

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c858t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin N	umber				
Pin Name	PIC18	8C658	PIC1	8C858	Pin Type	Buffer Type	
	TQFP	PLCC	TQFP	PLCC			Description
RE0/RD RE0 RD	2	11	4	15	I/O I	ST TTL	PORTE is a bi-directional I/O port Digital I/O Read control for parallel slave port (See WR and CS pins)
RE1/WR RE1 WR	1	10	3	14	I/O I	ST TTL	Digital I/O Write <u>control for parallel slave port</u> (See CS and RD pins)
RE2/CS RE2 CS	64	9	78	9	I/O I	ST TTL	Digital I/O Chip sele <u>ct control for</u> parallel slave port (See RD and WR)
RE3	63	8	77	8	I/O	ST	Digital I/O
RE4	62	7	76	7	I/O	ST	Digital I/O
RE5	61	6	75	6	I/O	ST	Digital I/O
RE6	60	5	74	5	I/O	ST	Digital I/O
RE7/CCP2 RE7 CCP2	59	4	73	4	1/0 1/0	ST ST	Digital I/O Capture2 input, Compare2 output, PWM2 output

PINOUT I/O DESCRIPTIONS (CONTINUED) TABLE 1-2:

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input 0

= Input = Power L Р

= Output

OD = Open Drain (no P diode to VDD)

Register	Appli Dev	cable ices	Power-on Reset, Brown-out Reset	MCLR Reset WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt
RXM1SIDL	658	858	xxxxx	uuuuu	uuuuu
RXM1SIDH	658	858	xxxx xxxx	սսսս սսսս	սսսս սսսս
RXM0EIDL	658	858	xxxx xxxx	սսսս սսսս	սսսս սսսս
RXM0EIDH	658	858	xxxx xxxx	սսսս սսսս	սսսս սսսս
RXM0SIDL	658	858	xxxxx	uuuuu	uuuuu
RXM0SIDH	658	858	xxxx xxxx	սսսս սսսս	սսսս սսսս
RXF5EIDL	658	858	xxxx xxxx	սսսս սսսս	uuuu uuuu
RXF5EIDH	658	858	xxxx xxxx	นนนน นนนน	uuuu uuuu
RXF5SIDL	658	858	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF5SIDH	658	858	xxxx xxxx	<u>uuuu</u> uuuu	uuuu uuuu
RXF4EIDL	658	858	xxxx xxxx	นนนน นนนน	uuuu uuuu
RXF4EIDH	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF4SIDL	658	858	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF4SIDH	658	858	xxxx xxxx	սսսս սսսս	uuuu uuuu
RXF3EIDL	658	858	XXXX XXXX	uuuu uuuu	uuuu uuuu
RXF3EIDH	658	858	xxxx xxxx	นนนน นนนน	uuuu uuuu
RXF3SIDL	658	858	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF3SIDH	658	858	XXXX XXXX	uuuu uuuu	uuuu uuuu
RXF2EIDL	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF2EIDH	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF2SIDL	658	858	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF2SIDH	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF1EIDL	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF1EIDH	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF1SIDL	658	858	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF1SIDH	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF0EIDL	658	858	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXF0EIDH	658	858	XXXX XXXX	uuuu uuuu	uuuu uuuu
RXF0SIDL	658	858	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF0SIDH	658	858	XXXX XXXX	นนนน นนนน	นนนน นนนน

	INITIAL IZATION CONDITIONS FOR ALL DEDISTERS		
IABLE 3-3:	INITIALIZATION CONDITIONS FOR ALL REGISTERS ((CONTINUED)	

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition **Note 1:** One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
- **6:** The long write enable is only reset on a POR or $\overline{\text{MCLR}}$.

7: Available on PIC18C858 only.

4.2 Return Address Stack

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC (Program Counter) is pushed onto the stack when a PUSH, CALL or RCALL instruction is executed, or an interrupt is acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the return instructions.

The stack operates as a 31 word by 21-bit stack memory and a 5-bit stack pointer, with the stack pointer initialized to 00000b after all RESETs. There is no RAM associated with stack pointer 00000b. This is only a RESET value. During a CALL type instruction causing a push onto the stack, the stack pointer is first incremented and the RAM location pointed to by the stack pointer is written with the contents of the PC. During a RETURN type instruction causing a pop from the stack, the contents of the RAM location indicated by the STKPTR is transferred to the PC and then the stack pointer is decremented.

The stack space is not part of either program or data space. The stack pointer is readable and writable, and the data on the top of the stack is readable and writable through SFR registers. Status bits indicate if the stack pointer is at or beyond the 31 levels provided.

4.2.1 TOP-OF-STACK ACCESS

The top of the stack is readable and writable. Three register locations, TOSU, TOSH and TOSL allow access to the contents of the stack location indicated by the STKPTR register. This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU, TOSH and TOSL registers. These values can be placed on a user defined software stack. At return time, the software can replace the TOSU, TOSH and TOSL and do a return.

The user should disable the global interrupt enable bits during this time to prevent inadvertent stack operations.

4.2.2 RETURN STACK POINTER (STKPTR)

The STKPTR register contains the stack pointer value, the STKFUL (stack full) status bit, and the STKUNF (stack underflow) status bits. Register 4-1 shows the STKPTR register. The value of the stack pointer can be 0 through 31. The stack pointer increments when values are pushed onto the stack and decrements when values are popped off the stack. At RESET, the stack pointer value will be 0. The user may read and write the stack pointer value. This feature can be used by a Real Time Operating System for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit can only be cleared in software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (stack overflow RESET enable) configuration bit. Refer to Section 18 for a description of the device configuration bits. If STVREN is set (default) the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit, and reset the device. The STKFUL bit will remain set and the stack pointer will be set to 0.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the stack pointer will increment to 31. The 32nd push will overwrite the 31st push (and so on), while STKPTR remains at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the stack pointer remains at 0. The STKUNF bit will remain set until cleared in software or a POR occurs.

Note:	Returning a value of zero to the PC on an
	underflow has the effect of vectoring the
	program to the RESET vector, where the
	stack conditions can be verified and appro-
	priate actions can be taken.

	R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	STKFUL	STKUNF	-	SP4	SP3	SP2	SP1	SP0
	bit 7							bit 0
bit 7	STKFUL: S 1 = Stack 0 = Stack	Stack Full Fla became full o has not beco	g bit or overflowed me full or ov	l erflowed				
bit 6	STKUNF: S 1 = Stack 0 = Stack	Stack Underfl underflow oc underflow did	ow Flag bit curred I not occur					
bit 5	Unimplem	ented: Read	as '0'					
bit 4-0	SP4:SP0: S	Stack Pointer	Location bits	5				
	Note: Bi	t 7 and bit 6 d	can only be c	leared in use	er software o	or by a PO	R.	
	Legend							
	R = Reada	able bit	W = Wri	table bit	U = Unimpl	lemented b	oit, read as '	0'
	- n = Value	at POR	'1' = Bit	is set	'0' = Bit is c	leared	C = Clearal	ole bit

FIGURE 4-2: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

4.4 PCL, PCLATH and PCLATU

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21-bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCH register. The Upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCU register may be performed through the PCLATU register.

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the LSb of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be transferred to the program counter by an operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (See Section 4.8.1).

4.5 <u>Clocking Scheme/Instruction Cycle</u>

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 4-3.

FIGURE 4-3: CLOCK/INSTRUCTION CYCLE

6.0 8 X 8 HARDWARE MULTIPLIER

An 8 x 8 hardware multiplier is included in the ALU of the PIC18CXX8 devices. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit product register pair (PRODH:PRODL). The multiplier does not affect any flags in the STATUS register. Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 6-1 shows a performance comparison between enhanced devices using the single cycle hardware multiply, and performing the same function without the hardware multiply.

		Program	Cycles	Time				
Routine	Multiply Method	Memory (Words)	(Max)	@ 40 MHz	@ 10 MHz	@ 4 MHz		
8 x 8 unsigned	Without hardware multiply	13	69	6.9 μs	27.6 µs	69 µs		
	Hardware multiply	1	1	100 ns	400 ns	1 μs		
8 x 8 signed	Without hardware multiply	33	91	9.1 μs	36.4 μs	91 μs		
	Hardware multiply	6	6	600 ns	2.4 μs	6 µs		
16 x 16 unsigned	Without hardware multiply	21	242	24.2 μs	96.8 µs	242 μs		
	Hardware multiply	24	24	2.4 μs	9.6 µs	24 µs		
16 x 16 signed	Without hardware multiply	52	254	25.4 μs	102.6 µs	254 μs		
	Hardware multiply	36	36	3.6 μs	14.4 μs	36 µs		

TABLE 6-1: PERFORMANCE COMPARISON

FIGURE 7-1: INTERRUPT LOGIC

		R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
IPR1		PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP
		bit 7							bit 0
		U-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
IPR2			CMIP	_	—	BCLIP	LVDIP	TMR3IP	CCP2IP
		bit 7							bit 0
		R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
IPR3		IVRP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP
		bit 7							bit 0
IPR1	bit 7	PSPIP: Pa 1 = High p 0 = Low pi	rallel Slave P riority riority	ort Read/Wr	ite Interrupt F	Priority bit			
	bit 6	ADIP : A/D 1 = High p 0 = Low pi	Converter In priority riority	terrupt Priori	ty bit				
	bit 5	RCIP : USA 1 = High p 0 = Low p	ART Receive priority riority	Interrupt Pric	ority bit				
	bit 4	TXIP : USA 1 = High p 0 = Low pi	RT Transmit priority riority	Interrupt Pric	ority bit				
	bit 3	SSPIP : Ma 1 = High p 0 = Low pi	ster Synchro priority riority	nous Serial I	Port Interrupt	Priority bit			
	bit 2	CCP1IP : C 1 = High p 0 = Low pi	CP1 Interrup priority riority	t Priority bit					
	bit 1	TMR2IP: T 1 = High p 0 = Low pi	MR2 to PR2 priority riority	Match Interr	upt Priority b	it			
	bit 0	TMR1IP : T 1 = High p 0 = Low pi	MR1 Overflo priority riority	w Interrupt P	Priority bit				

REGISTER 7-7: IPR REGISTERS

12.2 <u>Timer2 Interrupt</u>

The Timer2 module has an 8-bit period register PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon RESET.

12.3 Output of TMR2

The output of TMR2 (before the postscaler) is a clock input to the Synchronous Serial Port module, which optionally uses it to generate the shift clock.

TABLE 12-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
TMR2	Timer2 mod	ule's register							0000 0000	0000 0000
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
PR2	Timer2 Perio	od Register							1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

NOTES:

15.4.16.2 Bus Collision During a Repeated START Condition

During a Repeated START condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then de-asserted, and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e, another master is attempting to transmit a data '0', see Figure 15-24). If SDA is sampled high, the BRG is

reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated START condition (Figure 15-25).

If at the end of the BRG time-out both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated START condition is complete.

FIGURE 15-24: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 15-25: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

17.1.2 TRANSMIT/RECEIVE BUFFERS

The PIC18CXX8 has three transmit and two receive buffers, two acceptance masks (one for each receive buffer), and a total of six acceptance filters. Figure 17-1 is a block diagram of these buffers and their connection to the protocol engine.

FIGURE 17-1: CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM

FIGURE 20-1: VOLTAGE REFERENCE BLOCK DIAGRAM

Instruction Set 23.1

ADD	DLW	ADD liter	ADD literal to W					
Synt	ax:	[label] A	DDLW k					
Ope	rands:	$0 \le k \le 25$	5					
Ope	ration:	(WREG) -	$k \to WREG$	6				
Stat	us Affected:	N,OV, C, I	DC, Z					
Encoding:		0000	1111 kk	kk kkkk				
Des	cription:	The conte to the 8-bi placed in	The contents of WREG are added to the 8-bit literal 'k' and the result is placed in WREG.					
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'k'	Process Data	Write to W				
<u>Exa</u>	mple:	ADDLW ()x15					
	Before Instru	iction						
	WREG	= 0x10						
	N	= ?						
	OV	= ?						
	C	= ?						
		= ?						
	Ζ	= ?						

= 0

= 0

= 0

= 0

0x25

0 =

Ν

С

Ζ

OV

DC

After Instruction WREG =

		A	ADD W to f					
Syntax:		[/	abel] A	DDWF	f [,d][,a]	
Operands:			$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operatio	on:	(V	VREG) -	+ (f) \rightarrow c	lest			
Status A	Affected:	Ň	,OV, C,	DC, Z				
Encodin	g:		0010	01da	fff	f	ffff	
Description:			dd WRE e result 1, the ro ter 'f' (de ccess B ccess B 1, the E the B	G to reg is stored esult is s efault). I ank will I Bank will SR value	jister d in W tored f 'a' is be sel be se e.	f'. If /RE bac 0, lecte	[:] 'd' is 0, G. If 'd' ck in reg the ed. If 'a' ted as	
Words:		1						
Cycles:		1						
Q Cycle	Activity:							
	Q1	Q2		Q3		Q4		
C	ecode	F reg	Read jister 'f'	Proce Data	SS A	W des	/rite to stination	
Example	<u>ə</u> :	AI	DWF	REG,	W			
Bef	ore Instru	ictio	n					
	WREG REG N OV C DC Z	= = = = =	0x17 0xC2 ? ? ? ?					
Afte	er Instruct WREG REG N OV	tion = = = =	0xD9 0xC2 1 0					

BTFSC		Bit Test File, Skip if Clear					
Syntax:		[label] BT	[label] BTFSC f, b [,a]				
Operands:		$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0, 1]$				
Ope	ration:	skip if (f) = 0				
Statu	us Affected:	None					
Enco	oding:	1011	bbba ff:	ff ffff			
Desc	cription:	If bit 'b' in re next instruc	If bit 'b' in register 'f' is 0, then the next instruction is skipped.				
		If bit 'b' is 0, then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two- cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, the Bank will be selected as per the BSR value.					
Word	ds:	1					
Cycl	es:	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.					
QC	cle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read	Process	No			
lf ski	D:	legister i	Dala	operation			
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
IT SKI	p and followe	a by 2-word		04			
	No	QZ No	Q3 No	Q4			
	operation	operation	operation	operation			
No operation		No operation	No operation	No operation			
Example:		HERE BTFSC FLAG, 1, ACCESS FALSE : TRUE :					
	Before Instru PC	ction = add	ress (HERE)				
	After Instruct If FLAG< ⁻ PC If FLAG< ⁻ PC	ion > = 0; = add > = 1; = add	ress (TRUE) ress (False)				

BTFSS	Bit Test Fi	Bit Test File, Skip if Set				
Syntax:	[label] B	[label] BTFSS f, b [,a]				
Operands:	0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]	$0 \le f \le 255$ $0 \le b < 7$ $a \in [0,1]$				
Operation:	skip if (f <b:< td=""><td>>) = 1</td><td></td></b:<>	>) = 1				
Status Affected:	None					
Encoding:	1010	1010 bbba ffff ffff				
Description:	If bit 'b' in re instruction	If bit 'b' in register 'f' is 1 then the next instruction is skipped.				
	If bit 'b' is 1 fetched du tion execut NOP is exe a two-cycle Access Ba riding the E Bank will b value.	If bit 'b' is 1, then the next instruction fetched during the current instruc- tion execution, is discarded and an NOP is executed instead, making this a two-cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, the Bank will be selected as per the BSR				
Words:	1					
Cycles:	1(2) Note: 3 cy by a	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.				
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read	Process Data	No			
If skip:	regiotor r	Dala	oporation			
Q1	Q2	Q3	Q4			
No	No	No	No			
operation	operation	operation	operation			
If skip and follow	ed by 2-word	instruction:	04			
		Q3	Q4			
operation	operation	operation	operation			
No	No	No	No			
operation	operation	operation	operation			
Example:	HERE B FALSE : TRUE :	HERE BTFSS FLAG, 1, ACCE FALSE : TRUE :				
Before Instruction PC = address (HERE)						
After Instruction If FLAG<1> = 0; PC = address (FALSE) If FLAG<1> = 1; PC = address (TRUE)						

ΒZ		Branch if	Branch if Zero					
Syntax:		[label] B	[<i>label</i>] BZ n					
Ope	rands:	-128 ≤ n ≤	127					
Ope	ration:	if Zero bit (PC) + 2 +	if Zero bit is '1' (PC) + 2 + 2n \rightarrow PC					
State	us Affected:	None						
Enco	oding:	1110	1110 0000 nnn					
Description:		If the Zero gram will the 2's co added to the have increased instruction PC+2+2n. a two-cycl	If the Zero bit is '1', then the pro- gram will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction					
Wor	ds:	1						
Cycl	es:	1(2)	1(2)					
Q Cy If Ju	ycle Activity: mp:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No	No	No	No				
14 5.1	operation	operation	operation	operation				
If No Jump:		02	03	04				
	Decode	Read literal	Process	No				
	Dooddo	'n	Data	operation				
Example:HEREBZJumpBefore InstructionPC=address (HERE)After InstructionIf Zero=1;PC=address (Jump)If Zero=0;PC=address (HERE+2)								

CALL	Subrouti	ne Call				
Syntax:	[label] (CALL k [,s]				
Operands:	0 ≤ k ≤ 10 s ∈ [0,1]	$0 \le k \le 1048575$ s $\in [0,1]$				
Operation:	$\begin{array}{l} (PC) + 4 - \\ k \rightarrow PC < 2 \\ \text{if } s = 1 \\ (WREG) - \\ (STATUS) \\ (BSR) \rightarrow \end{array}$	$(PC) + 4 \rightarrow TOS,$ $k \rightarrow PC<20:1>,$ if s = 1 $(WREG) \rightarrow WS,$ $(STATUS) \rightarrow STATUSS,$ $(BSR) \rightarrow BSRS$				
Status Affected:	None					
Encoding: 1st word (k<7:0> 2nd word(k<19:8) 1110 >) 1111	110s k ₇ k ₁₉ kkk kł	kkk kkkk ₀ ckk kkkk ₈			
Description.	memory r address (l return sta STATUS a also push shadow re and BSRS occurs (de value 'k' is CALL is a	memory range. First, return address (PC+ 4) is pushed onto the return stack. If 's' = 1, the WREG, STATUS and BSR registers are also pushed into their respective shadow registers, WS, STATUSS and BSRS. If 's' = 0, no update occurs (default). Then the 20-bit value 'k' is loaded into PC<20:1>.				
Words:	2					
Cycles:	2					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read literal 'k'<7:0>,	Push PC to stack	Read literal 'k'<19:8>, Write to PC			
No operation	No operation	No operation	No operation			
Example: HERE CALL THERE, FAST						
Before Instruction PC = Address (HERE)						
After Instruction PC = Address (THERE) TOS = Address (HERE + 4) WS = WREG BSRS = BSR STATUSS = STATUS			1)			

25.2 DC Characteristics: PIC18CXX8 (Industrial, Extended) and PIC18LCXX8 (Industrial)

DC CH	ARACTE	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ \mbox{C} \leq \mbox{TA} \leq +85^\circ \mbox{C for industrial} \\ & -40^\circ \mbox{C} \leq \mbox{TA} \leq +125^\circ \mbox{C for extended} \end{array}$						
Param No.	Symbol	Characteristic/ Device	Conditions						
	VIL	Input Low Voltage							
		I/O ports:							
D030		with TTL buffer	Vss	0.15Vdd	V	KDD < 4.5V			
D030A			—	0.8	X	4.5V ≤ VDD ≤ 8.5V			
D031		with Schmitt Trigger buffer	Vss	0.2Vpd	(M)	\setminus \setminus			
		RC3 and RC4	Vss	_0.3VDQ	V	\sim '			
D032		MCLR	Vss	0.2Vpd	\ Y				
D032A		OSC1 (in XT, HS and LP modes)	Vss	0.3VDD	5				
		and T1OSI	$\left[\left\{ \lambda \right\} \right]$						
D033		OSC1(in RC mode)(')			V				
	VIH	Input High Voltage		~					
_		I/O ports:							
D040		with TTL buffer	0.25VDD +	Vdd	V	VDD < 4.5V			
D0404			0.80		v				
D040A		trith Cohmitt Trigger buffer		VDD	V	$4.50 \leq 000 \leq 5.50$			
D041		RC3 and RC4	0.6VDD חסע 0.7V	VDD VDD	V				
D042		MCIR	0.8VDD	VDD	v				
0042	\square'	OSC1 (by XT HS and LP modes)	0.07DD	VDD	v				
DUTZA	$\left(\right)$	and TIOSI	0.7 000	VDD	v				
D043		OSC1 (RC mode) ⁽¹⁾	0.9Vdd	Vdd	V				
	VHYS	Hysteresis of Schmitt Trigger Inputs							
D050			TBD	TBD	V				
	lı∟	Input Leakage Current ^(2,3)							
D060		I/O ports	—	±1	μΑ	$VSS \leq VPIN \leq VDD$,			
						Pin at hi-impedance			
D061		MCLR	—	±5	μΑ	$Vss \leq VPIN \leq VDD$			
D063		OSC1	—	±5	μΑ	$Vss \leq VPIN \leq VDD$			
	IPU	Weak Pull-up Current							
D070	IPURB	PORTB weak pull-up current	50	400	μΑ	VDD = 5V, VPIN = VSS			

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PICmicro device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

68-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

	Units	INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		68			68	
Pitch	р		.050			1.27	
Pins per Side	n1		17			17	
Overall Height	Α	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	E	.985	.990	.995	25.02	25.15	25.27
Overall Length	D	.985	.990	.995	25.02	25.15	25.27
Molded Package Width	E1	.950	.954	.958	24.13	24.23	24.33
Molded Package Length	D1	.950	.954	.958	24.13	24.23	24.33
Footprint Width	E2	.890	.920	.930	22.61	23.37	23.62
Footprint Length	D2	.890	.920	.930	22.61	23.37	23.62
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-047

Drawing No. C04-049

PIC18CXX8 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office

PART NO.	<u>x /xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC18LC658 - I/L 301 = Industrial temp., PLCC package, Extended VDD limits, QTP pattern #301. b) PIC18LC858 - I/PT = Industrial temp., TQFP
Device	PIC18CXX8 ⁽¹⁾ , PIC18CXX8T ⁽²⁾ ; VDD range 4.2V to 5.5V PIC18LCXX5 ⁽¹⁾ , PIC18LCXX8T ⁽²⁾ ; VDD range 2.5V to 5.5V	 package, Extended VDD limits. c) PIC18C658 - E/L = Extended temp., PLCC package, normal VDD limits.
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package	CL = Windowed JCERPACK PT = TQFP (Thin Quad Flatpack) L = PLCC	Note 1: C = Standard Voltage Range LC = Wide Voltage Range 2: T = in tape and reel PLCC, and TQFP packages only. 3: CL devices are UV erasable and can be programmed to any device configuration. CL
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	devices meet the electrical requirement of each oscillator type (including LC devices).

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.