
Microchip Technology - PIC18LC658/CL Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity CANbus, I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 52

Program Memory Size 32KB (16K x 16)

Program Memory Type EPROM, UV

EEPROM Size -

RAM Size 1.5K x 8

Voltage - Supply (Vcc/Vdd) 2.5V ~ 5.5V

Data Converters A/D 12x10b

Oscillator Type External

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 68-CLCC Window (J-Lead)

Supplier Device Package 68-CLCC (24.13x24.13)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lc658-cl

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lc658-cl-4425799
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18CXX8

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

00

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

uu

n
r
(3)

 ‘0’.
TXB2D7 TXB2D77 TXB2D76 TXB2D75 TXB2D74 TXB2D73 TXB2D72 TXB2D71 TXB2D70 xxxx xxxx uuuu uu

TXB2D6 TXB2D67 TXB2D66 TXB2D65 TXB2D64 TXB2D63 TXB2D62 TXB2D61 TXB2D60 xxxx xxxx uuuu uu

TXB2D5 TXB2D57 TXB2D56 TXB2D55 TXB2D54 TXB2D53 TXB2D52 TXB2D51 TXB2D50 xxxx xxxx uuuu uu

TXB2D4 TXB2D47 TXB2D46 TXB2D45 TXB2D44 TXB2D43 TXB2D42 TXB2D41 TXB2D40 xxxx xxxx uuuu uu

TXB2D3 TXB2D37 TXB2D36 TXB2D35 TXB2D34 TXB2D33 TXB2D32 TXB2D31 TXB2D30 xxxx xxxx uuuu uu

TXB2D2 TXB2D27 TXB2D26 TXB2D25 TXB2D24 TXB2D23 TXB2D22 TXB2D21 TXB2D20 xxxx xxxx uuuu uu

TXB2D1 TXB2D17 TXB2D16 TXB2D15 TXB2D14 TXB2D13 TXB2D12 TXB2D11 TXB2D10 xxxx xxxx uuuu uu

TXB2D0 TXB2D07 TXB2D06 TXB2D05 TXB2D04 TXB2D03 TXB2D02 TXB2D01 TXB2D00 xxxx xxxx uuuu uu

TXB2DLC — TXRTR — — DLC3 DLC2 DLC1 DLC0 0x00 xxxx 0u00 uu

TXB2EIDL EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0 xxxx xxxx uuuu uu

TXB2EIDH EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8 xxxx xxxx uuuu uu

TXB2SIDL SID2 SID1 SID0 — EXIDEN — EID17 EID16 xxx0 x0xx uuu0 u0

TXB2SIDH SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 xxxx xxxx uuuu uu

TXB2CON — TXABT TXLARB TXERR TXREQ — TXPRI1 TXPRI0 0000 0000 0000 00

RXM1EIDL EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0 xxxx xxxx uuuu uu

RXM1EIDH EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8 xxxx xxxx uuuu uu

RXM1SIDL SID2 SID1 SID0 — — — EID17 EID16 xxx- --xx uuu- --

RXM1SIDH SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 xxxx xxxx uuuu uu

RXM0EIDL EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0 xxxx xxxx uuuu uu

RXM0EIDH EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8 xxxx xxxx uuuu uu

RXM0SIDL SID2 SID1 SID0 — — — EID17 EID16 xxx- --xx uuu- --

RXM0SIDH SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 xxxx xxxx uuuu uu

RXF5EID0 EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0 xxxx xxxx uuuu uu

RXF5EID8 EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8 xxxx xxxx uuuu uu

RXF5SIDL SID2 SID1 SID0 — EXIDEN — EID17 EID16 xxx- x-xx uuu- u-

RXF5SIDH SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 xxxx xxxx uuuu uu

RXF4EID0 EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0 xxxx xxxx uuuu uu

RXF4EID8 EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8 xxxx xxxx uuuu uu

RXF4SIDL SID2 SID1 SID0 — EXIDEN — EID17 EID16 xxx- x-xx uuu- u-

RXF4SIDH SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 xxxx xxxx uuuu uu

RXF3EID0 EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0 xxxx xxxx uuuu uu

RXF3EID8 EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8 xxxx xxxx uuuu uu

RXF3SIDL SID2 SID1 SID0 — EXIDEN — EID17 EID16 xxx- x-xx uuu- u-

RXF3SIDH SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 xxxx xxxx uuuu uu

Filename Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on

POR,
BOR

Value o
all othe

RESETS

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read

2: Bit 21 of the TBLPTRU allows access to the device configuration bits.
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.
4: These registers are reserved on PIC18C658.
DS30475A-page 58 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8
4.13.1 RCON REGISTER

The Reset Control (RCON) register contains flag bits
that allow differentiation between the sources of a
device RESET. These flags include the TO, PD, POR,
BOR and RI bits. This register is readable and writable.

REGISTER 4-3: RCON REGISTER

Note 1: If the BOREN configuration bit is set, BOR
is ’1’ on Power-on Reset. If the BOREN
configuration bit is clear, BOR is unknown
on Power-on Reset.
The BOR status bit is a “don't care” and is
not necessarily predictable if the
brown-out circuit is disabled (the BOREN
configuration bit is clear). BOR must then
be set by the user and checked on subse-
quent RESETs to see if it is clear, indicat-
ing a brown-out has occurred.

2: It is recommended that the POR bit be set
after a Power-on Reset has been
detected, so that subsequent Power-on
Resets may be detected.

R/W-0 R/W-0 U-0 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0

IPEN LWRT — RI TO PD POR BOR

bit 7 bit 0

bit 7 IPEN: Interrupt Priority Enable bit
1 = Enable priority levels on interrupts
0 = Disable priority levels on interrupts (16CXXX compatibility mode)

bit 6 LWRT: Long Write Enable bit
1 = Enable TBLWT to internal program memory

Once this bit is set, it can only be cleared by a POR or MCLR Reset
0 = Disable TBLWT to internal program memory; TBLWT only to external program memory

bit 5 Unimplemented: Read as '0'

bit 4 RI: RESET Instruction Flag bit
1 = The RESET instruction was not executed
0 = The RESET instruction was executed causing a device RESET

(must be set in software after a Brown-out Reset occurs)

bit 3 TO: Watchdog Time-out Flag bit
1 = After power-up, CLRWDT instruction, or SLEEP instruction
0 = A WDT time-out occurred

bit 2 PD: Power-down Detection Flag bit
1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction

bit 1 POR: Power-on Reset Status bit
1 = A Power-on Reset has not occurred
0 = A Power-on Reset occurred

(must be set in software after a Power-on Reset occurs)

bit 0 BOR: Brown-out Reset Status bit
1 = A Brown-out Reset has not occurred
0 = A Brown-out Reset occurred

(must be set in software after a Brown-out Reset occurs)

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
DS30475A-page 64 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8

TABLE 8-13: PORTG FUNCTIONS

Note: Refer to "CAN Module", Section 17.0 for usage of CAN pin functions.

TABLE 8-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG

Name Bit# Buffer Type Function

RG0/CANTX0 bit0 ST Input/output port pin or CAN bus transmit output.

RG1/CANTX1 bit1 ST Input/output port pin or CAN bus complimentary transmit output or CAN
bus bit time clock.

RG2/CANRX bit2 ST Input/output port pin or CAN bus receive input.

RG3 bit3 ST Input/output port pin.

RG4 bit4 ST Input/output port pin.
Legend: ST = Schmitt Trigger input

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on:

POR,
BOR

Value on all
other

RESETS

TRISG PORTG Data Direction Control Register ---1 1111 ---1 1111

PORTG Read PORTG pin / Write PORTG Data Latch ---x xxxx ---u uuuu

LATG Read PORTG Data Latch/Write PORTG Data Latch ---x xxxx ---u uuuu

CIOCON TX1SRC TX1EN ENDRHI CANCAP — — — — 0000 ---- 0000 ----

Legend: x = unknown, u = unchanged
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 103

PIC18CXX8
FIGURE 9-2: PARALLEL SLAVE PORT WRITE WAVEFORMS

FIGURE 9-3: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 9-1: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Q1 Q2 Q3 Q4

CS

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

WR

RD

IBF

OBF

PSPIF

PORTD

Q1 Q2 Q3 Q4

CS

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

WR

IBF

PSPIF

RD

OBF

PORTD

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on

POR, BOR

Value on all
other

RESETS

PORTD Port data latch when written; port pins when read xxxx xxxx uuuu uuuu

LATD LATD Data Output Bits xxxx xxxx uuuu uuuu

TRISD PORTD Data Direction Bits 1111 1111 1111 1111

PORTE RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0 0000 0000 0000 0000

LATE LATE Data Output Bits xxxx xxxx uuuu uuuu

TRISE PORTE Data Direction Bits 1111 1111 1111 1111

INTCON GIE/
GIEH

PEIE/
GIEL

TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 0000 000u

PIR1 PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000

PIE1 PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000

IPR1 PSPIP ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as ’0’.
Shaded cells are not used by the Parallel Slave Port.
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 111

PIC18CXX8
13.0 TIMER3 MODULE
The Timer3 module timer/counter has the following
features:

• 16-bit timer/counter
(Two 8-bit registers: TMR3H and TMR3L)

• Readable and writable (both registers)
• Internal or external clock select

• Interrupt on overflow from FFFFh to 0000h
• RESET from CCP module trigger

Figure 13-1 is a simplified block diagram of the Timer3
module.

Register 13-1 shows the Timer3 Control Register. This
register controls the operating mode of the Timer3
module and sets the CCP clock source.

Register 11-1 shows the Timer1 Control register. This
register controls the operating mode of the Timer1
module, as well as contains the Timer1 oscillator
enable bit (T1OSCEN), which can be a clock source for
Timer3.

REGISTER 13-1: T3CON REGISTER

Note: Timer3 is disabled on POR.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON

bit 7 bit 0

bit 7 RD16: 16-bit Read/Write Mode Enable
1 = Enables register Read/Write of Timer3 in one 16-bit operation
0 = Enables register Read/Write of Timer3 in two 8-bit operations

bit 6,3 T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits
1x = Timer3 is the clock source for compare/capture CCP modules
01 = Timer3 is the clock source for compare/capture of CCP2,
 Timer1 is the clock source for compare/capture of CCP1
00 = Timer1 is the clock source for compare/capture CCP modules

bit 5-4 T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits
11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1:1 Prescale value

bit 2 T3SYNC: Timer3 External Clock Input Synchronization Control bit
(Not usable if the system clock comes from Timer1/Timer3)

When TMR3CS = 1:
1 = Do not synchronize external clock input
0 = Synchronize external clock input

When TMR3CS = 0:
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.

bit 1 TMR3CS: Timer3 Clock Source Select bit
1 = External clock input from Timer1 oscillator or T1CKI (on the rising edge after the first falling
 edge)
0 = Internal clock (Fosc/4)

bit 0 TMR3ON: Timer3 On bit
1 = Enables Timer3
0 = Stops Timer3

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 123

PIC18CXX8
14.0 CAPTURE/COMPARE/PWM
(CCP) MODULES

Each CCP (Capture/Compare/PWM) module contains
a 16-bit register that can operate as a 16-bit capture
register, as a 16-bit compare register, or as a PWM
Duty Cycle register. Table 14-1 shows the timer
resources of the CCP module modes.

The operation of CCP1 is identical to that of CCP2, with
the exception of the special event trigger and the CAN
message timestamp received. (Refer to “CAN Module”,

Section 17.0 for CAN operation.) Therefore, operation
of a CCP module in the following sections is described
with respect to CCP1.

Table 14-2 shows the interaction of the CCP modules.

Register 14-1 shows the CCPx Control registers
(CCPxCON). For the CCP1 module, the register is
called CCP1CON and for the CCP2 module, the regis-
ter is called CCP2CON.

REGISTER 14-1: CCP1CON REGISTER
CCP2CON REGISTER

U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

CCP1CON — — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0

bit 7 bit 0

U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

CCP2CON — — DC2B1 DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0

bit 7 bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-4 DCxB1:DCxB0: PWM Duty Cycle bit1 and bit0
Capture Mode:
Unused

Compare Mode:
Unused

PWM Mode:
These bits are the two LSbs (bit1 and bit0) of the 10-bit PWM duty cycle. The upper eight bits
(DCx9:DCx2) of the duty cycle are found in CCPRxL.

bit 3-0 CCPxM3:CCPxM0: CCPx Mode Select bits

0000 = Capture/Compare/PWM off (resets CCPx module)
0001 = Reserved
0010 = Compare mode, toggle output on match (CCPxIF bit is set)
0011 = Capture mode, CAN message received (CCP1 only)
0100 = Capture mode, every falling edge
0101 = Capture mode, every rising edge
0110 = Capture mode, every 4th rising edge
0111 = Capture mode, every 16th rising edge
1000 = Compare mode,

Initialize CCP pin Low, on compare match force CCP pin High (CCPIF bit is set)
1001 = Compare mode,

Initialize CCP pin High, on compare match force CCP pin Low (CCPIF bit is set)
1010 = Compare mode,

Generate software interrupt on compare match
(CCPIF bit is set, CCP pin is unaffected)

1011 = Compare mode,
Trigger special event (CCPIF bit is set, reset TMR1 or TMR3)

11xx = PWM mode

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 127

PIC18CXX8
When the application software is expecting to receive
valid data, the SSPBUF should be read before the next
byte of data to transfer is written to the SSPBUF. The
buffer full (BF) bit (SSPSTAT register) indicates when
SSPBUF has been loaded with the received data
(transmission is complete). When the SSPBUF is read,
the BF bit is cleared. This data may be irrelevant if the
SPI is only a transmitter. Generally, the MSSP Interrupt
is used to determine when the transmission/reception
has completed. The SSPBUF must be read and/or
written. If the interrupt method is not going to be used,
then software polling can be done to ensure that a write
collision does not occur. Example 15-1 shows the
loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable, and
can only be accessed by addressing the SSPBUF reg-
ister. Additionally, the MSSP status register (SSPSTAT
register) indicates the various status conditions.

15.3.2 ENABLING SPI I/O

To enable the serial port, SSP Enable bit, SSPEN
(SSPCON1 register), must be set. To reset or reconfig-
ure SPI mode, clear the SSPEN bit, re-initialize the
SSPCON registers, and then set the SSPEN bit. This
configures the SDI, SDO, SCK, and SS pins as serial
port pins. For the pins to behave as the serial port func-
tion, some must have their data direction bits (in the
TRIS register) appropriately programmed. That is:

• SDI is automatically controlled by the SPI module
• SDO must have TRISC<5> bit cleared
• SCK (Master mode) must have TRISC<3> bit

cleared
• SCK (Slave mode) must have TRISC<3> bit set
• SS must have TRISC<4> bit set

Any serial port function that is not desired may be over-
ridden by programming the corresponding data direc-
tion (TRIS) register to the opposite value.

EXAMPLE 15-1: LOADING THE SSPBUF (SSPSR) REGISTER
LOOP BTFSS SSPSTAT, BF ;Has data been received (transmit complete)?
 GOTO LOOP ;No
 MOVF SSPBUF, W ;WREG reg = contents of SSPBUF

 MOVWF RXDATA ;Save in user RAM, if data is meaningful

 MOVF TXDATA, W ;W reg = contents of TXDATA
 MOVWF SSPBUF ;New data to xmit
DS30475A-page 142 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8
FIGURE 15-15: I2C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)

S
D

A

S
C

L

S
S

P
IF

B
F

S
E

N

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
C

K
 =

 0
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0

A
C

K
Tr

an
sm

itt
in

g
D

at
a

or
 S

ec
on

d
H

al
f

R
/W

 =
 0

Tr
an

sm
it

A
dd

re
ss

 to
 S

la
ve

1
2

3
4

5
6

7
8

9
1

2
3

4
5

6
7

8
9

P

C
le

ar
ed

 in
 s

of
tw

ar
e

se
rv

ic
e

ro
ut

in
e

S
S

P
B

U
F

 is
 w

rit
te

n
in

 s
of

tw
ar

e

F
ro

m
 S

S
P

 in
te

rr
up

t

A
fte

r
S

T
A

R
T

 c
on

di
tio

n,
 S

E
N

 c
le

ar
ed

 b
y

ha
rd

w
ar

e.

S

S
S

P
B

U
F

 w
rit

te
n

w
ith

 7
-b

it
ad

dr
es

s
an

d
R

/W
st

ar
t t

ra
ns

m
it

S
C

L
he

ld
 lo

w
w

hi
le

 C
P

U
re

sp
on

ds
 to

 S
S

P
IF

S
E

N
 =

 0

of
 1

0-
bi

t A
dd

re
ss

W
rit

e
S

S
P

C
O

N
2<

0>
 S

E
N

 =
 1

S
TA

R
T

 c
on

di
tio

n
be

gi
ns

F
ro

m
 s

la
ve

, c
le

ar
 A

C
K

S
TA

T
 b

it
S

S
P

C
O

N
2<

6>

A
C

K
S

TA
T

 in

S
S

P
C

O
N

2
=

 1

C
le

ar
ed

 in
 s

of
tw

ar
e

S
S

P
B

U
F

 w
rit

te
n

P
E

N

C
le

ar
ed

 in
 s

of
tw

ar
e

R
/W
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 157

PIC18CXX8
15.4.16.1 Bus Collision During a START Condition

During a START condition, a bus collision occurs if:

a) SDA or SCL are sampled low at the beginning of
the START condition (Figure 15-21).

b) SCL is sampled low before SDA is asserted low
(Figure 15-22).

During a START condition, both the SDA and the SCL
pins are monitored.

If:
the SDA pin is already low
or the SCL pin is already low,

then:
the START condition is aborted,
and the BCLIF flag is set,
and the MSSP module is reset to its IDLE state
(Figure 15-21).

The START condition begins with the SDA and SCL
pins de-asserted. When the SDA pin is sampled high,
the baud rate generator is loaded from SSPADD<6:0>
and counts down to 0. If the SCL pin is sampled low
while SDA is high, a bus collision occurs, because it is
assumed that another master is attempting to drive a
data ’1’ during the START condition.

If the SDA pin is sampled low during this count, the
BRG is reset and the SDA line is asserted early
(Figure 15-23). If, however, a ’1’ is sampled on the SDA
pin, the SDA pin is asserted low at the end of the BRG
count. The baud rate generator is then reloaded and
counts down to 0, and during this time, if the SCL pin is
sampled as ’0’, a bus collision does not occur. At the
end of the BRG count, the SCL pin is asserted low.

FIGURE 15-21: BUS COLLISION DURING START CONDITION (SDA ONLY)

Note: The reason that bus collision is not a factor
during a START condition is that no two
bus masters can assert a START condition
at the exact same time. Therefore, one
master will always assert SDA before the
other. This condition does not cause a bus
collision, because the two masters must be
allowed to arbitrate the first address follow-
ing the START condition. If the address is
the same, arbitration must be allowed to
continue into the data portion, Repeated
START or STOP conditions.

SDA

SCL

SEN

SDA sampled low before

SDA goes low before the SEN bit is set.

S bit and SSPIF set because

SSP module reset into IDLE state.
SEN cleared automatically because of bus collision.

S bit and SSPIF set because

Set SEN, enable START
condition if SDA = 1, SCL = 1.

SDA = 0, SCL = 1.

BCLIF

S

SSPIF

SDA = 0, SCL = 1.

SSPIF and BCLIF are
cleared in software.

SSPIF and BCLIF are
cleared in software.

. Set BCLIF,

Set BCLIF.START condition.
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 163

PIC18CXX8
22.3.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and
any interrupt source has both its interrupt enable bit
and interrupt flag bit set, one of the following will occur:

• If an interrupt condition (interrupt flag bit and inter-
rupt enable bits are set) occurs before the execu-
tion of a SLEEP instruction, the SLEEP instruction
will complete as a NOP. Therefore, the WDT and
WDT postscaler will not be cleared, the TO bit will
not be set and PD bits will not be cleared.

• If the interrupt condition occurs during or after
the execution of a SLEEP instruction, the device
will immediately wake-up from sleep. The SLEEP
instruction will be completely executed before the
wake-up. Therefore, the WDT and WDT
postscaler will be cleared, the TO bit will be set
and the PD bit will be cleared.

Even if the flag bits were checked before executing a
SLEEP instruction, it may be possible for flag bits to
become set before the SLEEP instruction completes. To
determine whether a SLEEP instruction executed, test
the PD bit. If the PD bit is set, the SLEEP instruction
was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruc-
tion should be executed before a SLEEP instruction.

FIGURE 22-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT(1,2)

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

CLKOUT(4)

INT pin

INTIF bit

GIEH bit

INSTRUCTION FLOW

PC

Instruction
fetched

Instruction
executed

PC PC+2 PC+4

Inst(PC) = SLEEP

Inst(PC - 1)

Inst(PC + 2)

SLEEP

Processor in

SLEEP

Interrupt Latency(3)

Inst(PC + 4)

Inst(PC + 2)

Inst(0008h) Inst(000Ah)

Inst(0008h)Dummy cycle

PC + 4 0008h 000Ah

Dummy cycle

TOST(2)

PC+4

Note 1: XT, HS or LP oscillator mode assumed.
2: GIE set is assumed. In this case, after wake- up, the processor jumps to the interrupt routine.

If GIE is cleared, execution will continue in-line.
3: TOST = 1024TOSC (drawing not to scale). This delay will not occur for RC and EC osc modes.
4: CLKOUT is not available in these oscillator modes, but shown here for timing reference.
DS30475A-page 258 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8
22.4 Program Verification/Code Protection

If the code protection bit(s) have not been pro-
grammed, the on-chip program memory can be read
out for verification purposes.

22.5 ID Locations

Five memory locations (200000h - 200004h) are desig-
nated as ID locations, where the user can store check-
sum or other code identification numbers. These
locations are accessible during normal execution
through the TBLRD instruction, or during program/ver-
ify. The ID locations can be read when the device is
code protected.

22.6 In-Circuit Serial Programming

PIC18CXX8 microcontrollers can be serially pro-
grammed while in the end application circuit. This is
simply done with two lines for clock and data, and three
other lines for power, ground and the programming
voltage. This allows customers to manufacture boards
with unprogrammed devices, and then program the
microcontroller just before shipping the product. This
also allows the most recent firmware or a custom firm-
ware to be programmed.

22.7 Device ID Bits

Device ID bits are located in program memory at
3FFFFEh and 3FFFFFh. The Device ID bits are used
by programmers to retrieve part number and revision
information about a device. These registers may also
be accessed using a TBLRD instruction (Register 22-8
and Register 22-7).

REGISTER 22-7: DEVID1 ID REGISTER FOR THE PIC18CXX8 DEVICE (0x3FFFFE)

REGISTER 22-8: DEVID2 ID REGISTER FOR THE PIC18CXX8 DEVICE (0x3FFFFF)

Note: Microchip Technology does not recom-
mend code protecting windowed devices.

R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1

DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0

bit 7 bit 0

bit 7-5 DEV2:DEV0: Device ID bits
These bits are used with the DEV10:DEV3 bits in the Device ID register 2
to identify the part number

bit 4-0 REV4:REV0: Revision ID bits
These bits are used to indicate the revision of the device

Legend:

R = Readable bit P = Programmable bit

U = Unimplemented bit, read as ‘0’ - n = Unprogrammed Value
 (x = unknown)

R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1

DEV10 DEV9 DEV8 DEV7 DEV6 DEV5 DEV4 DEV3

bit 7 bit 0

bit 7-0 DEV10:DEV3: Device ID bits
These bits are used with the DEV2:DEV0 bits in the Device ID register 1
to identify the part number

Legend:

R = Readable bit P = Programmable bit

U = Unimplemented bit, read as ‘0’ - n = Unprogrammed Value
 (x = unknown)
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 259

PIC18CXX8

n

is

e

CONTROL OPERATIONS
BC
BN
BNC
BNN
BNOV
BNZ
BOV
BRA
BZ
CALL

CLRWDT
DAW
GOTO

NOP
NOP
POP
PUSH
RCALL
RESET
RETFIE

RETLW
RETURN
SLEEP

n
n
n
n
n
n
n
n
n
n, s

—
—
n

—
—
—
—
n

s

k
s
—

Branch if Carry
Branch if Negative
Branch if Not Carry
Branch if Not Negative
Branch if Not Overflow
Branch if Not Zero
Branch if Overflow
Branch Unconditionally
Branch if Zero
Call subroutine1st word
 2nd word
Clear Watchdog Timer
Decimal Adjust WREG
Go to address1st word
 2nd word
No Operation
No Operation (Note 4)
Pop top of return stack (TOS)
Push top of return stack (TOS)
Relative Call
Software device RESET
Return from interrupt enable

Return with literal in WREG
Return from Subroutine
Go into Standby mode

1 (2)
1 (2)
1 (2)
1 (2)
1 (2)
2
1 (2)
1 (2)
1 (2)
2

1
1
2

1
1
1
1
2
1
2

2
2
1

1110
1110
1110
1110
1110
1110
1110
1101
1110
1110
1111
0000
0000
1110
1111
0000
1111
0000
0000
1101
0000
0000

0000
0000
0000

0010
0110
0011
0111
0101
0001
0100
0nnn
0000
110s
kkkk
0000
0000
1111
kkkk
0000
xxxx
0000
0000
1nnn
0000
0000

1100
0000
0000

nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
kkkk
kkkk
0000
0000
kkkk
kkkk
0000
xxxx
0000
0000
nnnn
1111
0001

kkkk
0001
0000

nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
kkkk
kkkk
0100
0111
kkkk
kkkk
0000
xxxx
0110
0101
nnnn
1111
000s

kkkk
001s
0011

None
None
None
None
None
None
None
None
None
None

TO, PD
C
None

None
None
None
None
None
All
GIE/GIEH,
PEIE/GIEL
None
None
TO, PD

TABLE 23-2: PIC18CXX8 INSTRUCTION SET (CONTINUED)

Mnemonic,
Operands

Description Cycles
16-Bit Instruction Word Status

Affected
Notes

MSb LSb

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value
present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by a
external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if
assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle
executed as a NOP.

4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP, unless th
first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory
locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.
6: Microchip Assembler MASM automatically defaults destination bit ’d’ to ’1’, while access bit ’a’ defaults to ’1’ or ’0’

according to address of register being used.
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 265

PIC18CXX8

ADDWFC ADD WREG and Carry bit to f

Syntax: [label] ADDWFC f [,d [,a]]

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (WREG) + (f) + (C) → dest

Status Affected: N,OV, C, DC, Z

Encoding: 0010 00da ffff ffff

Description: Add WREG, the Carry Flag and data
memory location ’f’. If ’d’ is 0, the
result is placed in WREG. If ’d’ is 1,
the result is placed in data memory
location 'f'. If ’a’ is 0, the Access
Bank will be selected. If ’a’ is 1, the
Bank will be selected as per the
BSR value.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ’f’

Process
Data

Write to
destination

Example: ADDWFC REG, W

Before Instruction
C = 1
REG = 0x02
WREG = 0x4D
N = ?
OV = ?
DC = ?
Z = ?

After Instruction
C = 0
REG = 0x02
WREG = 0x50
N = 0
OV = 0
DC = 0
Z = 0

ANDLW AND literal with WREG

Syntax: [label] ANDLW k

Operands: 0 ≤ k ≤ 255

Operation: (WREG) .AND. k → WREG

Status Affected: N,Z

Encoding: 0000 1011 kkkk kkkk

Description: The contents of WREG are AND’ed
with the 8-bit literal 'k'. The result is
placed in WREG.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal
’k’

Process
Data

Write to W

Example: ANDLW 0x5F

Before Instruction
WREG = 0xA3
N = ?
Z = ?

After Instruction
WREG = 0x03
N = 0
Z = 0
DS30475A-page 268 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8

BZ Branch if Zero

Syntax: [label] BZ n

Operands: -128 ≤ n ≤ 127

Operation: if Zero bit is ’1’
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0000 nnnn nnnn

Description: If the Zero bit is ’1’, then the pro-
gram will branch.
The 2’s complement number ’2n’ is
added to the PC. Since the PC will
have incremented to fetch the next
instruction, the new address will be
PC+2+2n. This instruction is then
a two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

’n’
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
’n’

Process
Data

No
operation

Example: HERE BZ Jump

Before Instruction
PC = address (HERE)

After Instruction
If Zero = 1;

PC = address (Jump)
If Zero = 0;

PC = address (HERE+2)

CALL Subroutine Call

Syntax: [label] CALL k [,s]

Operands: 0 ≤ k ≤ 1048575
s ∈ [0,1]

Operation: (PC) + 4 → TOS,
k → PC<20:1>,
if s = 1
(WREG) → WS,
(STATUS) → STATUSS,
(BSR) → BSRS

Status Affected: None

Encoding:
1st word (k<7:0>)
2nd word(k<19:8>)

1110
1111

110s
k19kkk

k7kkk
kkkk

kkkk0
kkkk8

Description: Subroutine call of entire 2M byte
memory range. First, return
address (PC+ 4) is pushed onto the
return stack. If ’s’ = 1, the WREG,
STATUS and BSR registers are
also pushed into their respective
shadow registers, WS, STATUSS
and BSRS. If 's' = 0, no update
occurs (default). Then the 20-bit
value ’k’ is loaded into PC<20:1>.
CALL is a two-cycle instruction.

Words: 2

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal
’k’<7:0>,

Push PC to
stack

Read literal
’k’<19:8>,

Write to PC

No
operation

No
operation

No
operation

No
operation

Example: HERE CALL THERE, FAST

Before Instruction
PC = Address(HERE)

After Instruction
PC = Address(THERE)
TOS = Address (HERE + 4)
WS = WREG
BSRS = BSR
STATUSS = STATUS
DS30475A-page 276 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8

POP Pop Top of Return Stack

Syntax: [label] POP

Operands: None

Operation: (TOS) → bit bucket

Status Affected: None

Encoding: 0000 0000 0000 0110

Description: The TOS value is pulled off the
return stack and is discarded. The
TOS value then becomes the previ-
ous value that was pushed onto the
return stack.
This instruction is provided to
enable the user to properly manage
the return stack to incorporate a
software stack.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode No

operation
Pop TOS

value
No

operation

Example: POP
GOTO NEW

Before Instruction
TOS = 0031A2h
Stack (1 level down) = 014332h

After Instruction
TOS = 014332h
PC = NEW

PUSH Push Top of Return Stack

Syntax: [label] PUSH

Operands: None

Operation: (PC+2) → TOS

Status Affected: None

Encoding: 0000 0000 0000 0101

Description: The PC+2 is pushed onto the top of
the return stack. The previous TOS
value is pushed down on the stack.
This instruction allows implement-
ing a software stack by modifying
TOS, and then push it onto the
return stack.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Push PC+2
onto return

stack

No
operation

No
operation

Example: PUSH

Before Instruction
TOS = 00345Ah
PC = 000124h

After Instruction
PC = 000126h
TOS = 000126h
Stack (1 level down) = 00345Ah
DS30475A-page 290 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8

RETFIE Return from Interrupt

Syntax: [label] RETFIE [s]

Operands: s ∈ [0,1]

Operation: (TOS) → PC,
1 → GIE/GIEH or PEIE/GIEL,
if s = 1
(WS) → W,
(STATUSS) → STATUS,
(BSRS) → BSR,
PCLATU, PCLATH are unchanged.

Status Affected: None

Encoding: 0000 0000 0001 000s

Description: Return from Interrupt. Stack is
popped and Top-of-Stack (TOS)
is loaded into the PC. Interrupts
are enabled by setting the either
the high or low priority global
interrupt enable bit. If ’s’ = 1, the
contents of the shadow registers
WS, STATUSS and BSRS are
loaded into their corresponding
registers, WREG, STATUS and
BSR. If ’s’ = 0, no update of
these registers occurs (default).

Words: 1

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

No
operation

Pop PC from
stack

Set GIEH or
GIEL

No
operation

No
operation

No
operation

No
operation

Example: RETFIE 1

After Interrupt
PC = TOS
WREG = WS
BSR = BSRS
STATUS = STATUSS
GIE/GIEH, PEIE/GIEL = 1

RETLW Return Literal to WREG

Syntax: [label] RETLW k

Operands: 0 ≤ k ≤ 255

Operation: k → W,
(TOS) → PC,
PCLATU, PCLATH are unchanged

Status Affected: None

Encoding: 0000 1100 kkkk kkkk

Description: W is loaded with the eight bit literal
'k'. The program counter is loaded
from the top of the stack (the return
address). The high address latch
(PCLATH) remains unchanged.

Words: 1

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ’k’

Process
Data

Pop PC from
stack, write

to W

No
operation

No
operation

No
operation

No
operation

Example:

 CALL TABLE ; WREG contains table
; offset value
; WREG now has
; table value

 :
TABLE
 ADDWF PCL ; WREG = offset
 RETLW k0 ; Begin table
 RETLW k1 ;
 :
 :
 RETLW kn ; End of table

Before Instruction
WREG = 0x07

After Instruction
WREG = value of kn
DS30475A-page 292 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8

RLNCF Rotate Left f (no carry)

Syntax: [label] RLNCF f [,d [,a]]

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f<n>) → dest<n+1>,
(f<7>) → dest<0>

Status Affected: N,Z

Encoding: 0100 01da ffff ffff

Description: The contents of register ’f’ are
rotated one bit to the left. If ’d’ is 0
the result is placed in WREG. If ’d’
is 1, the result is stored back in reg-
ister 'f' (default). If ’a’ is 0, the
Access Bank will be selected, over-
riding the BSR value. If ’a’ is 1, the
Bank will be selected as per the
BSR value.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ’f’

Process
Data

Write to
destination

Example: RLNCF REG

Before Instruction
REG = 1010 1011
N = ?
Z = ?

After Instruction
REG = 0101 0111
N = 0
Z = 0

register f

RRCF Rotate Right f through Carry

Syntax: [label] RRCF f [,d [,a]]

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f<n>) → dest<n-1>,
(f<0>) → C,
(C) → dest<7>

Status Affected: C,N,Z

Encoding: 0011 00da ffff ffff

Description: The contents of register 'f' are
rotated one bit to the right through
the Carry Flag. If 'd' is 0, the result
is placed in WREG. If 'd' is 1, the
result is placed back in register 'f'
(default). If ’a’ is 0, the Access
Bank will be selected, overriding
the BSR value. If ’a’ is 1, the Bank
will be selected as per the BSR
value.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ’f’

Process
Data

Write to
destination

Example: RRCF REG, W

Before Instruction
REG = 1110 0110
C = 0
N = ?
Z = ?

After Instruction
REG = 1110 0110
WREG = 0111 0011
C = 0
N = 0
Z = 0

C register f
DS30475A-page 294 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8

SUBFWB (Cont.)
Example 1: SUBFWB REG

Before Instruction
REG = 3
WREG = 2
C = 1

After Instruction
REG = 0xFF
WREG = 2
C = 0
Z = 0
N = 1 ; result is negative

Example 2: SUBFWB REG

Before Instruction
REG = 2
WREG = 5
C = 1

After Instruction
REG = 2
WREG = 3
C = 1
Z = 0
N = 0 ; result is positive

Example 3: SUBFWB REG

Before Instruction
REG = 1
WREG = 2
C = 0

After Instruction
REG = 0
WREG = 2
C = 1
Z = 1 ; result is zero
N = 0

SUBLW Subtract WREG from literal

Syntax: [label] SUBLW k

Operands: 0 ≤ k ≤ 255

Operation: k – (WREG) → WREG

Status Affected: N,OV, C, DC, Z

Encoding: 0000 1000 kkkk kkkk

Description: WREG is subtracted from the
eight bit literal 'k'. The result is
placed in WREG.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

literal ’k’
Process

Data
Write to W

Example 1: SUBLW 0x02

Before Instruction
WREG = 1
C = ?

After Instruction
WREG = 1
C = 1 ; result is positive
Z = 0
N = 0

Example 2: SUBLW 0x02

Before Instruction
WREG = 2
C = ?

After Instruction
WREG = 0
C = 1 ; result is zero
Z = 1
N = 0

Example 3: SUBLW 0x02

Before Instruction
WREG = 3
C = ?

After Instruction
WREG = 0xFF ; (2’s complement)
C = 0 ; result is negative
Z = 0
N = 1
 2000 Microchip Technology Inc. Advanced Information DS30475A-page 297

PIC18CXX8
APPENDIX C: DEVICE MIGRATIONS
This section is intended to describe the functional and
electrical specification differences when migrating
between functionally similar devices (such as from a
PIC16C74A to a PIC16C74B).

Not Applicable

APPENDIX D: MIGRATING FROM
OTHER PICMICRO
DEVICES

This discusses some of the issues in migrating from
other PICmicro devices to the PIC18CXXX family of
devices.

D.1 PIC16CXXX to PIC18CXXX

See application note AN716.

D.2 PIC17CXXX to PIC18CXXX

See application note AN726.
DS30475A-page 350 Advanced Information  2000 Microchip Technology Inc.

PIC18CXX8
NOTES:
DS30475A-page 364 Advanced Information  2000 Microchip Technology Inc.

