	BEN)		
	1 = Allows	Jump Table	e offset bet	ween 6 ar	nd 7			
	0 = Allows	Jump Table	e offset betv	ween 1 ar	nd U			
	Note:	This bit allo	ows same f	ilter iump	table for both	RXB0CON ar	nd RXB1CO	N.
oit O	FILHITO: F	ilter Hit bit						
	This bit ind	icates whic	h acceptan	ce filter e	nabled the me	essage recepti	on into rece	ive buffer 0
	1 = Accept 0 = Accept	ance Filter	1 (RXF1) 0 (RXF0)					
			- (
	Legend:							
	R = Reada	ble bit	W = Writ	table bit	U = U	nimplemented	bit, read as	'0'
	- n = Value	at POR	'1' = Bit i	is set	'0' = B	it is cleared	x = Bit is ι	unknown

REGISTER 17-12: RXB0CON - RECEIVE BUFFER 0 CONTROL REGISTER

17.5 <u>Message Reception</u>

17.5.1 RECEIVE MESSAGE BUFFERING

The PIC18CXX8 includes two full receive buffers with multiple acceptance filters for each. There is also a separate Message Assembly Buffer (MAB), which acts as a third receive buffer (see Figure 17-3).

17.5.2 RECEIVE BUFFERS

Of the three receive buffers, the MAB is always committed to receiving the next message from the bus. The remaining two receive buffers are called RXB0 and RXB1 and can receive a complete message from the protocol engine. The MCU can access one buffer while the other buffer is available for message reception, or holding a previously received message.

The MAB assembles all messages received. These messages will be transferred to the RXBN buffers, only if the acceptance filter criteria are met.

Note: The entire contents of the MAB is moved into the receive buffer once a message is accepted. This means that regardless of the type of identifier (standard or extended) and the number of data bytes received, the entire receive buffer is overwritten with the MAB contents. Therefore, the contents of all registers in the buffer must be assumed to have been modified when any message is received.

When a message is moved into either of the receive buffers, the appropriate RXBnIF bit is set. This bit must be cleared by the MCU when it has completed processing the message in the buffer, in order to allow a new message to be received into the buffer. This bit provides a positive lockout to ensure that the MCU has finished with the message before the PIC18CXX8 attempts to load a new message into the receive buffer. If the RXBnIE bit is set, an interrupt will be generated to indicate that a valid message has been received.

17.5.3 RECEIVE PRIORITY

RXB0 is the higher priority buffer and has two message acceptance filters associated with it. RXB1 is the lower priority buffer and has four acceptance filters associated with it. The lower number of acceptance filters makes the match on RXB0 more restrictive and implies a higher priority for that buffer. Additionally, the RXB0CON register can be configured such that if RXB0 contains a valid message, and another valid message is received, an overflow error will not occur and the new message will be moved into RXB1, regardless of the acceptance criteria of RXB1. There are also two programmable acceptance filter masks available, one for each receive buffer (see Section 4.5).

When a message is received, bits <3:0> of the RXBNCON register will indicate the acceptance filter number that enabled reception, and whether the received message is a remote transfer request.

The RXM bits set special receive modes. Normally, these bits are set to 00 to enable reception of all valid messages, as determined by the appropriate acceptance filters. In this case, the determination of whether or not to receive standard or extended messages is determined by the EXIDE bit in the acceptance filter register. If the RXM bits are set to 01 or 10, the receiver will accept only messages with standard or extended identifiers, respectively. If an acceptance filter has the EXIDE bit set such that it does not correspond with the RXM mode, that acceptance filter is rendered useless. These two modes of RXM bits can be used in systems where it is known that only standard or extended messages will be on the bus. If the RXM bits are set to 11, the buffer will receive all messages, regardless of the values of the acceptance filters. Also, if a message has an error before the end of frame, that portion of the message assembled in the MAB before the error frame, will be loaded into the buffer. This mode has some value in debugging a CAN system and would not be used in an actual system environment.

ADCON1 REGISTER REGISTER 18-2:

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-4 VCFG1:VCFG0: Voltage Reference Configuration bits

	A/D VREF+	A/D VREF-
00	Avdd	Avss
01	External VREF+	Avss
10	Avdd	External VREF-
11	External VREF+	External VREF-

bit 3:0 PCFG3:PCFG0: A/D Port Configuration Control bits

	AN15	AN14	AN13	AN12	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0
0000	А	А	Α	Α	Α	А	А	Α	Α	А	Α	Α	Α	Α	Α	Α
0001	D	D	А	А	А	А	А	А	А	А	А	А	А	А	А	А
0010	D	D	D	А	А	А	А	А	А	А	А	А	Α	А	А	А
0011	D	D	D	D	А	А	А	А	А	А	А	А	Α	А	А	А
0100	D	D	D	D	D	А	А	А	А	А	А	А	А	А	А	А
0101	D	D	D	D	D	D	А	А	А	А	А	А	Α	А	А	А
0110	D	D	D	D	D	D	D	А	А	А	А	А	Α	А	А	А
0111	D	D	D	D	D	D	D	D	А	А	А	А	Α	А	Α	А
1000	D	D	D	D	D	D	D	D	D	А	А	А	Α	А	А	А
1001	D	D	D	D	D	D	D	D	D	D	А	А	Α	А	Α	А
1010	D	D	D	D	D	D	D	D	D	D	D	А	Α	А	Α	А
1011	D	D	D	D	D	D	D	D	D	D	D	D	А	А	А	А
1100	D	D	D	D	D	D	D	D	D	D	D	D	D	А	Α	А
1101	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	А
1110	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	А
1111	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input D = Digital I/O

Shaded cells = additional A/D channels available on the PIC18C858 devices.

Legend:

- R = Readable bit - n = Value at POR
- W = Writable bit '1' = Bit is set

U = Unimplemented bit, read as '0' '0' = Bit is cleared

x = Bit is unknown

Note: Channels AN15 through AN12 are not available on the 68-pin devices.

19.9 <u>Analog Input Connection</u> <u>Considerations</u>

A simplified circuit for an analog input is shown in Figure 19-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6 V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 19-4: ANALOG INPUT MODEL

TABLE 19-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
VRCON	VREN	VROE	VRR	VRSS	VR3	VR2	VR1	VR0	0000 0000	0000 0000
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTIE	RBIE	TMR0IF	INTIF	RBIF	0000 000x	0000 000u
PIR2	—	CMIF	—	_	BCLIF	LVDIF	TMR3IF	CCP2IF	-0 0000	-0 0000
PIE2	—	CMIE	—	_	BCLIE	LVDIE	TMR3IE	CCP2IE	-0 0000	-0 0000
IPR2	—	CMIP	—	_	BCLIP	LVDIP	TMR3IP	CCP2IP	-1 1111	-1 1111
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	x000 0000	u000 0000
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx xxxx	uuuu uuuu
TRISF	PORTF D	Data Direc		1111 1111	1111 1111					

Legend: x = unknown, u = unchanged, - = unimplemented, read as "0"

REGISTER 22-1: CONFIGURATION REGISTER 1 LOW (CONFIG1L: BYTE ADDRESS 0x300000)

| R/P-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| СР | CP |
| bit 7 | | | | | | | bit 0 |

bit 7-0 **CP:** Code Protection bits (apply when in Code Protected Microcontroller mode)

1 = Program memory code protection off

0 = All of program memory code protected

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

REGISTER 22-2: CONFIGURATION REGISTER 1 HIGH (CONFIG1H: BYTE ADDRESS 0x300001)

R/P-1	R/P-1	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1
Reserved	Reserved	OSCSEN	_		FOSC2	FOSC1	FOSC0
bit 7							bit 0

bit 7-6	Reserved: Maintain this bit set
h:4 C	OCCENI: Oppillator Oustan Olask Owitch En

- bit 5 OSCSEN: Oscillator System Clock Switch Enable bit
 - 1 = Oscillator system clock switch option is disabled (Main oscillator is source)
 - 0 = Oscillator system clock switch option is enabled (Oscillator switching is enabled)
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 FOSC2:FOSC0: Oscillator Selection bits
 - 111 = RC oscillator w/ OSC2 configured as RA6
 - 110 = HS4 oscillator with PLL enabled/Clock frequency = (4 x Fosc)
 - 101 = EC oscillator w/ OSC2 configured as RA6
 - 100 = EC oscillator w/ OSC2 configured as divide by 4 clock output
 - 011 = RC oscillator
 - 010 = HS oscillator
 - 001 = XT oscillator
 - 000 = LP oscillator

Legend:

R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'	
- n = Value when device	e is unprogrammed	u = Unchanged from programmed state	

FIGURE 25-2: PIC18LCXX8 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

25.1 DC Characteristics (cont'd)

PIC18LCXX8 (Industrial)				Standard Operating Conditions (unless otherwise stated) Operating temperature-40°C \leq TA \leq +85°C for industrial					
PIC18C (Indus	PIC18CXX8 (Industrial, Extended)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Symbol	Characteristic/ Device	Min	Тур	Max	Units	Conditions		
D010	Idd	Supply Current ^(2,4)							
		PIC18LCXX8	_		4	mA	XT, RC, RCIQ osc configurations FQSC = 4 MHz, $VDD = 2.5V$		
D010		PIC18CXX8	_	_	твр	mAn	XT, RC, RCIO \hat{ose} configurations Fosc = 4 MHz, VDD = 4.2V		
D010A		PIC18LCXX8	—		48	μA	LP osc configuration Fosc = 32 kHz, VDD = $2.5V$		
D010A		PIC18CXX8		X	TBD	JuA	LP osc configuration Fosc = 32 kHz, VDD = $4.2V$		
D010C		PIC18LCXX8	$\backslash \neq$	$\left\langle +\right\rangle$	45	mA	EC, ECIO osc configurations, Fosc = 40 MHz, VDD = 5.5V		
D010C		PIC18CXX8	5	}	45	mA	EC, ECIO osc configurations, Fosc = 40 MHz, VDD = 5.5V		
D013	5	PHC18LCXX8			TBD 50 50	mA mA mA	HS osc configurations Fosc = 6 MHz, VDD = 2.5V Fosc = 25 MHz, VDD = 5.5V HS + PLL osc configuration Fosc = 10 MHz, VDD = 5.5V		
D013	5	PIC18CXX8	_	_	50 50	mA mA	HS osc configurations Fosc = 25 MHz, VDD = 5.5V HS + PLL osc configuration Fosc = 10 MHz, VDD = 5.5V		
D014		PIC18LCXX8	_	_	48 TBD	μΑ μΑ	Timer1 osc configuration Fosc = 32 kHz, VDD = 2.5V Fosc = 32 kHz, VDD = 2.5V, 25°C		
D014		PIC18CXX8	_	_	TBD TBD	μΑ μΑ	OSCB osc configuration Fosc = 32 kHz, VDD = 4.2V Fosc = 32 kHz, VDD = 4.2V, 25°C		

Legend: Rows are shaded for improved readability.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode or during a device RESET without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

 $\frac{OSC1}{MCLR}$ = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD $\frac{MCLR}{MCLR}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm. NOTES: