



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                   |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | PIC                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 40MHz                                                                    |
| Connectivity               | CANbus, I <sup>2</sup> C, SPI, UART/USART                                |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                               |
| Number of I/O              | 52                                                                       |
| Program Memory Size        | 32KB (16K x 16)                                                          |
| Program Memory Type        | OTP                                                                      |
| EEPROM Size                | -                                                                        |
| RAM Size                   | 1.5K x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 5.5V                                                              |
| Data Converters            | A/D 12x10b                                                               |
| Oscillator Type            | External                                                                 |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 68-LCC (J-Lead)                                                          |
| Supplier Device Package    | 68-PLCC (24.23x24.23)                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18lc658-i-l |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# **Table of Contents**

| 1.0   | Device (                                       | Device Overview                                                      |     |  |  |  |  |  |
|-------|------------------------------------------------|----------------------------------------------------------------------|-----|--|--|--|--|--|
| 2.0   | Oscillato                                      | r Configurations                                                     | 21  |  |  |  |  |  |
| 3.0   | Reset                                          |                                                                      | 29  |  |  |  |  |  |
| 4.0   | Memory Organization                            |                                                                      |     |  |  |  |  |  |
| 5.0   | Table Reads/Table Writes                       |                                                                      |     |  |  |  |  |  |
| 6.0   | 8 X 8 Ha                                       | ardware Multiplier                                                   | 71  |  |  |  |  |  |
| 7.0   | Interrupt                                      | S                                                                    | 75  |  |  |  |  |  |
| 8.0   | I/O Ports                                      | 3                                                                    | 89  |  |  |  |  |  |
| 9.0   | Parallel                                       | Slave Port                                                           | 109 |  |  |  |  |  |
| 10.0  | Timer0 Module                                  |                                                                      |     |  |  |  |  |  |
| 11.0  | Timer1 M                                       | Nodule                                                               | 117 |  |  |  |  |  |
| 12.0  | Timer2                                         | Nodule                                                               | 121 |  |  |  |  |  |
| 13.0  | Timer3                                         | Nodule                                                               | 123 |  |  |  |  |  |
| 14.0  | Capture                                        | Compare/PWM (CCP) Modules                                            | 127 |  |  |  |  |  |
| 15.0  | Master S                                       | Synchronous Serial Port (MSSP) Module                                | 135 |  |  |  |  |  |
| 16.0  | Address                                        | able Universal Synchronous Asynchronous Receiver Transmitter (USART) | 167 |  |  |  |  |  |
| 17.0  | CAN Mo                                         | dule                                                                 | 183 |  |  |  |  |  |
| 18.0  | 10-bit Ar                                      | nalog-to-Digital Converter (A/D) Module                              | 227 |  |  |  |  |  |
| 19.0  | Compara                                        | ator Module                                                          | 237 |  |  |  |  |  |
| 20.0  | Compara                                        | ator Voltage Reference Module                                        | 243 |  |  |  |  |  |
| 21.0  | Low Volt                                       | tage Detect                                                          |     |  |  |  |  |  |
| 22.0  | Special                                        | Features of the CPU                                                  | 251 |  |  |  |  |  |
| 23.0  | Instructio                                     | on Set Summary                                                       | 261 |  |  |  |  |  |
| 24.0  | Develop                                        | ment Support                                                         | 305 |  |  |  |  |  |
| 25.0  | Electrica                                      | I Characteristics                                                    | 311 |  |  |  |  |  |
| 26.0  | DC and                                         | AC Characteristics Graphs and Tables                                 | 341 |  |  |  |  |  |
| 27.0  | Packagi                                        | ng Information                                                       | 343 |  |  |  |  |  |
| Appe  | ndix A:                                        | Data Sheet Revision History                                          | 349 |  |  |  |  |  |
| Appe  | ndix B:                                        | Device Differences                                                   | 349 |  |  |  |  |  |
| Appe  | ndix C:                                        | Device Migrations                                                    | 350 |  |  |  |  |  |
| Appe  | andix D: Migrating from other PICmicro Devices |                                                                      |     |  |  |  |  |  |
| Appe  | ndix E:                                        | Development Tool Version Requirements                                | 351 |  |  |  |  |  |
| Index |                                                |                                                                      | 353 |  |  |  |  |  |
| On-L  | ine Suppo                                      | ort                                                                  | 361 |  |  |  |  |  |
| Read  | er Respo                                       | nse                                                                  | 362 |  |  |  |  |  |
| PIC1  | I8CXX8 Product Identification System           |                                                                      |     |  |  |  |  |  |

|          |           | Pin N | umber     |      |                                         |                                         |                                          |
|----------|-----------|-------|-----------|------|-----------------------------------------|-----------------------------------------|------------------------------------------|
| Pin Name | PIC18C658 |       | PIC18C858 |      | Pin<br>Type                             | Buffer<br>Type                          |                                          |
|          | TQFP      | PLCC  | TQFP      | PLCC | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Description                              |
|          |           |       |           |      |                                         |                                         | PORTB is a bi-directional I/O port.      |
|          |           |       |           |      |                                         |                                         | PORTB can be software                    |
|          |           |       |           |      |                                         |                                         | programmed for internal weak pull-ups on |
|          | 10        |       |           |      |                                         |                                         | an inputs.                               |
| RB0/INT0 | 48        | 60    | 58        | 72   | 1/0                                     | <b>TT</b> I                             | Disital 1/0                              |
|          |           |       |           |      | 1/0                                     | I I L                                   | Digital I/O                              |
|          | 47        | 50    |           | 74   | 1                                       | 51                                      | External interrupt 0                     |
|          | 47        | 59    | 57        | 71   | 1/0                                     | <b>TT</b> I                             | Digital I/O                              |
|          |           |       |           |      | 1/0                                     | ST                                      | External interrunt 1                     |
|          | 46        | 58    | 56        | 70   |                                         | 01                                      | External merrupt                         |
| RB2      | 40        | 50    | 50        | 70   | 1/0                                     | тті                                     | Digital I/O                              |
| INT2     |           |       |           |      |                                         | ST                                      | External interrupt 2                     |
| RB3/INT3 | 45        | 57    | 55        | 69   |                                         | •                                       |                                          |
| RB3      | -10       | 57    | 00        | 00   | I/O                                     | TTI                                     | Digital I/O                              |
| INT3     |           |       |           |      | I/O                                     | ST                                      | External interrupt 3                     |
| RB4      | 44        | 56    | 54        | 68   | I/O                                     | TTL                                     | Digital I/O                              |
|          |           |       |           |      |                                         |                                         | Interrupt on change pin                  |
| RB5      | 43        | 55    | 53        | 67   | I/O                                     | TTL                                     | Digital I/O                              |
|          |           |       |           |      |                                         |                                         | Interrupt-on-change pin                  |
| RB6      | 42        | 54    | 52        | 66   | I/O                                     | TTL                                     | Digital I/O                              |
|          |           | -     | -         |      |                                         |                                         | Interrupt-on-change pin                  |
|          |           |       |           |      | I                                       | ST                                      | ICSP programming clock                   |
| RB7      | 37        | 48    | 47        | 60   | I/O                                     | TTL                                     | Digital I/O                              |
|          |           |       |           |      |                                         |                                         | Interrupt-on-change pin                  |
|          |           |       |           |      | I/O                                     | ST                                      | ICSP programming data                    |
|          |           |       |           |      |                                         |                                         |                                          |

| TABLE 1-2: | PINOUT I/O DESCRIPTIONS | (CONTINUED) |
|------------|-------------------------|-------------|
|------------|-------------------------|-------------|

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

I = Input

P = Power

CMOS = CMOS compatible input or output

Analog = Analog input

0 = Output

= Open Drain (no P diode to VDD) OD

# 2.0 OSCILLATOR CONFIGURATIONS

# 2.1 Oscillator Types

The PIC18CXX8 can be operated in one of eight oscillator modes, programmable by three configuration bits (FOSC2, FOSC1, and FOSC0).

- 1. LP Low Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High Speed Crystal/Resonator
- 4. HS4 High Speed Crystal/Resonator with PLL enabled
- 5. RC External Resistor/Capacitor
- 6. RCIO External Resistor/Capacitor with I/O pin enabled
- 7. EC External Clock
- 8. ECIO External Clock with I/O pin enabled

# 2.2 <u>Crystal Oscillator/Ceramic</u> <u>Resonators</u>

In XT, LP, HS or HS4 (PLL) oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections. An external clock source may also be connected to the OSC1 pin, as shown in Figure 2-3 and Figure 2-4.

The PIC18CXX8 oscillator design requires the use of a parallel cut crystal.

| Note: | Use of a series cut crystal may give a fre- |
|-------|---------------------------------------------|
|       | quency out of the crystal manufacturer's    |
|       | specifications.                             |

# FIGURE 2-1: CRYS

#### : CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)



3: RF varies with the crystal chosen.

# PIC18CXX8

| Filename | Bit 7                                                                                                                                 | Bit 6                        | Bit 5           | Bit 4           | Bit 3         | Bit 2                       | Bit 1            | Bit 0    | Value on<br>POR,<br>BOR | Value on<br>all other<br>RESETS <sup>(3)</sup> |
|----------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|-----------------|---------------|-----------------------------|------------------|----------|-------------------------|------------------------------------------------|
| INDF2    | Uses contents                                                                                                                         | s of FSR2 to a               | ddress data me  | mory - value of | FSR2 not cha  | anged (not a p              | hysical registe  | r)       | n/a                     | n/a                                            |
| POSTINC2 | 2 Uses contents of FSR2 to address data memory - value of FSR2 post-incremented (not a physical register)                             |                              |                 |                 |               |                             |                  |          |                         | n/a                                            |
| POSTDEC2 | Uses contents                                                                                                                         | s of FSR2 to a               | ddress data me  | mory - value of | FSR2 post-d   | ecremented (r               | not a physical r | egister) | n/a                     | n/a                                            |
| PREINC2  | Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register)                                |                              |                 |                 |               |                             |                  |          |                         | n/a                                            |
| PLUSW2   | Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register) - value of FSR2 offset by WREG |                              |                 |                 |               |                             |                  |          | n/a                     | n/a                                            |
| FSR2H    | _                                                                                                                                     | —                            | _               |                 | Indirect Data | a Memory Add                | ress Pointer 2   | High     | 0000                    | 0000                                           |
| FSR2L    | Indirect Data                                                                                                                         | Memory Addre                 | ss Pointer 2 Lo | w Byte          |               |                             |                  |          | xxxx xxxx               | uuuu uuuu                                      |
| STATUS   | _                                                                                                                                     | _                            | _               | N               | OV            | Z                           | DC               | С        | x xxxx                  | u uuuu                                         |
| TMR0H    | Timer0 registe                                                                                                                        | er high byte                 |                 |                 |               |                             |                  |          | 0000 0000               | 0000 0000                                      |
| TMR0L    | Timer0 registe                                                                                                                        | er low byte                  |                 |                 |               |                             |                  |          | xxxx xxxx               | uuuu uuuu                                      |
| TOCON    | TMR0ON                                                                                                                                | T08BIT                       | TOCS            | TOSE            | T0PS3         | T0PS2                       | T0PS1            | T0PS0    | 1111 1111               | 1111 1111                                      |
| OSCCON   | —                                                                                                                                     | —                            | —               | —               | —             | —                           | —                | SCS      | 0                       | 0                                              |
| LVDCON   |                                                                                                                                       | _                            | IRVST           | LVDEN           | LVDL3         | LVDL2                       | LVDL1            | LVDL0    | 00 0101                 | 00 0101                                        |
| WDTCON   | _                                                                                                                                     | _                            |                 |                 | _             | _                           | _                | SWDTEN   | 0                       | 0                                              |
| RCON     | IPEN                                                                                                                                  | LWRT                         |                 | RI              | TO            | PD                          | POR              | BOR      | 00-1 11qq               | 00-q qquu                                      |
| TMR1H    | Timer1 Regis                                                                                                                          | ter High Byte                |                 |                 |               |                             |                  |          | xxxx xxxx               | uuuu uuuu                                      |
| TMR1L    | Timer1 Regis                                                                                                                          | ter Low Byte                 |                 |                 | -             |                             |                  |          | xxxx xxxx               | uuuu uuuu                                      |
| T1CON    | RD16                                                                                                                                  | —                            | T1CKPS1         | T1CKPS0         | T1OSCEN       | T1SYNC                      | TMR1CS           | TMR10N   | 0-00 0000               | u-uu uuuu                                      |
| TMR2     | Timer2 Regis                                                                                                                          | ter                          |                 |                 |               |                             |                  |          | 0000 0000               | 0000 0000                                      |
| PR2      | Timer2 Period                                                                                                                         | d Register                   |                 |                 | I             |                             |                  | I        | 1111 1111               | 1111 1111                                      |
| T2CON    | _                                                                                                                                     | TOUTPS3                      | TOUTPS2         | TOUTPS1         | TOUTPS0       | TMR2ON                      | T2CKPS1          | T2CKPS0  | -000 0000               | -000 0000                                      |
| SSPBUF   | SSP Receive                                                                                                                           | Buffer/Transm                | it Register     |                 |               |                             |                  |          | xxxx xxxx               | uuuu uuuu                                      |
| SSPADD   | SSP Address                                                                                                                           | Register in I <sup>2</sup> C | Slave mode. S   | SP Baud Rate    | Reload Regi   | ster in I <sup>2</sup> C Ma | ster mode.       |          | 0000 0000               | 0000 0000                                      |
| SSPSTAT  | SMP                                                                                                                                   | CKE                          | D/A             | Р               | S             | R/W                         | UA               | BF       | 0000 0000               | 0000 0000                                      |
| SSPCON1  | WCOL                                                                                                                                  | SSPOV                        | SSPEN           | СКР             | SSPM3         | SSPM2                       | SSPM1            | SSPM0    | 0000 0000               | 0000 0000                                      |
| SSPCON2  | GCEN                                                                                                                                  | ACKSTAT                      | ACKDT           | ACKEN           | RCEN          | PEN                         | RSEN             | SEN      | 0000 0000               | 0000 0000                                      |
| ADRESH   | A/D Result Re                                                                                                                         | egister High By              | te              |                 |               |                             |                  |          | xxxx xxxx               | uuuu uuuu                                      |
| ADRESL   | A/D Result Re                                                                                                                         | egister Low By               | te              |                 | 1             | r                           | r                | n        | xxxx xxxx               | uuuu uuuu                                      |
| ADCON0   | —                                                                                                                                     | —                            | CHS3            | CHS2            | CHS1          | CHS0                        | GO/DONE          | ADON     | 00 0000                 | 00 0000                                        |
| ADCON1   | _                                                                                                                                     | —                            | VCFG1           | VCFG0           | PCFG3         | PCFG2                       | PCFG1            | PCFG0    | -000 0000               | -000 0000                                      |
| ADCON2   | ADFM                                                                                                                                  | —                            |                 | _               | _             | ADCS2                       | ADCS1            | ADCS0    | 0000                    | 0000                                           |

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.
4: These registers are reserved on PIC18C658.

# PIC18CXX8

| Filename | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2    | Bit 1   | Bit 0   | Value on<br>POR,<br>BOR | Value on<br>all other<br>RESETS <sup>(3)</sup> |
|----------|---------|---------|---------|---------|---------|----------|---------|---------|-------------------------|------------------------------------------------|
| RXB0D7   | RXB0D77 | RXB0D76 | RXB0D75 | RXB0D74 | RXB0D73 | RXB0D72  | RXB0D71 | RXB0D70 | xxxx xxxx               | uuuu uuuu                                      |
| RXB0D6   | RXB0D67 | RXB0D66 | RXB0D65 | RXB0D64 | RXB0D63 | RXB0D62  | RXB0D61 | RXB0D60 | xxxx xxxx               | uuuu uuuu                                      |
| RXB0D5   | RXB0D57 | RXB0D56 | RXB0D55 | RXB0D54 | RXB0D53 | RXB0D52  | RXB0D51 | RXB0D50 | xxxx xxxx               | uuuu uuuu                                      |
| RXB0D4   | RXB0D47 | RXB0D46 | RXB0D45 | RXB0D44 | RXB0D43 | RXB0D42  | RXB0D41 | RXB0D40 | xxxx xxxx               | uuuu uuuu                                      |
| RXB0D3   | RXB0D37 | RXB0D36 | RXB0D35 | RXB0D34 | RXB0D33 | RXB0D32  | RXB0D31 | RXB0D30 | xxxx xxxx               | uuuu uuuu                                      |
| RXB0D2   | RXB0D27 | RXB0D26 | RXB0D25 | RXB0D24 | RXB0D23 | RXB0D22  | RXB0D21 | RXB0D20 | xxxx xxxx               | uuuu uuuu                                      |
| RXB0D1   | RXB0D17 | RXB0D16 | RXB0D15 | RXB0D14 | RXB0D13 | RXB0D12  | RXB0D11 | RXB0D10 | xxxx xxxx               | uuuu uuuu                                      |
| RXB0D0   | RXB0D07 | RXB0D06 | RXB0D05 | RXB0D04 | RXB0D03 | RXB0D02  | RXB0D0? | RXB0D00 | xxxx xxxx               | uuuu uuuu                                      |
| RXB0DLC  | _       | RXRTR   | RESB1   | RESB0   | DLC3    | DLC2     | DLC1    | DLC0    | 0xxx xxxx               | 0uuu uuuu                                      |
| RXB0EIDL | EID7    | EID6    | EID5    | EID4    | EID3    | EID2     | EID1    | EID0    | xxxx xxxx               | uuuu uuuu                                      |
| RXB0EIDH | EID15   | EID14   | EID13   | EID12   | EID11   | EID10    | EID9    | EID8    | xxxx xxxx               | uuuu uuuu                                      |
| RXB0SIDL | SID2    | SID1    | SID0    | SRR     | EXID    | —        | EID17   | EID16   | xxxx x-xx               | uuuu u-uu                                      |
| RXB0SIDH | SID10   | SID9    | SID8    | SID7    | SID6    | SID5     | SID4    | SID3    | xxxx xxxx               | uuuu uuuu                                      |
| RXB0CON  | RXFUL   | RXM1    | RXM0    |         | RXRTRRO | RXB0DBEN | JTOFF   | FILHIT0 | 000- 0000               | 000- 0000                                      |
| CANSTAT  | OPMODE2 | OPMODE1 | OPMODE0 |         | ICODE2  | ICODE1   | ICODE0  | -       | xxx- xxx-               | uuu- uuu-                                      |
| RXB1D7   | RXB1D77 | RXB1D76 | RXB1D75 | RXB1D74 | RXB1D73 | RXB1D72  | RXB1D71 | RXB1D70 | xxxx xxxx               | uuuu uuuu                                      |
| RXB1D6   | RXB1D67 | RXB1D66 | RXB1D65 | RXB1D64 | RXB1D63 | RXB1D62  | RXB1D61 | RXB1D60 | xxxx xxxx               | uuuu uuuu                                      |
| RXB1D5   | RXB1D57 | RXB1D56 | RXB1D55 | RXB1D54 | RXB1D53 | RXB1D52  | RXB1D51 | RXB1D50 | xxxx xxxx               | uuuu uuuu                                      |
| RXB1D4   | RXB1D47 | RXB1D46 | RXB1D45 | RXB1D44 | RXB1D43 | RXB1D42  | RXB1D41 | RXB1D40 | xxxx xxxx               | uuuu uuuu                                      |
| RXB1D3   | RXB1D37 | RXB1D36 | RXB1D35 | RXB1D34 | RXB1D33 | RXB1D32  | RXB1D31 | RXB1D30 | xxxx xxxx               | uuuu uuuu                                      |
| RXB1D2   | RXB1D27 | RXB1D26 | RXB1D25 | RXB1D24 | RXB1D23 | RXB1D22  | RXB1D21 | RXB1D20 | xxxx xxxx               | uuuu uuuu                                      |
| RXB1D1   | RXB1D17 | RXB1D16 | RXB1D15 | RXB1D14 | RXB1D13 | RXB1D12  | RXB1D11 | RXB1D10 | xxxx xxxx               | uuuu uuuu                                      |
| RXB1D0   | RXB1D07 | RXB1D06 | RXB1D05 | RXB1D04 | RXB1D03 | RXB1D02  | RXB1D01 | RXB1D00 | xxxx xxxx               | uuuu uuuu                                      |
| RXB1DLC  | _       | RXRTR   | RESB1   | RESB0   | DLC3    | DLC2     | DLC1    | DLC0    | 0xxx xxxx               | 0uuu uuuu                                      |
| RXB1EIDL | EID7    | EID6    | EID5    | EID4    | EID3    | EID2     | EID1    | EID0    | xxxx xxxx               | uuuu uuuu                                      |
| RXB1EIDH | EID15   | EID14   | EID13   | EID12   | EID11   | EID10    | EID9    | EID8    | xxxx xxxx               | uuuu uuuu                                      |
| RXB1SIDL | SID2    | SID1    | SID0    | SRR     | EXID    | —        | EID17   | EID16   | xxxx x0xx               | uuuu u0uu                                      |
| RXB1SIDH | SID10   | SID9    | SID8    | SID7    | SID6    | SID5     | SID4    | SID3    | XXXX XXXX               | uuuu uuuu                                      |
| RXB1CON  | RXFUL   | RXM1    | RXM0    | —       | RXRTRRO | FILHIT2  | FILHIT1 | FILHIT0 | 0000 0000               | 0000 0000                                      |
| CANSTAT  | OPMODE2 | OPMODE1 | OPMODE0 |         | ICODE2  | ICODE1   | ICODE0  |         | xxx- xxx-               | uuu- uuu-                                      |

Legend: Note 1:

d: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition
1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.
4: These registers are reserved on PIC18C658.

# 11.1 <u>Timer1 Operation</u>

Timer1 can operate in one of these modes:

- As a timer
- · As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON register).

When TMR1CS is clear, Timer1 increments every instruction cycle. When TMR1CS is set, Timer1 increments on every rising edge of the external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer1 also has an internal "RESET input". This RESET can be generated by the CCP module (Section 14.0).



# FIGURE 11-1: TIMER1 BLOCK DIAGRAM





#### 15.2 Control Registers

The MSSP module has three associated registers. These include a status register and two control registers.

# REGISTER 15-1: SSPSTAT REGISTER

Register 15-1 shows the MSSP Status Register (SSPSTAT), Register 15-2 shows the MSSP Control Register 1 (SSPCON1), and Register 15-3 shows the MSSP Control Register 2 (SSPCON2).

|       | R/W-0                         | R/W-0                                              | R-0                       | R-0            | R-0            | R-0            | R-0            | R-0          |  |  |  |
|-------|-------------------------------|----------------------------------------------------|---------------------------|----------------|----------------|----------------|----------------|--------------|--|--|--|
|       | SMP                           | CKE                                                | D/A                       | Р              | S              | R/W            | UA             | BF           |  |  |  |
|       | bit 7                         |                                                    |                           |                |                |                |                | bit 0        |  |  |  |
|       |                               |                                                    |                           |                |                |                |                |              |  |  |  |
| bit 7 | SMP: Sample bit               |                                                    |                           |                |                |                |                |              |  |  |  |
|       | <u>SPI Master mode</u>        |                                                    |                           |                |                |                |                |              |  |  |  |
|       | 1 = Input d                   | lata sampled a                                     | at end of dat             | a output time  | l              |                |                |              |  |  |  |
|       | 0 = Input d                   | lata sampled a                                     | at middle of o            | data output ti | me             |                |                |              |  |  |  |
|       | SPI Slave                     | <u>mode</u>                                        |                           |                |                |                |                |              |  |  |  |
|       | SMP must                      | SMP must be cleared when SPI is used in Slave mode |                           |                |                |                |                |              |  |  |  |
|       | In I <sup>2</sup> C Mas       | ter or Slave m                                     | node:                     |                |                |                |                |              |  |  |  |
|       | 1= Slew ra                    | te control disa                                    | abled for star            | ndard speed    | mode (100      | kHz and 1      | MHz)           |              |  |  |  |
| h:+ C |                               |                                                    |                           | i speed mode   | e (400 kmz)    |                |                |              |  |  |  |
| DIT 6 | CKE: SPIN                     | Clock Edge S                                       | elect                     |                |                |                |                |              |  |  |  |
|       | $\frac{CRP = 0}{1 - Data tr}$ | ansmitted on                                       | risina edae a             | of SCK         |                |                |                |              |  |  |  |
|       | 0 = Data tr                   | ansmitted on                                       | falling edge              | of SCK         |                |                |                |              |  |  |  |
|       | <u>CKP = 1</u>                |                                                    | 0 0                       |                |                |                |                |              |  |  |  |
|       | 1 = Data tr                   | ansmitted on                                       | falling edge              | of SCK         |                |                |                |              |  |  |  |
|       | 0 <u>=</u> Data tr            | ansmitted on                                       | rising edge o             | of SCK         |                |                |                |              |  |  |  |
| bit 5 | D/A: Data/                    | Address bit (I                                     | <sup>2</sup> C mode onl   | y)             |                |                |                |              |  |  |  |
|       | 1 = Indicat                   | es that the las                                    | st byte receiv            | ed or transm   | itted was d    | ata            |                |              |  |  |  |
|       | 0 = Indicate                  | es that the las                                    | st byte receiv            | ed or transm   | litted was a   | ddress         |                |              |  |  |  |
| bit 4 | P: STOP b                     | oit<br>anh a Thia hiti                             | a alaanad w               |                | Duna advila in | , dia a la d   |                |              |  |  |  |
|       |                               | only. I his bit                                    | IS Cleared Wr             | nen the IVISS  | P module is    | s disabled,    |                | seared.)     |  |  |  |
|       | 1 = Indication                | es that a STO<br>bit was not de                    | P DIT NAS DE              | en detected i  | ast (this bit  | IS U ON RI     | ESET)          |              |  |  |  |
| hit 3 | S START                       | bit was not at                                     |                           |                |                |                |                |              |  |  |  |
| bit 5 | (I <sup>2</sup> C mode        | only. This bit                                     | is cleared wh             | nen the MSS    | P module is    | s disabled,    | SSPEN is o     | cleared.)    |  |  |  |
|       | 1 = Indicat                   | es that a STA                                      | RT bit has be             | een detected   | last (this b   | it is '0' on F | RESET)         | ,            |  |  |  |
|       | 0 = START                     | Fbit was not d                                     | letected last             |                | ,              |                | ,              |              |  |  |  |
| bit 2 | R/W: Read                     | d/Write bit info                                   | rmation (I <sup>2</sup> C | mode only)     |                |                |                |              |  |  |  |
|       | This bit hol                  | ds the R/W bi                                      | t information             | following the  | last addres    | s match. T     | his bit is onl | y valid from |  |  |  |
|       | the addres                    | s match to the                                     | e next STAR               | T bit, STOP b  | oit, or not A  | CK bit.        |                |              |  |  |  |
|       | In I <sup>2</sup> C Slav      | <u>e mode:</u>                                     |                           |                |                |                |                |              |  |  |  |
|       | 1 = Read                      |                                                    |                           |                |                |                |                |              |  |  |  |
|       | 0 = vrite                     | tormodo                                            |                           |                |                |                |                |              |  |  |  |
|       | 1 - Transm                    | <u>nit is in progre</u>                            | <b>cc</b>                 |                |                |                |                |              |  |  |  |
|       | 0 = Transm                    | nit is not in progre                               | aress                     |                |                |                |                |              |  |  |  |
|       | OR-ing                        | this bit with S                                    | SEN, RSEN,                | PEN, RCEN      | , or ACKEN     | I will indica  | te if the MS   | SP is in     |  |  |  |
|       | IDLE m                        | node.                                              |                           |                |                |                |                |              |  |  |  |

#### bit 3 - 0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

- 0000 = SPI Master mode, clock = Fosc/4
- 0001 = SPI Master mode, clock = Fosc/16
- 0010 = SPI Master mode, clock = Fosc/64
- 0011 = SPI Master mode, clock = TMR2 output/2
- $0100 = SPI Slave mode, clock = SCK pin. \overline{SS} pin control enabled.$
- $0101 = SPI Slave mode, clock = SCK pin. \overline{SS} pin control disabled. \overline{SS} can be used as I/O pin.$
- $0110 = I^2C$  Slave mode, 7-bit address
- $0111 = I^2C$  Slave mode, 10-bit address
- 1000 = I<sup>2</sup>C Master mode, clock = Fosc / (4 \* (SSPADD+1))
- 1001 = Reserved
- 1010 = Reserved
- $1011 = I^2C$  firmware controlled Master mode (Slave idle)
- 1100 = Reserved
- 1101 = Reserved
- $1110 = I^2C$  Slave mode, 7-bit address with START and STOP bit interrupts enabled
- 1111 =  $I^2C$  Slave mode, 10-bit address with START and STOP bit interrupts enabled

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented I  | bit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

#### 15.4.10 ACKNOWLEDGE SEQUENCE TIMING

An acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit ACKEN (SSPCON2 register). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge Data bit (ACKDT) is presented on the SDA pin. If the user wishes to generate an acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an acknowledge sequence. The baud rate generator then counts for one rollover period (TBRG) and the SCL pin is de-asserted (pulled high). When the SCL pin is sampled high (clock arbitration), the baud rate generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off and the MSSP module then goes into IDLE mode (Figure 15-17).

#### 15.4.10.1 WCOL Status Flag

If the user writes the SSPBUF when an acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

#### 15.4.11 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2 register). At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to 0. When the baud rate generator times out, the SCL pin will be brought high, and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT register) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 15-18).

#### 15.4.11.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

#### FIGURE 15-17: ACKNOWLEDGE SEQUENCE WAVEFORM



x = Bit is unknown

#### 17.2.6 CAN MODULE I/O CONTROL REGISTER

This subsection describes the CAN Module I/O Control register.

# **REGISTER 17-32: CIOCON – CAN I/O CONTROL REGISTER**

- n = Value at POR

|         | R/W-0                                                                                                                              | R/W-0                                         | R/W-0                                          | R/W-0          | U-0                      | U-0        | U-0            | U-0   |
|---------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|----------------|--------------------------|------------|----------------|-------|
|         | TX1SRC                                                                                                                             | TX1EN                                         | ENDRHI                                         | CANCAP         | —                        |            | _              | _     |
|         | bit 7                                                                                                                              | _                                             |                                                |                | _                        |            | _              | bit 0 |
| bit 7   | <b>TX1SRC</b> : 0<br>1 = CAN T<br>0 = CAN T                                                                                        | CAN TX1 Pir<br>X1 pin will o<br>X1 pin will o | ו Data Sour<br>utput <u>the C</u><br>utput TXD | ce<br>AN clock |                          |            |                |       |
| bit 6   | <b>TX1EN:</b> CAN TX1 Pin Enable<br>1 = CAN TX1 pin will output TXD or CAN clock<br>0 = CAN TX1 pin will have digital I/O function |                                               |                                                |                |                          |            |                |       |
| bit 5   | <b>ENDRHI:</b> E<br>1 = CAN T<br>0 = CAN T                                                                                         | Enable Drive<br>X0, CAN TX<br>X0, CAN TX      | High<br>1 pins will d<br>1 pins will tr        | rive Voo wh    | en recessiv<br>recessive | /e         |                |       |
| bit 4   | <b>CANCAP:</b> CAN Message Receive Capture Enable<br>1 = Enable CAN capture<br>0 = Disable CAN capture                             |                                               |                                                |                |                          |            |                |       |
| bit 3-0 | Unimplem                                                                                                                           | ented: Read                                   | d as '0'                                       |                |                          |            |                |       |
|         | Legend:                                                                                                                            |                                               |                                                |                |                          |            |                |       |
|         | R = Reada                                                                                                                          | ble bit                                       | W = Writa                                      | ble bit        | U = Uni                  | mplemented | bit, read as ' | '0'   |

'0' = Bit is cleared

'1' = Bit is set

# 19.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select these modes. Figure 19-1 shows the eight possible modes. The TRISF register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Electrical Specifications (Section 25.0).

**Note:** Comparator interrupts should be disabled during a Comparator mode change. Otherwise, a false interrupt may occur.



# 20.0 COMPARATOR VOLTAGE REFERENCE MODULE

The Comparator Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The CVRCON register controls the operation of the reference as shown in Register 20-1. The block diagram is given in Figure 20-1.

The comparator reference supply voltage can come from either VDD or Vss, or the external VREF+ and VREF- that are multiplexed with RA3 and RA2. The comparator reference supply voltage is controlled by the CVRSS bit.

-

- n = Value at POR

-----

# REGISTER 20-1: VRCON REGISTER

# 20.1 <u>Configuring the Comparator Voltage</u> <u>Reference</u>

The Comparator Voltage Reference can output 16 distinct voltage levels for each range. The equations used to calculate the output of the Comparator Voltage Reference are as follows:

If CVRR = 1: CVREF= (CVR<3:0>/24) x CVRSRC If CVRR = 0: CVREF = (CVDD x 1/4) + (CVR<3:0>/32) x CVRSRC

The settling time of the Comparator Voltage Reference must be considered when changing the CVREF output (Section 25.0).

|         | R/W-0                | R/W-0                            | R/W-0          | R/W-0            | R/W-0        | R/W-0     | R/W-0          | R/W-0 |
|---------|----------------------|----------------------------------|----------------|------------------|--------------|-----------|----------------|-------|
|         | VREN                 | VROE                             | VRR            | VRSS             | VR3          | VR2       | VR1            | VR0   |
|         | bit 7                |                                  |                | <u> </u>         |              |           |                | bit 0 |
|         |                      |                                  |                |                  |              |           |                |       |
| bit 7   | VREN: Cor            | mparator Volta                   | age Referen    | ce Enable        |              |           |                |       |
|         | 1 = CVREF            | circuit powe                     | red on         |                  |              |           |                |       |
|         | 0 = CVREF            | - circuit powe                   | red down       |                  |              |           |                |       |
| bit 6   | VROE: Cor            | mparator VRE                     | F Output En    | able             |              |           |                |       |
|         | 1 = CVREF            | <ul> <li>voltage leve</li> </ul> | el is also out | put on the R     | F5/AN10/C    | /REF pin  |                |       |
|         | 0 = CVREH            | <ul> <li>voltage is d</li> </ul> | Isconnected    | from the KF      | 5/AN10/CVI   | REF pin   |                |       |
| bit 5   | VRR: Com             | parator VREF                     | Range Selec    | ction            |              |           |                |       |
|         | 1 = 0.00  C          | VRSRC to U./                     | 5 CVRSRC, V    | with CVRSRC/     | 24 step size | 9         |                |       |
|         | 0 = 0.250            |                                  |                | VIIII UVKSKU     | 32 Step Size | 5         |                |       |
| DIT 4   |                      | nparator VRE                     | F Source Sei   |                  | ee. Voer     |           |                |       |
|         | 1 = Comp<br>0 = Comp | arator referen                   | ice source C   | VRSRC = VR       | EFT-VKEF-    |           |                |       |
| hit 3-0 |                      | Comparator \                     |                | Selection $0 < $ | 1/P3·1/P0 <  | 15        |                |       |
| DII 3-0 | When VRR             | l = 1                            | /REF Value C   |                  |              | 15        |                |       |
|         | CVREF = (V           | <u></u><br>/R<3:0>/ 24)          | • (CVRSRC)     |                  |              |           |                |       |
|         | When VRR             | k = 0:                           | (- ,           |                  |              |           |                |       |
|         | CVREF = 1/           | 4 • (CVRSRC)                     | ) + (VR3:VR(   | J/ 32) • (CVR    | SRC)         |           |                |       |
|         |                      |                                  |                |                  |              |           |                |       |
|         | Legend:              |                                  |                |                  |              |           |                |       |
|         | R = Reada            | ble bit                          | W = Wri        | itable bit       | U = Unimpl   | emented b | it, read as '( | 0'    |

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

#### 21.2.1 REFERENCE VOLTAGE SET POINT

The Internal Reference Voltage of the LVD module may be used by other internal circuitry (the programmable Brown-out Reset). If these circuits are disabled (lower current consumption), the reference voltage circuit requires time to become stable before a low voltage condition can be reliably detected. This time is invariant of system clock speed. This start-up time is specified in electrical specification parameter #36. The low voltage interrupt flag will not be enabled until a stable reference voltage is reached. Refer to the waveform in Figure 21-3.

### 21.2.2 CURRENT CONSUMPTION

When the module is enabled, the LVD comparator and voltage divider are enabled and will consume static current. The voltage divider can be tapped from multiple places in the resistor array. Total current consumption, when enabled, is specified in electrical specification parameter #D022B.

### 21.3 External Analog Voltage Input

The LVD module has an additional feature that allows the user to supply the trip point voltage to the module from an external source (the LVDIN pin). The LVDIN pin is used as the trip point when the LVDL3:LVDL0 bits = '1111'. This state connects the LVDIN pin voltage to the comparator. The other comparator input is connected to an internal reference voltage source.

# 21.4 Operation During SLEEP

When enabled, the LVD circuitry continues to operate during SLEEP. If the device voltage crosses the trip point, the LVDIF bit will be set and the device will wakeup from SLEEP. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

# 21.5 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the LVD module to be turned off.

#### 22.4 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

| Note: | Microchip Technology does not recom-   |
|-------|----------------------------------------|
|       | mend code protecting windowed devices. |

# 22.5 ID Locations

Five memory locations (200000h - 200004h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are accessible during normal execution through the TBLRD instruction, or during program/verify. The ID locations can be read when the device is code protected.

### 22.6 In-Circuit Serial Programming

PIC18CXX8 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

### 22.7 Device ID Bits

Device ID bits are located in program memory at 3FFFFEh and 3FFFFFh. The Device ID bits are used by programmers to retrieve part number and revision information about a device. These registers may also be accessed using a TBLRD instruction (Register 22-8 and Register 22-7).

#### REGISTER 22-7: DEVID1 ID REGISTER FOR THE PIC18CXX8 DEVICE (0x3FFFFE)

| R/P-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DEV2  | DEV1  | DEV0  | REV4  | REV3  | REV2  | REV1  | REV0  |
| bit 7 |       |       |       |       |       |       | bit 0 |

bit 7-5 **DEV2:DEV0**: Device ID bits These bits are used with the DEV10:DEV3 bits in the Device ID register 2 to identify the part number

bit 4-0 **REV4:REV0**: Revision ID bits These bits are used to indicate the revision of the device

| Legend:                            |                                           |
|------------------------------------|-------------------------------------------|
| R = Readable bit                   | P = Programmable bit                      |
| U = Unimplemented bit, read as '0' | - n = Unprogrammed Value<br>(x = unknown) |

#### REGISTER 22-8: DEVID2 ID REGISTER FOR THE PIC18CXX8 DEVICE (0x3FFFFF)

| DEV10 | DEV9 | DEV8 | DEV7 | DEV6 | DEV5 | DEV4 | DEV3  |
|-------|------|------|------|------|------|------|-------|
| bit 7 | DLVO | DLVO | DEVI | DEVO | DEVO | DEVI | bit 0 |

bit 7-0 **DEV10:DEV3**: Device ID bits

These bits are used with the DEV2:DEV0 bits in the Device ID register 1 to identify the part number

| Legend:                            |                                           |
|------------------------------------|-------------------------------------------|
| R = Readable bit                   | P = Programmable bit                      |
| U = Unimplemented bit, read as '0' | - n = Unprogrammed Value<br>(x = unknown) |

# PIC18CXX8

| RRNCF             | Rotate R                | Right f (no car                   | ry)            | SET        | ſF             | Set f               |            |           |            |
|-------------------|-------------------------|-----------------------------------|----------------|------------|----------------|---------------------|------------|-----------|------------|
| Syntax:           | [ label ]               | RRNCF f[,                         | d [,a] ]       | Syn        | tax:           | [ <i>label</i> ] SE | TF f[,a    | ]         |            |
| Operands:         | 0 ≤ f ≤ 25              | 55                                |                | Ope        | erands:        | 0 ≤ f ≤ 255         | 5          |           |            |
|                   | d ∈ [0,1]               |                                   |                |            |                | a ∈ [0,1]           |            |           |            |
|                   | a ∈ [0,1]               |                                   |                | Ope        | eration:       | $FFh\tof$           |            |           |            |
| Operation:        | $(f < n >) \rightarrow$ | dest <n-1>,</n-1>                 |                | Stat       | tus Affected:  | None                |            |           |            |
| 0                 | (I<0>) →                | dest                              |                | Enc        | oding:         | 0110                | 100a       | ffff      | ffff       |
| Status Affected:  | N,Z                     |                                   |                | Des        | scription:     | The conte           | nts of the | specifi   | ied regis- |
| Encoding:         | 0100                    | 00da ffi                          | ff ffff        |            | •              | ter are set         | to FFh.    | lf 'a' is | 0, the     |
| Description:      | The cont                | ents of registe                   | er 'f' are     |            |                | Access Ba           | ank will b | e select  | ted, over- |
|                   | the result              | t is placed in V                  | NREG If 'd'    |            |                | Rank will h         | BSR Valu   | el as n   | IS 1, the  |
|                   | is 1, the               | result is place                   | d back in      |            |                | BSR value           | ).<br>9.   | ou uo p   |            |
|                   | register '              | f' (default). If '                | a' is 0, the   | Wo         | rds:           | 1                   |            |           |            |
|                   | Access E                | Bank will be se                   | elected, over- | Cvc        | les.           | 1                   |            |           |            |
|                   | Bank will               | e BSR value. I<br>I be selected a | is ner the     | 0,0        | Yele Activity: |                     |            |           |            |
|                   | BSR valu                | Je.                               |                | QU         |                | 02                  | 03         |           | 04         |
|                   | _                       | register                          | f              |            | Decode         | Read                | Proces     | s         | Write      |
|                   |                         | - <u> </u>                        |                |            |                | register 'f'        | Data       | re        | gister 'f' |
| Words:            | 1                       |                                   |                |            |                |                     |            |           |            |
| Cycles:           | 1                       |                                   |                | <u>Exa</u> | <u>mple</u> :  | SETF                | RE         | C)        |            |
| Q Cycle Activity: |                         |                                   |                |            | Before Instru  | uction              | - •        |           |            |
| Q1                | Q2                      | Q3                                | Q4             |            | REG            | = 0x:               | 5A         |           |            |
| Decode            | Read                    | Process                           | Write to       |            | After Instruct |                     | FF         |           |            |
|                   | register t              | Data                              | destination    |            | NEO            | - 08                |            |           |            |
| Example 1:        | RRNCF                   | REG                               |                |            |                |                     |            |           |            |
| Before Instruc    | ction                   |                                   |                |            |                |                     |            |           |            |
| REG               | = 1101<br>- 2           | 0111                              |                |            |                |                     |            |           |            |
| Z                 | = ?<br>= ?              |                                   |                |            |                |                     |            |           |            |
| After Instruction | on                      |                                   |                |            |                |                     |            |           |            |
| REG               | = 1110                  | 1011                              |                |            |                |                     |            |           |            |
| N<br>Z            | = 1<br>- 0              |                                   |                |            |                |                     |            |           |            |
| 2                 | - 0                     |                                   |                |            |                |                     |            |           |            |
| Example 2:        | RRNCF                   | REG, 0, 0                         |                |            |                |                     |            |           |            |
| Before Instruc    | ction                   |                                   |                |            |                |                     |            |           |            |
| WREG              | = ?                     |                                   |                |            |                |                     |            |           |            |
| REG               | = 1101<br>- 2           | 0111                              |                |            |                |                     |            |           |            |
| Z                 | - :<br>= ?              |                                   |                |            |                |                     |            |           |            |
| After Instruction | on                      |                                   |                |            |                |                     |            |           |            |
| WREG              | = 1110                  | 1011                              |                |            |                |                     |            |           |            |
| REG               | = 1101<br>- 1           | 0111                              |                |            |                |                     |            |           |            |
| Z                 | = 0                     |                                   |                |            |                |                     |            |           |            |

# PIC18CXX8

| SUB          | BWF            | Subtract                                                                                              | Subtract WREG from f                                                                                                   |                                                                       |                                                                                                             |  |  |  |
|--------------|----------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| Synt         | ax:            | [ label ]                                                                                             | [ <i>label</i> ] SUBWF f[,d[,a]]                                                                                       |                                                                       |                                                                                                             |  |  |  |
| Operands:    |                | 0 ≤ f ≤ 25<br>d ∈ [0,1]<br>a ∈ [0,1]                                                                  | $0 \le f \le 255$<br>$d \in [0,1]$<br>$a \in [0,1]$                                                                    |                                                                       |                                                                                                             |  |  |  |
| Ope          | ration:        | (f) – (WR                                                                                             | $EG) \rightarrow d$                                                                                                    | est                                                                   |                                                                                                             |  |  |  |
| State        | us Affected:   | N,OV, C,                                                                                              | DC, Z                                                                                                                  |                                                                       |                                                                                                             |  |  |  |
| Enco         | oding:         | 0101                                                                                                  | 11da                                                                                                                   | ffff                                                                  | ffff                                                                                                        |  |  |  |
| Description: |                | (2's com<br>0, the res<br>'d' is 1, th<br>register '<br>Access E<br>overridin<br>1, the Ba<br>the BSR | WREG fi<br>polement r<br>sult is sto<br>ne result i<br>f' (default<br>Bank will I<br>g the BSI<br>nk will be<br>value. | rom re<br>method<br>s store<br>). If 'a<br>be sele<br>R valu<br>selec | gister T<br>d). If 'd' is<br>WREG. If<br>ed back in<br>i' is 0, the<br>ected,<br>e. If 'a' is<br>ted as per |  |  |  |
| Words:       |                | 1                                                                                                     | 1                                                                                                                      |                                                                       |                                                                                                             |  |  |  |
| Cycles:      |                | 1                                                                                                     |                                                                                                                        |                                                                       |                                                                                                             |  |  |  |
| QC           | ycle Activity: |                                                                                                       |                                                                                                                        |                                                                       |                                                                                                             |  |  |  |
|              | Q1             | Q2                                                                                                    | Q3                                                                                                                     |                                                                       | Q4                                                                                                          |  |  |  |
|              | Decode         | Read                                                                                                  | Proces                                                                                                                 | s                                                                     | Write to                                                                                                    |  |  |  |

register 'f'

Data

destination

| SUBWF                                                                                                   | Subtract WREG from f (cont'd)                                        |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Example 1:                                                                                              | SUBWF REG                                                            |
| Before Instructi<br>REG =<br>WREG =<br>C =                                                              | on<br>3<br>2<br>?                                                    |
| After Instructior<br>REG =<br>WREG =<br>C =<br>Z =<br>N =                                               | 1<br>2<br>1 ; result is positive<br>0<br>0                           |
| Example 2:                                                                                              | SUBWF REG, W                                                         |
| Before Instructi<br>REG =<br>WREG =<br>C =<br>After Instruction<br>REG =<br>WREG =<br>C =<br>Z =<br>N = | on<br>2<br>2<br>?<br>1<br>2<br>0<br>1<br>; result is zero<br>1<br>0  |
| Example 3:                                                                                              | SUBWF REG                                                            |
| Before Instructi<br>REG =<br>WREG =<br>C =                                                              | on<br>1<br>2<br>?                                                    |
| After Instructior<br>REG =<br>WREG =<br>C =<br>Z =<br>N =                                               | 0<br>0xFF ;(2's complement)<br>2<br>0 ; result is negative<br>0<br>1 |

# 24.4 MPLINK Linker/MPLIB Librarian

The MPLINK object linker is a relocatable linker for the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from assembly or C source files, along with pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- MPLINK object linker works with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- MPLINK object linker allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- MPLIB object librarian makes linking easier because single libraries can be included instead of many smaller files.
- MPLIB object librarian helps keep code maintainable by grouping related modules together.
- MPLIB object librarian commands allow libraries to be created and modules to be added, listed, replaced, deleted or extracted.

# 24.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC host environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multi-project software development tool.

#### 24.6 <u>MPLAB ICE High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, "make" and download and source debugging from a single environment.

Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft<sup>®</sup> Windows 3.x/95/98 environment were chosen to best make these features available to you, the end user.

The MPLAB ICE in-circuit emulator is available in two versions: MPLAB ICE 1000 and MPLAB ICE 2000. The MPLAB ICE 1000 is a basic, low cost emulator system with simple trace capabilities. The MPLAB ICE 2000 is a full featured emulator system with enhanced trace, trigger and data monitoring features. Both systems use the same processor modules and will operate across the full operating speed range of the PICmicro MCU.

# 24.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.





TABLE 25-17: MASTER SSP I<sup>2</sup>C BUS START/STOP BITS REQUIREMENTS

| Param.<br>No. | Symbol  | Characte        | ristic                    | Min              | Max           | Units | Conditions             |
|---------------|---------|-----------------|---------------------------|------------------|---------------|-------|------------------------|
| 90            | TSU:STA | START condition | 100 kHz mode              | 2(Tosc)(BRG + 1) | $\rightarrow$ |       | Only relevant for      |
|               |         | Setup time      | 400 kHz mode              | 2(Tosc)(BRG + 1) | ≻ —           | ns    | Repeated START         |
|               |         |                 | 1 MHz mode <sup>(1)</sup> | 2(Tosc)(BRG → 1) | —             |       | condition              |
| 91            | THD:STA | START condition | 100 kHz mode              | 2(Tosc)(BRG + 1) | _             |       | After this period, the |
|               |         | Hold time       | 400 kHz mode              | 2(Josc)(BRG + 1) | _             | ns    | first clock pulse is   |
|               |         |                 | V MHZ mode (1)            | 2(Tosc)(BRG + 1) |               |       | generated              |
| 92            | Tsu:sto | STOP condition  | 100 kHz mode              | 2(Tosc)(BRG + 1) |               |       |                        |
|               |         | Setup time      | 400 kHz mode              | 2(Tosc)(BRG + 1) | _             | ns    |                        |
|               |         |                 | 1 MHz mode <sup>(1)</sup> | 2(Tosc)(BRG + 1) | _             |       |                        |
| 93            | THD:STO | STOP condition  | 100 kHz mode              | 2(Tosc)(BRG + 1) |               |       |                        |
|               |         | Hold time       | 400 kHz mode              | 2(Tosc)(BRG + 1) |               | ns    |                        |
|               |         |                 | 1 MHz mode <sup>(1)</sup> | 2(Tosc)(BRG + 1) | —             |       |                        |

**Note 1:** Maximum pin capacitance = 10 pF for all I<sup>2</sup>C pins.

# W

| Wake-up from SLEEP251, 2                    | 257 |
|---------------------------------------------|-----|
| Timing Diagram2                             | 258 |
| Watchdog Timer (WDT)251, 2                  | 255 |
| Block Diagram2                              | 256 |
| Postscaler. See Postscaler, WDT             |     |
| Programming Considerations2                 | 255 |
| RC Oscillator2                              | 255 |
| Time-out Period2                            | 255 |
| Timing Diagram                              | 325 |
| Waveform for General Call Address Sequence1 | 50  |
| WCOL                                        | 59  |
| WCOL Status Flag1                           | 54  |
| WWW, On-Line Support                        | 7   |
| X                                           |     |

| XORLW | <br> |
|-------|------|
| XORWF | <br> |

# **READER RESPONSE**

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

| To:  | Technical Publications Manager Total Pages Sent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| RE:  | : Reader Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| Fron | om: Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - |
|      | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - |
|      | Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - |
|      | City / State / ZIP / Country                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - |
|      | Telephone: ()       -       FAX: ()       -         In the control of the second sec |   |
| Appl | plication (optional):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Wou  | ould you like a reply?YN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Devi | vice: PIC18CXX8 Literature Number: DS30475A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| Que  | lestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 1 \  | What are the best features of this document?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 2. I | How does this document meet your hardware and software development needs?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 3. I | Do you find the organization of this data sheet easy to follow? If not, why?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 4. \ | What additions to the data sheet do you think would enhance the structure and subject?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 5 \  | What deletions from the data sheet could be made without affecting the overall usefulness?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| 5.   | what deletions from the data sheet could be made without aneoting the overall decliness:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 6. I | Is there any incorrect or misleading information (what and where)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| _    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 7. I | How would you improve this document?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 8. I | How would you improve our software, systems, and silicon products?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |