E·XFL

NXP USA Inc. - SPC5605BK0MLL6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	77
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 7x10b, 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5605bk0mll6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Port	PCR	Alternate		eral	ion	pe ²	a.3	Pi	in numb	er
pin	register	function ¹	Function	Periph	I/O direct	Pad ty	RESE confiș	100 LQFP	144 LQFP	176 LQFP
PB[13]	PCR[29]	AF0 AF1 AF2	GPIO[29] E0UC[5]	SIUL eMIOS_0	I/O I/O	J	Tristate	63	85	103
		AF3	CS2_0 ADC0_X[1]	DSPI_0 ADC_0	0 1					
PB[14]	PCR[30]	AF0 AF1 AF2	GPIO[30] E0UC[6] —	SIUL eMIOS_0 	I/O I/O 	J	Tristate	65	87	105
		AF3	CS3_0 ADC0_X[2]	DSPI_0 ADC_0	0 I					
PB[15]	PCR[31]	AF0 AF1 AF2	GPIO[31] E0UC[7] —	SIUL eMIOS_0 —	I/O I/O —	J	Tristate 67	67	89	107
		AF3	CS4_0 ADC0_X[3]	DSPI_0 ADC_0	0 I					
				Port C						
PC[0] ⁸	PCR[32]	AF0 AF1 AF2 AF3	GPIO[32] — TDI —	SIUL — JTAGC —	I/O 	М	Input, weak pull-up	87	126	154
PC[1] ⁸	PCR[33]	AF0 AF1 AF2	GPIO[33] — TDO	SIUL — JTAGC	I/O — O	F ⁹	Tristate	82	121	149
PC[2]	PCR[34]	AF3 AF0 AF1 AF2 AF3 —	GPIO[34] SCK_1 CAN4TX DEBUG[0] EIRQ[5]		/O /O 0 	М	Tristate	78	117	145
PC[3]	PCR[35]	AF0 AF1 AF2 AF3 — — —	GPIO[35] CS0_1 MA[0] DEBUG[1] EIRQ[6] CAN1RX CAN4RX	SIUL DSPI_1 ADC_0 SSCM SIUL FlexCAN_1 FlexCAN_4	/O /O 0 	S	Tristate	77	116	144
PC[4]	PCR[36]	AF0 AF1 AF2 AF3 — — —	GPIO[36] E1UC[31] DEBUG[2] EIRQ[18] SIN_1 CAN3RX	SIUL eMIOS_1 SSCM SIUL DSPI_1 FlexCAN_3	I/O I/O I I I	Μ	Tristate	92	131	159

Table 2. Functional port pins (continued)

Port	PCR	Alternate		eral	ion	pe ²	g.3	Pi	in numb	er
pin	register	function ¹	Function	Periph	I/O direct	Pad ty	RESI	100 LQFP	144 LQFP	176 LQFP
PC[5]	PCR[37]	AF0 AF1 AF2 AF3 —	GPIO[37] SOUT_1 CAN3TX DEBUG[3] EIRQ[7]	SIUL DSPI_1 FlexCAN_3 SSCM SIUL	I/O O O I	М	Tristate	91	130	158
PC[6]	PCR[38]	AF0 AF1 AF2 AF3	GPIO[38] LIN1TX E1UC[28] DEBUG[4]	SIUL LINFlex_1 eMIOS_1 SSCM	I/O O I/O O	S	Tristate	25	36	44
PC[7]	PCR[39]	AF0 AF1 AF2 AF3 — —	GPIO[39] — E1UC[29] DEBUG[5] LIN1RX WKUP[12] ⁴	SIUL 	I/O — I/O I I	S	Tristate	26	37	45
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX E0UC[3] DEBUG[6]	SIUL LINFlex_2 eMIOS_0 SSCM	I/O O I/O O	S	Tristate	99	143	175
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 —	GPIO[41] — E0UC[7] DEBUG[7] WKUP[13] ⁴ LIN2RX	SIUL 	I/O /O 	S	Tristate	2	2	2
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] CAN1TX CAN4TX MA[1]	SIUL FlexCAN_1 FlexCAN_4 ADC_0	I/O O O	М	Tristate	22	28	36
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 — — —	GPIO[43] — MA[2] WKUP[5] ⁴ CAN1RX CAN4RX	SIUL ADC_0 WKUP FlexCAN_1 FlexCAN_4	/O 0 1 	S	Tristate	21	27	35
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] — EIRQ[19] SIN_2	SIUL eMIOS_0 — SIUL DSPI_2	I/O I/O — I I	М	Tristate	97	141	173
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] SOUT_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O O	S	Tristate	98	142	174

 Table 2. Functional port pins (continued)

- ⁴ All WKUP pins also support external interrupt capability. See the WKPU chapter of the MPC5606BK Microcontroller Reference Manual for further details.
- ⁵ NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
- ⁶ "Not applicable" because these functions are available only while the device is booting. See the BAM chapter of the *MPC5606BK Microcontroller Reference Manual* for details.
- ⁷ Value of PCR.IBE bit must be 0.
- ⁸ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO. PC[0:1] are available as JTAG pins (TDI and TDO respectively).
 PH[9:10] are available as JTAG pins (TCK and TMS respectively).
 It is up to the user to configure these pins as GPIO when needed.
- ⁹ PC[1] is a fast/medium pad but is in medium configuration by default. This pad is in Alternate Function 2 mode after reset which has TDO functionality. The reset value of PCR.OBE is 1, but this setting has no impact as long as this pad stays in AF2 mode. After configuring this pad as GPIO (PCR.PA = 0), output buffer is enabled as reset value of PCR.OBE = 1.

¹⁰ Not available in 100LQFP package.

Туре	Description
F	Fast
I	Input only with analog feature
J	Input/output with analog feature
М	Medium
S	Slow

Table 3. Pad types

3 Electrical characteristics

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

3.1 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 4 are used and the parameters are tagged accordingly in the tables where appropriate.

Symbol		Parameter	Conditions	Va	Unit	
Gymbol		i arameter	Conditions	Min	Max	01111
T _{A C-Grade} Part	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁷	-40	85	°C
T _{J C-Grade} Part	SR	Junction temperature under bias	_	-40	110	
T _{A V-Grade} Part	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁷	-40	105	
T _{J V-Grade} Part	SR	Junction temperature under bias	_	-40	130	
T _{A M} -Grade Part	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁷	-40	125	
T _{J M} -Grade Part	SR	Junction temperature under bias	_	-40	150	

Table 9. Recommended	operating conditions	(3.3 V)	(continued)
		· · · · · /	1

¹ 100 nF capacitance needs to be provided between each V_{DD}/V_{SS} pair.

 $^2~$ 330 nF capacitance needs to be provided between each V_DD_LV/V_SS_LV supply pair.

³ 470 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics). Supply ramp slope on VDD_BV should always be faster or equal to slope of VDD_HV. Otherwise, device may enter regulator bypass mode if slope on VDD_BV is slower.

 $^4\,$ 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.

⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/O DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, the device is reset.

⁶ Guaranteed by device validation

⁷ This frequency includes the 4% frequency modulation guard band.

Table 10.	Recommended	operating	conditions	(5.0 V)
-----------	-------------	-----------	------------	--------	---

Symbol		Parameter	Conditions	Va	lue	Unit
Gymbol		i arameter	Conditions	Min	Max	onn
V _{SS}	SR	Digital ground on VSS_HV pins		0	0	V
V _{DD} ¹	SR	Voltage on VDD_HV pins with respect to ground	—	4.5	5.5	V
		(V _{SS})	Voltage drop ²	3.0	5.5	
V _{SS_LV} ³	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V_SS)	—	V _{SS} – 0.1	V _{SS} + 0.1	V
V _{DD_BV} ⁴	SR	Voltage on VDD_BV pin (regulator supply) with	—	4.5	5.5	V
		respect to ground (V _{SS})	Voltage drop ²	3.0	5.5	
			Relative to V_{DD}	3.0	V _{DD} + 0.1	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (V_{SS})	—	V _{SS} – 0.1	V _{SS} + 0.1	V

Package		Supply segment										
I denage	1	2	3	4	5	6	7	8				
176 LQFP	pin7 – pin27	pin28 – pin57	pin59 – pin85	pin86 – pin123	pin124 – pin150	pin151 – pin6	—	—				
144 LQFP	pin20 – pin49	pin51 – pin99	pin100 – pin122	pin 123 – pin19	—	—	—	_				
100 LQFP	pin16 – pin35	pin37 – pin69	pin70 – pin83	pin84 – pin15	—	—	—	—				

Table 18. I/O supply segments

Table 19. I/O consumption

Symbo		C	Parameter	Condi	tions ¹	Value			Unit
Symbo		C	Falameter	Condi	uons	Min	Тур	Max	Unit
I _{SWTSLW} ,2	CC	D	Dynamic I/O current for SLOW configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	—	—	20	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			16	
I _{SWTMED} ²	CC	D	Dynamic I/O current for MEDIUM configuration	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	29	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	17	
I _{SWTFST} ²	CC	D	Dynamic I/O current for FAST configuration	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0			110	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	50	
I _{RMSSLW}	СС	D	Root medium square I/O	t medium square I/O $C_L = 25 \text{ pF}, 2 \text{ MHz}$ $V_{DD} = 5.0 \text{ V}$		—	—	2.3	mA
			configuration	C _L = 25 pF, 4 MHz	PAD3V5V = 0	—		3.2	
				C _L = 100 pF, 2 MHz		—		6.6	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%$,			1.6	
				C _L = 25 pF, 4 MHz	PAD3V5V = 1	—	_	2.3	
				C _L = 100 pF, 2 MHz		—		4.7	
I _{RMSMED}	СС	D	Root medium square I/O	$C_L = 25 \text{ pF}, 13 \text{ MHz}$ $V_{DD} = 5.0 \text{ V} \pm 10 \text{ PM}$				6.6	mA
			configuration	C _L = 25 pF, 40 MHz	PAD3V5V = 0	—	_	13.4	
				C _L = 100 pF, 13 MHz		—	-	18.3	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,		_	5	
				C _L = 25 pF, 40 MHz		—	—	8.5	
				C _L = 100 pF, 13 MHz		—	—	11	

6				176 LQFP				144/100 LQFP				
	ppiy segin	ent	Pad	Weigh	nt 5 V	Weight 3.3 V		Weight 5 V		Weigh	t 3.3 V	
176 LQFP	144 LQFP	100 LQFP		$SRC^2 = 0$	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
1	—	—	PH[15]	2%	3%	3%	3%	_	_	—	—	
	—	—	PH[13]	3%	4%	3%	4%	_	—	—	—	
	—	—	PH[14]	3%	4%	4%	4%	—	—	—	—	
	—	—	PI[6]	4%	_	4%	—	—	—	—	—	
	_	—	PI[7]	4%		4%	_	_	_	—	_	
	4	—	PG[5]	4%	_	5%	—	10%	—	12%	—	
		—	PG[4]	4%	6%	5%	5%	9%	13%	11%	12%	
		—	PG[3]	4%	_	5%	—	9%	—	11%	—	
		—	PG[2]	4%	6%	5%	5%	9%	12%	10%	11%	
		4	PA[2]	4%	_	5%	—	8%	—	10%	—	
			PE[0]	4%	_	5%	—	8%	—	9%	—	
			PA[1]	4%	_	5%	—	8%	—	9%	—	
			PE[1]	4%	6%	5%	6%	7%	10%	9%	9%	
			PE[8]	4%	6%	5%	6%	7%	10%	8%	9%	
			PE[9]	4%	_	5%	—	6%	—	8%	—	
			PE[10]	4%	_	5%	_	6%	_	7%	_	
			PA[0]	4%	6%	5%	5%	6%	8%	7%	7%	
			PE[11]	4%	_	5%	—	5%	—	6%	—	

Table 20. I/O weight¹ (continued)

		ont			176 L	QFP		144/100 LQFP				
30	ppiy segme	ent	Pad	Weigh	Weight 5 V		Weight 3.3 V		ht 5 V	Weigh	t 3.3 V	
176 LQFP	144 LQFP	100 LQFP		SRC ² = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
3	2	2	PB[9]	1%	—	1%	—	1%	_	1%	—	
			PB[8]	1%		1%	_	1%		1%	_	
			PB[10]	5%	_	6%	—	6%	_	7%	—	
		—	PF[0]	5%	_	6%	_	6%	_	8%	—	
		—	PF[1]	5%	_	6%	_	7%	_	8%	—	
		—	PF[2]	6%	—	7%	_	7%	—	9%	—	
		—	PF[3]	6%	—	7%	_	8%	—	9%	—	
		—	PF[4]	6%	_	7%	_	8%	_	10%	—	
		—	PF[5]	6%	—	7%	_	9%	—	10%	—	
		—	PF[6]	6%	—	7%	_	9%	—	11%	—	
		—	PF[7]	6%	_	7%	_	9%	_	11%	—	
	—	—	PJ[3]	6%	—	7%	_	—	—	_	—	
	—	—	PJ[2]	6%	—	7%	—	—	—	—	—	
	—	—	PJ[1]	6%	—	7%	—	—	—	—	—	
	—	—	PJ[0]	6%	—	7%	—	—	—	—	—	
	—	—	PI[15]	6%	—	7%	—	—	—	—	—	
	—	—	PI[14]	6%	—	7%	—	—	—	—	—	
	2	2	PD[0]	1%	—	1%	—	1%	—	1%	—	
			PD[1]	1%	—	1%	—	1%	—	1%	—	
			PD[2]	1%	—	1%	—	1%	—	1%	—	
			PD[3]	1%	—	1%	—	1%	—	1%	—	
			PD[4]	1%		1%		1%		1%	_	
			PD[5]	1%		1%	—	1%	—	1%	—	
			PD[6]	1%		1%		1%		2%		
			PD[7]	1%	_	1%	_	1%	_	2%	_	

Table 20. I/O weight¹ (continued)

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply
- LVDHV3B monitors VDD_BV to ensure device reset below minimum functional supply
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V \pm 10% range
- LVDLVCOR monitors power domain No. 1
- LVDLVBKP monitors power domain No. 0

NOTE

When enabled, power domain No. 2 is monitored through LVDLVBKP.

Figure 11. Low voltage monitor vs. reset

Symbol		C	Parameter	Conditions ¹		Unit		
Gymbol		Ŭ	i arameter	Conditions	Min	Тур	Max	
V _{PORUP}	SR	D	Supply for functional POR module	T _A = 25 °C,	1.0	_	5.5	V
V _{PORH}	СС	Ρ	Power-on reset threshold	after trimming	1.5	—	2.6	
V _{LVDHV3H}	СС	Т	LVDHV3 low voltage detector high threshold		_	—	2.95	
V _{LVDHV3L}	СС	Ρ	LVDHV3 low voltage detector low threshold		2.6	—	2.9	
V _{LVDHV3BH}	СС	Т	LVDHV3B low voltage detector high threshold			—	2.95	
V _{LVDHV3BL}	СС	Ρ	LVDHV3BL low voltage detector low threshold		2.6	—	2.9	
V _{LVDHV5H}	СС	Т	LVDHV5 low voltage detector high threshold			—	4.5	
V _{LVDHV5L}	СС	Ρ	LVDHV5 low voltage detector low threshold		3.8	—	4.4	
V _{LVDLVCORL}	СС	Ρ	LVDLVCOR low voltage detector low threshold		1.08	—	—	
V _{LVDLVBKPL}	СС	Ρ	LVDLVBKP low voltage detector low threshold		1.08	—	1.14	

Table 23. Low voltage monitor	electrical	characteristics
-------------------------------	------------	-----------------

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for the application.

- Software recommendations The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter
 - Unexpected reset
 - Critical data corruption (control registers...)
- Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

3.11.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI measurements.

Symbol C Parameter		c	Parameter	Conditions			Value			
		Cond		Min	Тур	Max	Unit			
_	SR		Scan range	-	_	0.150		1000	MHz	
f _{CPU}	SR	—	Operating frequency	_		_	64		MHz	
$V_{DD_{LV}}$	SR		LV operating voltages	_		—	1.28	_	V	
S _{EMI}	СС	Т	Peak level	V _{DD} = 5 V, T _A = 25 °C, LQFP144 package	No PLL frequency modulation	_	_	18	dBµV	
	Te 6' f _O 64		for the formula for the formu	± 2% PLL frequency modulation	_		14	dBµV		

Table 30. EMI radiated emission measurement^{1,2}

¹ EMI testing and I/O port waveforms per IEC 61967-1, -2, -4

² For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

3.11.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

3.11.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts×(n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

Symbol		C	Parameter Conditions ¹				Unit	
Gymbol		Ŭ	i didineter	Conditions		Тур	Мах	Unit
T _{FXOSCSU}	СС	Т	Fast external crystal oscillator start-up time	f _{OSC} = 4 MHz, OSCILLATOR_MARGIN = 0	_		6	ms
				f _{OSC} = 16 MHz, OSCILLATOR_MARGIN = 1	_	_	1.8	
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	0.65V _{DD}	_	V _{DD} + 0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.4	_	0.35V _{DD}	V

Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals).

3.13 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

Figure 14. Crystal oscillator and resonator connection scheme

NOTE

OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.

Symbo	Symbol		Parameter	Conditions ¹		Unit		
Symbo	,	C	Falancie	Conditions	Min	Тур	Max	Unit
f _{PLLOUT}	СС	Ρ	FMPLL output clock frequency	_	16	_	64	MHz
f _{VCO} ³	СС	Ρ	VCO frequency without frequency modulation	_	256	_	512	MHz
		Ρ	VCO frequency with frequency modulation	_	245.76	_	532.48	
f _{CPU}	SR		System clock frequency	_	—	_	64 ⁴	MHz
f _{FREE}	СС	Ρ	Free-running frequency	_	20	_	150	MHz
t _{LOCK}	СС	Ρ	FMPLL lock time	Stable oscillator (f _{PLLIN} = 16 MHz)		40	100	μs
Δt_{STJIT}	СС		FMPLL short term jitter ⁵	f _{sys} maximum	-4	_	4	%
Δt_{LTJIT}	СС	—	FMPLL long term jitter	f _{PLLCLK} at 64 MHz, 4000 cycles	—	_	10	ns
I _{PLL}	СС	С	FMPLL consumption	T _A = 25 °C	—		4	mA

Table 37. FMPLL	electrical	characteristics	(continued)	

¹ V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

³ Frequency modulation is considered $\pm 4\%$.

 $^4~$ f_{CPU} 64 MHz can be achieved only at up to 105 °C.

⁵ Short term jitter is measured on the clock rising edge at cycle n and n + 4.

3.15 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device.

Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics

Symbol		C	Parameter	Conditions ¹			Unit		
Symbol		C	r ai ainetei		Min	Тур	Max	onic	
f _{FIRC}	СС	Ρ	Fast internal RC oscillator high	T _A = 25 °C, [•]	trimmed	_	16		MHz
	SR		frequency			12		20	
I _{FIRCRUN} 2,	СС	Т	Fast internal RC oscillator high frequency current in running mode	T _A = 25 °C, trimmed		_	_	200	μA
I _{FIRCPWD}	СС	D	Fast internal RC oscillator high frequency current in power down mode	T _A = 25 °C		_	_	10	μA
IFIRCSTOP	СС	Т	Fast internal RC oscillator high	T _A = 25 °C	sysclk = off		500		μΑ
			frequency and system clock current in stop mode		sysclk = 2 MHz	_	600	_	
					sysclk = 4 MHz	_	700	_	
					sysclk = 8 MHz		900		
					sysclk = 16 MHz		1250		

Symbol		<u>د</u>	Paramotor	Conditions ¹		Unit		
Symbol		C	Faiametei	Conditions	Min	Тур	Max	Unit
V _{AINx}	SR	—	Analog input voltage ³	_	V _{SS_ADC1} - 0.1	—	V _{DD_ADC1} + 0.1	V
I _{ADC1pwd}	SR		ADC_1 consumption in power down mode	_	_		50	μA
I _{ADC1run}	SR	—	ADC_1 consumption in running mode	_	—	_	6	mA
f _{ADC1}	SR	_	ADC_1 analog frequency	V _{DD} = 3.3 V	3.33	—	20 + 4%	MHz
				V _{DD} = 5 V	3.33	—	32 + 4%	
t _{ADC1_PU}	SR	—	ADC_1 power up delay	_	—	—	1.5	μs
t _{ADC1_S}	СС	Т	Sample time ⁴ VDD = 3.3 V	f _{ADC1} = 20 MHz, ADC1_conf_sample_input = 12	600	—	_	ns
			Sample time ⁴ VDD = 5.0 V	f _{ADC1} = 32 MHz, ADC1_conf_sample_input = 17	500	—	_	
			Sample time ⁴ VDD = 3.3 V	f _{ADC1} = 3.33 MHz, ADC1_conf_sample_input = 255	—		76.2	μs
			Sample time ⁴ VDD = 5.0 V	f _{ADC1} = 3.33 MHz, ADC1_conf_sample_input = 255	—	—	76.2	
t _{ADC1_C}	СС	Ρ	Conversion time ⁵ VDD = 3.3 V	f _{ADC1} = 20MHz, ADC1_conf_comp = 0	2.4		_	μs
			Conversion time ⁵ VDD = 5.0 V	f _{ADC 1} = 32 MHz, ADC1_conf_comp = 0	1.5	—	_	μs
			Conversion time ⁵ VDD = 3.3 V	f _{ADC 1} = 13.33 MHz, ADC1_conf_comp = 0	—		3.6	μs
			Conversion time ⁵ VDD = 5.0 V	f _{ADC1} = 13.33 MHz, ADC1_conf_comp = 0	—	—	3.6	μs
Δ_{ADC1_SYS}	SR	_	ADC_1 digital clock duty cycle	ADCLKSEL = 1 ⁶	45	—	55	%
C _S	СС	D	ADC_1 input sampling capacitance	_		—	5	pF
C _{P1}	СС	D	ADC_1 input pin capacitance 1	_	—	—	3	pF
C _{P2}	СС	D	ADC_1 input pin capacitance 2	—	—	—	1	pF
C _{P3}	СС	D	ADC_1 input pin capacitance 3	—	—	—	1.5	pF
R _{SW1}	СС	D	Internal resistance of analog source	_	—	—	1	kΩ
R _{SW2}	СС	D	Internal resistance of analog source	_	—	—	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	_		—	0.3	kΩ

Table 42. ADC_1 conversion characteristics (12-bit ADC_1) (continued)

3.18 On-chip peripherals

3.18.1 Current consumption

Symbol		c	Parameter		Conditions	Value	Unit
eyser		Ĩ	i arameter		Conditions	Тур	•
I _{DD_BV(CAN)}	СС	Т	CAN (FlexCAN)	Bit rate = 500 KB/s	Total (static + dynamic) consumption:	8 * f _{periph} + 85	μA
			supply current on V _{DD_BV}	 FlexCAN IN T mode TAL at 8 MI CAN engine source Message ser period is 580 		8 * f _{periph} + 27	
I _{DD_BV(eMIOS)}	CC	Т	eMIOS supply current on V _{DD_BV}	Static consuleMIOS clGlobal pr	Imption: hannel OFF escaler enabled	29 * f _{periph}	
				Dynamic co • It does no frequency	nsumption: ot change varying the y (0.003 mA)	3	
I _{DD_BV} (SCI)	CC	Т	SCI (LINFlex) supply current on V _{DD_BV}	Total (static • LIN mode • Baud rate	+ dynamic) consumption: e e: 20 KB/s	5 * f _{periph} + 31	
I _{DD_BV(SPI)}	СС	Т	SPI (DSPI) supply current	Ballast stati clocked)	ic consumption (only	1	
			on V _{DD_BV}	Ballast dynamic consumption (continuous communication): • Baud rate: 2 Mb/s • Transmission every 8 µs • Frame: 16 bits		16 * f _{periph}	
I _{DD_BV} (ADC_0/ADC_1)	СС	Т	ADC_0/ADC_1 supply current	V _{DD} = 5.5 V	Ballast static consumption (no conversion)	41 * f _{periph}	μA
			on V _{DD_BV}	V _{DD} = 5.5 V	Ballast dynamic consumption (continuous conversion)	46 * f _{periph}	
IDD_HV_ADC0	СС	Т	ADC_0 supply current on	V _{DD} = 5.5 V	Analog static consumption (no conversion)	200	
			VDD_HV_ADC0	V _{DD} = 5.5 V	Analog dynamic consumption (continuous conversion)	3	mA

Table 43. On-chip peripherals current consumption¹

Symbol		C	Parameter	Conditions		Value	Unit	
Cymbol			i arameter		Conditions	Тур	Unit	
IDD_HV_ADC1	СС	Т	ADC_1 supply current on	V _{DD} = 5.5 V	Analog static consumption (no conversion)	300 * f _{periph}	μA	
			VDD_HV_ADC1	V _{DD} = 5.5 V	Analog dynamic consumption (continuous conversion)	4	mA	
I _{DD_HV} (FLASH)	СС	Т	CFlash + DFlash supply current on V _{DD_HV}	V _{DD} = 5.5 V	_	12	mA	
I _{DD_BV(PLL)}	СС	Т	PLL supply current on V _{DD_BV}	V _{DD} = 5.5 V	_	2.5	mA	

Table 43. On-chip peripherals current consumption	ption ¹ (continued)
---	--------------------------------

¹ Operating conditions: $T_A = 25$ °C, $f_{periph} = 8$ MHz to 64 MHz

Note: Numbers shown reference Table 44.

Note: Numbers shown reference Table 44.

4 Package characteristics

4.1 Package mechanical data

4.1.1 176 LQFP

Figure 33. 176 LQFP package mechanical drawing (Part 1 of 3)

4.1.2 144 LQFP

Figure 36. 144 LQFP package mechanical drawing (Part 1 of 2)

Figure 37. 144 LQFP package mechanical drawing (Part 2 of 2)

4.1.3 100 LQFP

Figure 38. 100 LQFP package mechanical drawing (Part 1 of 3)

6 Revision history

Table 46. Revision history

Revision [Date	Description of changes
1 22 A	pr 2011	Initial release.
2 15 M	lay 2013	 Changed device number to MPC5606BK. In Table 2 (Functional port pins), updated PA[11] AF2, PD[13] AF2, and PH[11] AF3 I/O direction to "I/O". In Table 3 (Pad types), corrected "Fast" in the "S" row to "Slow." In Table 5 (PAD3V5V field description), updated footnote 2. In Table 6 (OSCILLATOR_MARGIN field description), updated footnote 2. In Table 6 (OSCILLATOR_MARGIN field description), updated footnote 2. In Table 8 (Absolute maximum ratings), Table 9 (Recommended operating conditions (3.3 V)), and Table 10 (Recommended operating conditions (5.0 V)), corrected the parameter description for V_{DD_ADC} to "Voltage on VDD_HV_ADC0, VDD_HV_ADC1 (ADC reference) with respect to ground (V_{SS})" In Section 3.6.1, I/O pad types bullet item, removed Nexus reference. In Table 13 (I/O pull-up/pull-down DC electrical characteristics), Table 14 (SLOW configuration output buffer electrical characteristics), Table 15 (MEDIUM configuration output buffer electrical characteristics), Table 15 (MEDIUM configuration output buffer electrical characteristics), Table 15 (MEDIUM configuration output buffer electrical characteristics), and Table 16 (FAST configuration output buffer electrical characteristics), and Table 16 (FAST configuration output buffer electrical characteristics), changed sentence in footnote 2 to "All pads but RESET are configured in input or in high impedance state." In Table 15 (MEDIUM configuration output buffer electrical characteristics), for V_{OL}, changed I_{OH} to I_{OL}. Updated Table 20 (I/O weight). In Table 21 (Reset electrical characteristics) changed sentence in footnote 4 to "All pads but RESET are configured in input or in high impedance state." In Table 22 (Voltage regulator electrical characteristics), corrected the maximum value for I_{DD_BV} in Table 22 (Voltage regulator electrical characteristics), changed V_{PORUP} classification tag from "P" (Production testing guaranteed) to "T" (D