



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                  |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | e200z0h                                                                 |
| Core Size                  | 32-Bit Single-Core                                                      |
| Speed                      | 64MHz                                                                   |
| Connectivity               | CANbus, I <sup>2</sup> C, LINbus, SCI, SPI                              |
| Peripherals                | DMA, POR, PWM, WDT                                                      |
| Number of I/O              | 121                                                                     |
| Program Memory Size        | 768KB (768K x 8)                                                        |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | 64K x 8                                                                 |
| RAM Size                   | 64K x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                               |
| Data Converters            | A/D 15x10b, 5x12b                                                       |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                      |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 144-LQFP                                                                |
| Supplier Device Package    | 144-LQFP (20x20)                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5605bk0vlq6r |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# 1.3 Device comparison

Table 1 summarizes the functions of the blocks present on the MPC5606BK.

|  | Table 1. | MPC5606BK | family | compa | arison <sup>1</sup> |
|--|----------|-----------|--------|-------|---------------------|
|--|----------|-----------|--------|-------|---------------------|

| Feature                      |          | MPC5605BK     |          | MPC5606BK |               |          |  |  |  |
|------------------------------|----------|---------------|----------|-----------|---------------|----------|--|--|--|
| Package                      | 100 LQFP | 144 LQFP      | 176 LQFP | 100 LQFP  | 144 LQFP      | 176 LQFP |  |  |  |
| CPU                          | e200z0h  |               |          |           |               |          |  |  |  |
| Execution speed <sup>2</sup> |          | Up to 64 MHz  |          |           |               |          |  |  |  |
| Code flash memory            |          | 768 KB        |          |           | 1 MB          |          |  |  |  |
| Data flash memory            |          |               | 64 (4 x  | 16) KB    |               |          |  |  |  |
| SRAM                         |          | 64 KB         |          |           | 80 KB         |          |  |  |  |
| MPU                          |          |               | 8-e      | ntry      |               |          |  |  |  |
| eDMA                         |          |               | 16       | ch        |               |          |  |  |  |
| 10-bit ADC                   |          |               | Ye       | es        |               |          |  |  |  |
| dedicated <sup>3</sup>       | 7 ch     | 15 ch         | 29 ch    | 7 ch      | 15 ch         | 29 ch    |  |  |  |
| shared with 12-bit ADC       | 19 ch    |               |          |           |               |          |  |  |  |
| 12-bit ADC                   |          |               | Ye       | es        |               |          |  |  |  |
| dedicated <sup>4</sup>       |          |               | 5        | ch        |               |          |  |  |  |
| shared with 10-bit ADC       | 19 ch    |               |          |           |               |          |  |  |  |
| Total timer I/O <sup>5</sup> | 37 ch,   | 37 ch, 64 ch, |          |           | 37 ch, 64 ch, |          |  |  |  |
|                              | 16-Dit   | 16            | -Dit     | 16-Dit    | 16            | -Dit     |  |  |  |
|                              |          |               | 10       | cn        |               |          |  |  |  |
|                              |          | _             | 7        | ch        |               |          |  |  |  |
| O(I)PWM / ICOC <sup>®</sup>  | 7 ch     |               |          | 14 ch     |               |          |  |  |  |
| OPWM / ICOC*                 | 13 ch    |               |          | 33 ch     | -             |          |  |  |  |
| SCI (LINFlex)                | 4        | 6             | 8        | 4         | 6             | 8        |  |  |  |
| SPI (DSPI)                   | 3        | 5             | 6        | 3         | 5             | 6        |  |  |  |
| CAN (FlexCAN)                | 6        |               |          |           |               |          |  |  |  |
| 1 <sup>2</sup> C             | 1        |               |          |           |               |          |  |  |  |
| 32 KHz oscillator            |          |               | Ye       | es        | T             | r        |  |  |  |
| GPIO <sup>10</sup>           | 77       | 121           | 149      | 77        | 121           | 149      |  |  |  |
| Debug                        | JTAG     |               |          |           |               |          |  |  |  |

<sup>1</sup> Feature set dependent on selected peripheral multiplexing; table shows example.

<sup>2</sup> Based on 125 °C ambient operating temperature.

<sup>3</sup> Not shared with 12-bit ADC, but possibly shared with other alternate functions.

<sup>4</sup> Not shared with 10-bit ADC, but possibly shared with other alternate functions.

<sup>5</sup> Refer to eMIOS section of device reference manual for information on the channel configuration and functions.

<sup>6</sup> Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output Compare.

<sup>7</sup> Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output Compare.

<sup>8</sup> Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and Pulse width measurement.

<sup>9</sup> Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.

<sup>10</sup> Maximum I/O count based on multiplexing with peripherals.



## 1.4 Block diagram

Figure 1 shows a top-level block diagram of the MPC5606BK.



Figure 1. MPC5606BK block diagram



\_\_\_\_\_

| Port   | PCR      | PCR Alternate                                |                                                    | pe <sup>2</sup>                                             | ₽.°.                        | Pi     | Pin number                |             |             |             |
|--------|----------|----------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-----------------------------|--------|---------------------------|-------------|-------------|-------------|
| pin    | register | function <sup>1</sup>                        | Function                                           | Periph                                                      | I/O<br>direct               | Pad ty | RESE<br>config            | 100<br>LQFP | 144<br>LQFP | 176<br>LQFP |
| PA[7]  | PCR[7]   | AF0<br>AF1<br>AF2<br>AF3                     | GPIO[7]<br>E0UC[7]<br>LIN3TX<br>—                  | SIUL<br>eMIOS_0<br>LINFlex_3                                | I/O<br>I/O<br>O             | J      | Tristate                  | 71          | 104         | 128         |
|        |          |                                              | EIRQ[2]<br>ADC1_S[1]                               | SIUL<br>ADC_1                                               |                             |        |                           |             |             |             |
| PA[8]  | PCR[8]   | AF0<br>AF1<br>AF2<br>AF3                     | GPIO[8]<br>E0UC[8]<br>E0UC[14]<br>—                | SIUL<br>eMIOS_0<br>eMIOS_0<br>—                             | I/O<br>I/O<br>I/O           | S      | Input,<br>weak<br>pull-up | 72          | 105         | 129         |
|        |          | <br>N/A <sup>6</sup>                         | EIRQ[3]<br>ABS[0]<br>LIN3RX                        | SIUL<br>BAM<br>LINFlex_3                                    | <br> <br>                   |        |                           |             |             |             |
| PA[9]  | PCR[9]   | AF0<br>AF1<br>AF2<br>AF3<br>N/A <sup>6</sup> | GPIO[9]<br>E0UC[9]<br>—<br>CS2_1<br>FAB            | SIUL<br>eMIOS_0<br><br>DSPI_1<br>BAM                        | I/O<br>I/O<br>—<br>0<br>I   | S      | Pull-<br>down             | 73          | 106         | 130         |
| PA[10] | PCR[10]  | AF0<br>AF1<br>AF2<br>AF3<br>—                | GPIO[10]<br>E0UC[10]<br>SDA<br>LIN2TX<br>ADC1_S[2] | SIUL<br>eMIOS_0<br>I <sup>2</sup> C_0<br>LINFlex_2<br>ADC_1 | I/O<br>I/O<br>I/O<br>O<br>I | J      | Tristate                  | 74          | 107         | 131         |
| PA[11] | PCR[11]  | AF0<br>AF1<br>AF2<br>AF3                     | GPIO[11]<br>E0UC[11]<br>SCL                        | SIUL<br>eMIOS_0<br>I <sup>2</sup> C_0                       | I/O<br>I/O<br>I/O           | J      | Tristate                  | 75          | 108         | 132         |
|        |          |                                              | EIRQ[16]<br>LIN2RX<br>ADC1_S[3]                    | SIUL<br>LINFlex_2<br>ADC_1                                  |                             |        |                           |             |             |             |
| PA[12] | PCR[12]  | AF0<br>AF1<br>AF2<br>AF3<br>—                | GPIO[12]<br><br>CS3_1<br>EIRQ[17]<br>SIN_0         | SIUL<br><br>eMIOS_0<br>DSPI_1<br>SIUL<br>DSPI_0             | I∕O    ∕O                   | S      | Tristate                  | 31          | 45          | 53          |
| PA[13] | PCR[13]  | AF0<br>AF1<br>AF2<br>AF3                     | GPIO[13]<br>SOUT_0<br>E0UC[29]<br>—                | SIUL<br>DSPI_0<br>eMIOS_0<br>—                              | I/O<br>O<br>I/O<br>—        | М      | Tristate                  | 30          | 44          | 52          |
| PA[14] | PCR[14]  | AF0<br>AF1<br>AF2<br>AF3<br>—                | GPIO[14]<br>SCK_0<br>CS0_0<br>E0UC[0]<br>EIRQ[4]   | SIUL<br>DSPI_0<br>DSPI_0<br>eMIOS_0<br>SIUL                 | I/O<br>I/O<br>I/O<br>I      | М      | Tristate                  | 28          | 42          | 50          |

| Table 2. | Functional | port pi   | ins ( | continued) |
|----------|------------|-----------|-------|------------|
|          |            | P • • • P |       |            |



| Port   | PCR      | Alternate                     |                                                  | eral                                    | ion                    | pe <sup>2</sup> | ЕТ<br>g. <sup>3</sup> | Pi          | in numb     | er          |
|--------|----------|-------------------------------|--------------------------------------------------|-----------------------------------------|------------------------|-----------------|-----------------------|-------------|-------------|-------------|
| pin    | register | function <sup>1</sup>         | Function                                         | Periph                                  | I/O<br>direct          | Pad ty          | RESE<br>confi         | 100<br>LQFP | 144<br>LQFP | 176<br>LQFP |
| PE[14] | PCR[78]  | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[78]<br>SCK_2<br>E1UC[21]<br>—<br>EIRQ[12]   | SIUL<br>DSPI_2<br>eMIOS_1<br>—<br>SIUL  | I/O<br>I/O<br>I/O<br>I | S               | Tristate              | _           | 112         | 136         |
| PE[15] | PCR[79]  | AF0<br>AF1<br>AF2<br>AF3      | GPIO[79]<br>CS0_2<br>E1UC[22]<br>—               | SIUL<br>DSPI_2<br>eMIOS_1<br>—          | I/O<br>I/O<br>I/O      | М               | Tristate              |             | 113         | 137         |
|        |          |                               |                                                  | Port F                                  |                        |                 |                       |             |             |             |
| PF[0]  | PCR[80]  | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[80]<br>E0UC[10]<br>CS3_1<br>—<br>ADC0_S[8]  | SIUL<br>eMIOS_0<br>DSPI_1<br><br>ADC_0  | I/O<br>I/O<br>O<br>I   | J               | Tristate              |             | 55          | 63          |
| PF[1]  | PCR[81]  | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[81]<br>E0UC[11]<br>CS4_1<br><br>ADC0_S[9]   | SIUL<br>eMIOS_0<br>DSPI_1<br><br>ADC_0  | I/O<br>I/O<br>O<br>I   | J               | Tristate              |             | 56          | 64          |
| PF[2]  | PCR[82]  | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[82]<br>E0UC[12]<br>CS0_2<br>—<br>ADC0_S[10] | SIUL<br>eMIOS_0<br>DSPI_2<br>—<br>ADC_0 | I/O<br>I/O<br>O<br>I   | J               | Tristate              |             | 57          | 65          |
| PF[3]  | PCR[83]  | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[83]<br>E0UC[13]<br>CS1_2<br>—<br>ADC0_S[11] | SIUL<br>eMIOS_0<br>DSPI_2<br>—<br>ADC_0 | I/O<br>I/O<br>O<br>I   | J               | Tristate              | _           | 58          | 66          |
| PF[4]  | PCR[84]  | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[84]<br>E0UC[14]<br>CS2_2<br>—<br>ADC0_S[12] | SIUL<br>eMIOS_0<br>DSPI_2<br>—<br>ADC_0 | I/O<br>I/O<br>O<br>I   | J               | Tristate              | _           | 59          | 67          |
| PF[5]  | PCR[85]  | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[85]<br>E0UC[22]<br>CS3_2<br>—<br>ADC0_S[13] | SIUL<br>eMIOS_0<br>DSPI_2<br><br>ADC_0  | I/O<br>I/O<br>O<br>I   | J               | Tristate              |             | 60          | 68          |
| PF[6]  | PCR[86]  | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[86]<br>E0UC[23]<br>CS1_1<br>—<br>ADC0_S[14] | SIUL<br>eMIOS_0<br>DSPI_1<br><br>ADC_0  | I/O<br>I/O<br>O<br>I   | J               | Tristate              |             | 61          | 69          |

 Table 2. Functional port pins (continued)



| Port   | PCR      | Alternate                     |                                                                       | pheral                                             | ion                      | 'pe²   | ЕТ<br>g. <sup>3</sup> | Pin number  |             |             |  |
|--------|----------|-------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|--------------------------|--------|-----------------------|-------------|-------------|-------------|--|
| pin    | register | function <sup>1</sup>         | Function                                                              | Periph                                             | I/O<br>direct            | Pad ty | RESE<br>confi         | 100<br>LQFP | 144<br>LQFP | 176<br>LQFP |  |
| PG[7]  | PCR[103] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[103]<br>E1UC[16]<br>E1UC[30]<br>                                 | SIUL<br>eMIOS_1<br>eMIOS_1<br>                     | I/O<br>I/O<br>I/O        | S      | Tristate              |             | 29          | 37          |  |
|        |          | _                             | LIN6RX                                                                | WKUP<br>LINFlex_6                                  |                          |        |                       |             |             |             |  |
| PG[8]  | PCR[104] | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[104]<br>E1UC[17]<br>LIN7TX<br>CS0_2<br>EIRQ[15]                  | SIUL<br>eMIOS_1<br>LINFlex_7<br>DSPI_2<br>SIUL     | I/O<br>I/O<br>I/O<br>I/O | S      | Tristate              | _           | 26          | 34          |  |
| PG[9]  | PCR[105] | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[105]<br>E1UC[18]<br><br>SCK_2<br>WKUP[21] <sup>4</sup><br>LIN7RX | SIUL<br>eMIOS_1<br><br>DSPI_2<br>WKUP<br>LINFlex_7 | <u> </u>                 | S      | Tristate              |             | 25          | 33          |  |
| PG[10] | PCR[106] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[106]<br>E0UC[24]<br>E1UC[31]<br><br>SIN_4                        | SIUL<br>eMIOS_0<br>eMIOS_1<br><br>DSPI_4           | 1/0<br>1/0<br>1/0<br>1   | S      | Tristate              |             | 114         | 138         |  |
| PG[11] | PCR[107] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[107]<br>E0UC[25]<br>CS0_4<br>—                                   | SIUL<br>eMIOS_0<br>DSPI_4<br>—                     | I/O<br>I/O<br>O          | М      | Tristate              |             | 115         | 139         |  |
| PG[12] | PCR[108] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[108]<br>E0UC[26]<br>SOUT_4<br>—                                  | SIUL<br>eMIOS_0<br>DSPI_4<br>—                     | I/O<br>I/O<br>O          | М      | Tristate              |             | 92          | 116         |  |
| PG[13] | PCR[109] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[109]<br>E0UC[27]<br>SCK_4<br>—                                   | SIUL<br>eMIOS_0<br>DSPI_4<br>—                     | I/O<br>I/O<br>I/O        | М      | Tristate              | _           | 91          | 115         |  |
| PG[14] | PCR[110] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[110]<br>E1UC[0]<br>—<br>—                                        | SIUL<br>eMIOS_1<br>—                               | I/O<br>I/O<br>           | S      | Tristate              | _           | 110         | 134         |  |
| PG[15] | PCR[111] | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[111]<br>E1UC[1]<br>—<br>—                                        | SIUL<br>eMIOS_1<br>—<br>—                          | I/O<br>I/O<br>—          | М      | Tristate              |             | 111         | 135         |  |
|        | Port H   |                               |                                                                       |                                                    |                          |        |                       |             |             |             |  |

| Table 2. | Functional | port pi   | ins ( | continued) |
|----------|------------|-----------|-------|------------|
|          |            | P • • • P |       |            |



| Port    | PCR      | Alternate             |            | eral    | ion           | pe <sup>2</sup> | ET<br>g.3      | Pi          | in numb     | er          |
|---------|----------|-----------------------|------------|---------|---------------|-----------------|----------------|-------------|-------------|-------------|
| pin     | register | function <sup>1</sup> | Function   | Periph  | l/O<br>direct | Pad ty          | RESE<br>confiș | 100<br>LQFP | 144<br>LQFP | 176<br>LQFP |
| PI[14]  | PCR[142] | AF0                   | GPIO[142]  | SIUL    | I/O           | J               | Tristate       |             |             | 76          |
|         |          | AF1                   | —          | —       | —             |                 |                |             |             |             |
|         |          | AF2                   | —          | —       | —             |                 |                |             |             |             |
|         |          | AF3                   |            |         |               |                 |                |             |             |             |
|         |          | _                     | SIN_4      | DSPI_4  | I             |                 |                |             |             |             |
| PI[15]  | PCR[143] | AF0                   | GPIO[143]  | SIUL    | I/O           | J               | Tristate       | _           |             | 75          |
|         |          | AF1                   | CS0_4      | DSPI_4  | I/O           |                 |                |             |             |             |
|         |          | AF2                   | —          | —       | —             |                 |                |             |             |             |
|         |          | AF3<br>—              |            | ADC_0   |               |                 |                |             |             |             |
|         | I        |                       |            | Port J  |               | L               | I              |             | I           |             |
| PJ[0]   | PCR[144] | AF0                   | GPIO[144]  | SIUL    | I/O           | J               | Tristate       | _           |             | 74          |
| - 1 - 1 |          | AF1                   | CS1_4      | DSPI_4  | I/O           |                 |                |             |             |             |
|         |          | AF2                   | —          | —       | —             |                 |                |             |             |             |
|         |          | AF3                   | —          | —       | —             |                 |                |             |             |             |
|         |          | —                     | ADC0_S[24] | ADC_0   | I             |                 |                |             |             |             |
| PJ[1]   | PCR[145] | AF0                   | GPIO[145]  | SIUL    | I/O           | J               | Tristate       | _           | _           | 73          |
|         |          | AF1                   | —          | —       | —             |                 |                |             |             |             |
|         |          | AF2                   | —          | —       | —             |                 |                |             |             |             |
|         |          | AF3                   |            |         |               |                 |                |             |             |             |
|         |          | _                     | SIN 5      | DSPL 5  |               |                 |                |             |             |             |
| D I/O   |          | 450                   |            | 0       |               |                 | Tristata       |             |             | 70          |
| PJ[2]   | PCR[146] | ΔF0<br>ΔF1            | GPI0[146]  | DSPL 5  | 1/0           | J               | Instate        | _           | _           | 12          |
|         |          | AF2                   |            |         |               |                 |                |             |             |             |
|         |          | AF3                   | _          |         | _             |                 |                |             |             |             |
|         |          | —                     | ADC0_S[26] | ADC_0   | Ι             |                 |                |             |             |             |
| PJ[3]   | PCR[147] | AF0                   | GPIO[147]  | SIUL    | I/O           | J               | Tristate       | —           | —           | 71          |
|         |          | AF1                   | CS1_5      | DSPI_5  | I/O           |                 |                |             |             |             |
|         |          | AF2                   | —          | —       | —             |                 |                |             |             |             |
|         |          | AF3<br>—              |            | ADC_0   |               |                 |                |             |             |             |
| PJ[4]   | PCR[148] | AF0                   | GPI0[148]  | SIUL    | I/O           | М               | Tristate       |             |             | 5           |
|         |          | AF1                   | SCK 5      | DSPI 5  | I/O           |                 |                |             |             | Ŭ           |
|         |          | AF2                   | E1UC[18]   | eMIOS_1 | —             |                 |                |             |             |             |
|         |          | AF3                   | —          | —       | —             |                 |                |             |             |             |

 Table 2. Functional port pins (continued)

<sup>1</sup> Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".

<sup>2</sup> See Table 3.

<sup>3</sup> The RESET configuration applies during and after reset.



# 3.5 Thermal characteristics

### 3.5.1 External ballast resistor recommendations

External ballast resistor on  $V_{DD_BV}$  pin helps in reducing the overall power dissipation inside the device. This resistor is required only when maximum power consumption exceeds the limit imposed by package thermal characteristics.

As stated in Table 11 LQFP thermal characteristics, considering a thermal resistance of 144 LQFP as 48.3 °C/W, at ambient temperature  $T_A = 125$  °C, the junction temperature  $T_j$  will cross 150 °C if the total power dissipation is greater than (150 - 125)/48.3 = 517 mW. Therefore, the total device current  $I_{DDMAX}$  at 125 °C/5.5 V must not exceed 94.1 mA (i.e., PD/VDD). Assuming an average  $I_{DD}(V_{DD_{-HV}})$  of 15–20 mA consumption typically during device RUN mode, the LV domain consumption  $I_{DD}(V_{DD_{-BV}})$  is thus limited to  $I_{DDMAX} - I_{DD}(V_{DD_{-HV}})$ , i.e., 80 mA.

Therefore, respecting the maximum power allowed as explained in Section 3.5.2, Package thermal characteristics, it is recommended to use this resistor only in the 125 °C/5.5 V operating corner as per the following guidelines:

- If  $I_{DD}(V_{DD BV}) < 80$  mA, then no resistor is required.
- If 80 mA < I\_{DD}(V\_{DD BV}) < 90 mA, then 4  $\Omega$  resistor can be used.
- If  $I_{DD}(V_{DD BV}) > 90$  mA, then 8  $\Omega$  resistor can be used.

Using resistance in the range of 4–8  $\Omega$ , the gain will be around 10–20% of total consumption on V<sub>DD\_BV</sub>. For example, if 8  $\Omega$  resistor is used, then power consumption when I<sub>DD</sub>(V<sub>DD\_BV</sub>) is 110 mA is equivalent to power consumption when I<sub>DD</sub>(V<sub>DD\_BV</sub>) is 90 mA (approximately) when resistor not used.

In order to ensure correct power up, the minimum  $V_{DD_BV}$  to be guaranteed is 30 ms/V. If the supply ramp is slower than this value, then LVDHV3B monitoring ballast supply  $V_{DD_BV}$  pin gets triggered leading to device reset. Until the supply reaches certain threshold, this low voltage monitor generates destructive reset event in the system. This threshold depends on the maximum  $I_{DD}(V_{DD_BV})$  possible across the external resistor.

### **3.5.2 Package thermal characteristics**

### Table 11. LQFP thermal characteristics<sup>1</sup>

| Symbol          |     | <u>ر</u> | Parameter                                           | Conditions <sup>2</sup>    | Pin count |   | )  | Unit |           |     |     |     |      |
|-----------------|-----|----------|-----------------------------------------------------|----------------------------|-----------|---|----|------|-----------|-----|-----|-----|------|
| Synn            | 101 | C        |                                                     |                            |           |   |    |      | Fin count | Min | Тур | Max | Unit |
| $R_{\thetaJA}$  | СС  | D        | Thermal resistance,                                 | Single-layer board — 1s    | 100       | — |    | 64   | °C/W      |     |     |     |      |
|                 |     |          | junction-to-ambient natural convection <sup>3</sup> |                            | 144       | — |    | 64   |           |     |     |     |      |
|                 |     |          |                                                     | 176                        | —         |   | 64 |      |           |     |     |     |      |
|                 |     |          |                                                     | Four-layer board —<br>2s2p | 100       | — |    | 49.7 |           |     |     |     |      |
|                 |     |          |                                                     |                            | 144       | — |    | 48.3 |           |     |     |     |      |
|                 |     |          |                                                     |                            | 176       | — |    | 47.3 |           |     |     |     |      |
| $R_{\theta JB}$ | СС  |          | Thermal resistance,                                 | Single-layer board — 1s    | 100       | — | _  | 36   | °C/W      |     |     |     |      |
|                 |     |          | junction-to-board*                                  |                            | 144       | — |    | 38   |           |     |     |     |      |
|                 |     |          |                                                     |                            | 176       | — | _  | 38   |           |     |     |     |      |
|                 |     |          |                                                     | Four-layer board —         | 100       | — | _  | 33.6 |           |     |     |     |      |
|                 |     |          |                                                     | 2s2p                       | 144       | — | —  | 33.4 |           |     |     |     |      |
|                 |     |          |                                                     |                            | 176       | — | —  | 33.4 |           |     |     |     |      |



| Symbol         |    | C | Parameter                     | Conditions <sup>2</sup> | Pin count |     | •   | Unit |      |
|----------------|----|---|-------------------------------|-------------------------|-----------|-----|-----|------|------|
| - Cynn         |    |   |                               | Conditione              |           | Min | Тур | Max  | onit |
| $R_{\thetaJC}$ | СС |   | Thermal resistance,           | Single-layer board — 1s | 100       | _   | _   | 23   | °C/W |
|                |    |   | Junction-to-case <sup>°</sup> |                         | 144       | _   | _   | 23   |      |
|                |    |   |                               |                         | 176       |     |     | 23   |      |
|                |    |   |                               | Four-layer board —      | 100       |     |     | 19.8 |      |
|                |    |   |                               | 2s2p                    | 144       |     |     | 19.2 |      |
|                |    |   |                               |                         | 176       | _   | —   | 18.8 |      |

| Table 11. LQFP thermal characteristics <sup>1</sup> | (continued) |
|-----------------------------------------------------|-------------|
|-----------------------------------------------------|-------------|

<sup>1</sup> Thermal characteristics are targets based on simulation.

<sup>2</sup>  $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$ ,  $T_A = -40$  to 125 °C.

- <sup>3</sup> Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as R<sub>thJA</sub> and R<sub>thJMA</sub>.
- <sup>4</sup> Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as R<sub>th.IB</sub>.
- <sup>5</sup> Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as R<sub>thJC</sub>.

### 3.5.3 Power considerations

The average chip-junction temperature, T<sub>J</sub>, in degrees Celsius, may be calculated using Equation 1:

$$T_{J} = T_{A} + (P_{D} \times R_{\theta JA})$$
 Eqn. 1

Where:

 $T_A$  is the ambient temperature in °C.

 $R_{\theta JA}$  is the package junction-to-ambient thermal resistance, in °C/W.

 $P_D$  is the sum of  $P_{INT}$  and  $P_{I/O} (P_D = P_{INT} + P_{I/O})$ .

P<sub>INT</sub> is the product of I<sub>DD</sub> and V<sub>DD</sub>, expressed in watts. This is the chip internal power.

 $P_{I/O}$  represents the power dissipation on input and output pins; user determined.

Most of the time for the applications,  $P_{I/O} < P_{INT}$  and may be neglected. On the other hand,  $P_{I/O}$  may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between  $P_D$  and  $T_J$  (if  $P_{I/O}$  is neglected) is given by:

Therefore, solving equations 1 and 2:

$$K = P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$$
 Eqn. 3

Where:



K is a constant for the particular part, which may be determined from Equation 3 by measuring  $P_D$  (at equilibrium) for a known  $T_{A.}$  Using this value of K, the values of  $P_D$  and  $T_J$  may be obtained by solving equations 1 and 2 iteratively for any value of  $T_A$ .

## 3.6 I/O pad electrical characteristics

### 3.6.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Fast pads provide maximum speed. These are used for improved debugging capability.
- Input only pads are associated with ADC channels and 32 kHz low power external crystal oscillator providing low input leakage.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.

### 3.6.2 I/O input DC characteristics

Table 12 provides input DC electrical characteristics as described in Figure 5.



Figure 5. I/O input DC electrical characteristics definition



| Svm             | Symbol | C | Parameter                                |           | Conditions <sup>1</sup>                                                                             | v |   | Unit               |     |
|-----------------|--------|---|------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------|---|---|--------------------|-----|
| Cym             |        | Ŭ | i urumeter                               |           | Conditions                                                                                          |   |   | Max                | onn |
| V <sub>OL</sub> | СС     | С | Output low level<br>MEDIUM configuration | Push Pull | I <sub>OL</sub> = 3.8 mA,<br>V <sub>DD</sub> = 5.0 V ± 10%, PAD3V5V = 0                             | _ |   | 0.2V <sub>DD</sub> | V   |
|                 |        | Ρ |                                          |           | $I_{OL} = 2 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$<br>(recommended) | _ | — | 0.1V <sub>DD</sub> |     |
|                 |        | С |                                          |           | $I_{OL} = 1 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$                | _ | _ | 0.1V <sub>DD</sub> |     |
|                 |        | С |                                          |           | I <sub>OL</sub> = 1 mA,<br>V <sub>DD</sub> = 3.3 V ± 10%, PAD3V5V = 1<br>(recommended)              | _ | — | 0.5                |     |
|                 |        | С |                                          |           | I <sub>OL</sub> = 100 μA,<br>V <sub>DD</sub> = 5.0 V ± 10%, PAD3V5V = 0                             | — |   | 0.1V <sub>DD</sub> |     |

### Table 15. MEDIUM configuration output buffer electrical characteristics (continued)

 $^{1}$  V\_{DD} = 3.3 V  $\pm$  10% / 5.0 V  $\pm$  10%, T\_A = -40 to 125 °C, unless otherwise specified

<sup>2</sup> The configuration PAD3V5 = 1 when  $V_{DD}$  = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

| Symt            |     | <u>د</u> | Paramotor                               |           | Conditions <sup>1</sup>                                                                          |                       | Value |                    | Unit |
|-----------------|-----|----------|-----------------------------------------|-----------|--------------------------------------------------------------------------------------------------|-----------------------|-------|--------------------|------|
| Synn            | 501 | C        | Falailletei                             |           | Conditions                                                                                       | Min                   | Тур   | Max                | Unit |
| V <sub>OH</sub> | СС  | Ρ        | Output high level<br>FAST configuration | Push Pull | $I_{OH} = -14 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%,$<br>PAD3V5V = 0<br>(recommended) | 0.8V <sub>DD</sub>    |       |                    | V    |
|                 |     | С        |                                         |           | $I_{OH} = -7 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%,$<br>$PAD3V5V = 1^2$               | 0.8V <sub>DD</sub>    |       | _                  |      |
|                 |     | С        |                                         |           | $I_{OH} = -11 \text{ mA},$<br>$V_{DD} = 3.3 \text{ V} \pm 10\%,$<br>PAD3V5V = 1<br>(recommended) | V <sub>DD</sub> – 0.8 |       |                    |      |
| V <sub>OL</sub> | СС  | Ρ        | Output low level<br>FAST configuration  | Push Pull | $I_{OL} = 14 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%,$<br>PAD3V5V = 0<br>(recommended)  | _                     | _     | 0.1V <sub>DD</sub> | V    |
|                 |     | С        |                                         |           | $I_{OL} = 7 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%,$<br>$PAD3V5V = 1^2$                | _                     |       | 0.1V <sub>DD</sub> |      |
|                 |     | С        |                                         |           | $I_{OL} = 11 \text{ mA},$<br>$V_{DD} = 3.3 \text{ V} \pm 10\%,$<br>PAD3V5V = 1<br>(recommended)  | _                     | _     | 0.5                |      |

#### Table 16. FAST configuration output buffer electrical characteristics

 $\overline{^{1}}$  V<sub>DD</sub> = 3.3 V ± 10% / 5.0 V ± 10%, T<sub>A</sub> = -40 to 125 °C, unless otherwise specified



| Package  |                  | Supply segment   |                    |                    |                    |                  |   |   |  |  |  |  |  |
|----------|------------------|------------------|--------------------|--------------------|--------------------|------------------|---|---|--|--|--|--|--|
| I denage | 1                | 2                | 3                  | 4                  | 5                  | 6                | 7 | 8 |  |  |  |  |  |
| 176 LQFP | pin7 –<br>pin27  | pin28 –<br>pin57 | pin59 –<br>pin85   | pin86 –<br>pin123  | pin124 –<br>pin150 | pin151 –<br>pin6 | — | — |  |  |  |  |  |
| 144 LQFP | pin20 –<br>pin49 | pin51 –<br>pin99 | pin100 –<br>pin122 | pin 123 –<br>pin19 | —                  | —                | — | _ |  |  |  |  |  |
| 100 LQFP | pin16 –<br>pin35 | pin37 –<br>pin69 | pin70 –<br>pin83   | pin84 –<br>pin15   | —                  | —                | — | — |  |  |  |  |  |

### Table 18. I/O supply segments

### Table 19. I/O consumption

| Symbol                           |    | C | Parameter                                       | Condi                                        | tions <sup>1</sup>                            |     | Unit |      |      |
|----------------------------------|----|---|-------------------------------------------------|----------------------------------------------|-----------------------------------------------|-----|------|------|------|
| Symbo                            |    | C | Falameter                                       | Condi                                        | uons                                          | Min | Тур  | Max  | Unit |
| I <sub>SWTSLW</sub> ,2           | CC | D | Dynamic I/O current for<br>SLOW configuration   | C <sub>L</sub> = 25 pF                       | $V_{DD} = 5.0 V \pm 10\%,$<br>PAD3V5V = 0     | —   | —    | 20   | mA   |
|                                  |    |   |                                                 |                                              | V <sub>DD</sub> = 3.3 V ± 10%,<br>PAD3V5V = 1 |     |      | 16   |      |
| I <sub>SWTMED</sub> <sup>2</sup> | CC | D | Dynamic I/O current for<br>MEDIUM configuration | C <sub>L</sub> = 25 pF                       | V <sub>DD</sub> = 5.0 V ± 10%,<br>PAD3V5V = 0 | _   | _    | 29   | mA   |
|                                  |    |   |                                                 |                                              | V <sub>DD</sub> = 3.3 V ± 10%,<br>PAD3V5V = 1 |     |      | 17   |      |
| I <sub>SWTFST</sub> <sup>2</sup> | CC | D |                                                 |                                              |                                               |     | 110  | mA   |      |
|                                  |    |   |                                                 |                                              | V <sub>DD</sub> = 3.3 V ± 10%,<br>PAD3V5V = 1 |     |      | 50   |      |
| I <sub>RMSSLW</sub>              | СС | D | Root medium square I/O                          | C <sub>L</sub> = 25 pF, 2 MHz                | $V_{DD} = 5.0 V \pm 10\%$ ,                   | —   | —    | 2.3  | mA   |
|                                  |    |   | current for SLOW<br>configuration               | C <sub>L</sub> = 25 pF, 4 MHz                | PAD3V5V = 0                                   | —   | —    | 3.2  |      |
|                                  |    |   |                                                 | C <sub>L</sub> = 100 pF, 2 MHz               |                                               | —   | —    | 6.6  |      |
|                                  |    |   |                                                 | C <sub>L</sub> = 25 pF, 2 MHz                | $V_{DD} = 3.3 V \pm 10\%$ ,                   |     |      | 1.6  |      |
|                                  |    |   |                                                 | C <sub>L</sub> = 25 pF, 4 MHz                | PAD3V5V = 1                                   | —   | _    | 2.3  |      |
|                                  |    |   |                                                 | C <sub>L</sub> = 100 pF, 2 MHz               |                                               | —   |      | 4.7  |      |
| I <sub>RMSMED</sub>              | СС | D | Root medium square I/O                          | C <sub>L</sub> = 25 pF, 13 MHz               | $V_{DD} = 5.0 V \pm 10\%$ ,                   |     | _    | 6.6  | mA   |
|                                  |    |   | configuration                                   | C <sub>L</sub> = 25 pF, 40 MHz $PAD3V5V = 0$ |                                               | —   | _    | 13.4 |      |
|                                  |    |   |                                                 | C <sub>L</sub> = 100 pF, 13 MHz              |                                               | —   | -    | 18.3 |      |
|                                  |    |   |                                                 | C <sub>L</sub> = 25 pF, 13 MHz               | $V_{DD} = 3.3 V \pm 10\%$ ,                   |     | _    | 5    |      |
|                                  |    |   |                                                 | C <sub>L</sub> = 25 pF, 40 MHz               |                                               | —   | —    | 8.5  |      |
|                                  |    |   |                                                 | C <sub>L</sub> = 100 pF, 13 MHz              |                                               | —   | —    | 11   |      |



| Symbol              |                                                                       | C | Parameter                                                                                                                                  | Conditions <sup>1</sup>           |                             |     | Value |      |    |  |
|---------------------|-----------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------|-----|-------|------|----|--|
|                     |                                                                       | Ŭ | i didineter                                                                                                                                |                                   | Min                         | Тур | Max   | Unit |    |  |
| I <sub>RMSFST</sub> | СС                                                                    | D | Root medium square I/O                                                                                                                     | C <sub>L</sub> = 25 pF, 40 MHz    | $V_{DD} = 5.0 V \pm 10\%$ , | —   | —     | 22   | mA |  |
|                     | curr                                                                  |   | configuration<br>$C_{L} = 25 \text{ pF}, 64 \text{ MHz}$ $C_{L} = 100 \text{ pF}, 40 \text{ MHz}$ $C_{L} = 100 \text{ pF}, 40 \text{ MHz}$ | C <sub>L</sub> = 25 pF, 64 MHz    | PAD3V5V = 0                 | —   | —     | 33   |    |  |
|                     |                                                                       |   |                                                                                                                                            | —                                 | —                           | 56  |       |      |    |  |
|                     |                                                                       |   |                                                                                                                                            | C <sub>L</sub> = 25 pF, 40 MHz    | $V_{DD} = 3.3 V \pm 10\%$ , | —   | —     | 14   |    |  |
|                     |                                                                       |   |                                                                                                                                            | C <sub>L</sub> = 25 pF, 64 MHz    | PAD3V5V = 1                 | —   | —     | 20   |    |  |
|                     |                                                                       |   |                                                                                                                                            | C <sub>L</sub> = 100 pF, 40 MHz   |                             | —   | —     | 35   |    |  |
| I <sub>AVGSEG</sub> | AVGSEG SR D Sum of all the static I/O current within a supply segment |   | Sum of all the static I/O                                                                                                                  | V <sub>DD</sub> = 5.0 V ± 10%, PA | AD3V5V = 0                  |     |       | 70   | mA |  |
|                     |                                                                       |   | $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PA}$                                                                                              | AD3V5V = 1                        | _                           | _   | 65    |      |    |  |

### Table 19. I/O consumption (continued)

 $^{1}$  V<sub>DD</sub> = 3.3 V ± 10% / 5.0 V ± 10%, T<sub>A</sub> = -40 to 125 °C, unless otherwise specified

 $^{2}$  Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

Table 20 provides the weight of concurrent switching I/Os.

In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below the 100%.

| Su       | innly seam          | ent |        |             | 176 L   | .QFP         |         | 144/100 LQFP |         |              |         |  |  |
|----------|---------------------|-----|--------|-------------|---------|--------------|---------|--------------|---------|--------------|---------|--|--|
|          | ppiy segm           |     | Pad    | Weight 5 V  |         | Weight 3.3 V |         | Weig         | ht 5 V  | Weight 3.3 V |         |  |  |
| 176 LQFP | P 144 LQFP 100 LQFP |     |        | $SRC^2 = 0$ | SRC = 1 | SRC = 0      | SRC = 1 | SRC = 0      | SRC = 1 | SRC = 0      | SRC = 1 |  |  |
| 6        | 4                   | 4   | PB[3]  | 5%          | —       | 6%           | —       | 13%          | —       | 15%          | _       |  |  |
|          |                     |     | PC[9]  | 4%          | —       | 5%           | —       | 13%          | —       | 15%          | —       |  |  |
|          |                     |     | PC[14] | 4%          | —       | 4%           | —       | 13%          | —       | 15%          | —       |  |  |
|          |                     |     | PC[15] | 3%          | 4%      | 4%           | 4%      | 12%          | 18%     | 15%          | 16%     |  |  |
|          |                     | _   | PJ[4]  | 3%          | 4%      | 3%           | 3%      | _            | _       |              | _       |  |  |

### Table 20. I/O weight<sup>1</sup>



possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance:  $C_S$  being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with  $C_S$  equal to 3 pF, a resistance of 330 k $\Omega$  is obtained ( $R_{EQ} = 1 / (fc \times C_S)$ , where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on  $C_S$ ) and the sum of  $R_S + R_F + R_L + R_{SW} + R_{AD}$ , the external circuit must be designed to respect the Equation 4:

$$V_A \bullet \frac{\mathbf{R}_S + \mathbf{R}_F + \mathbf{R}_L + \mathbf{R}_S \mathbf{W} + \mathbf{R}_{AD}}{\mathbf{R}_{EO}} < \frac{1}{2} \text{LSB}$$

EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Channel Sampling Selection Filter **Current Limiter** Source 0 R<sub>SW1</sub> R<sub>F</sub> R 11 ... 11 C 11 11 11 Source Impedance R<sub>S</sub>  $\mathsf{R}_\mathsf{F}$ Filter Resistance CF Filter Capacitance R Current Limiter Resistance R<sub>SW1</sub> Channel Selection Switch Impedance Sampling Switch Impedance Pin Capacitance (two contributions,  $C_{P1}$  and  $C_{P2}$ )  $\mathsf{R}_{\mathsf{AD}}$ CP Sampling Capacitance

Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances ( $R_{SW}$  and  $R_{AD}$ ) can be neglected with respect to external resistances.

Figure 18. Input equivalent circuit (precise channels)

Eqn. 4





Figure 19. Input equivalent circuit (extended channels)

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances  $C_{F}$ ,  $C_{P1}$  and  $C_{P2}$  are initially charged at the source voltage  $V_A$  (refer to the equivalent circuit reported in Figure 18): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).



Figure 20. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

1. A first and quick charge transfer from the internal capacitance  $C_{P1}$  and  $C_{P2}$  to the sampling capacitance  $C_S$  occurs ( $C_S$  is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which  $C_{P2}$  is reported in parallel to  $C_{P1}$  (call  $C_P = C_{P1} + C_{P2}$ ), the two capacitances  $C_P$  and  $C_S$  are in series, and the time constant is



| Cumh             | .1 | ~ | Devementer                               | Condit                                                   | :1                               |     | Unit |     |      |
|------------------|----|---|------------------------------------------|----------------------------------------------------------|----------------------------------|-----|------|-----|------|
| Symbo            | וע | C | Parameter                                | Condit                                                   | ions                             | Min | Тур  | Max | Onit |
| R <sub>SW1</sub> | СС | D | Internal resistance of analog source     | _                                                        |                                  | —   | —    | 3   | kΩ   |
| R <sub>SW2</sub> | СС | D | Internal resistance of analog source     | _                                                        | -                                |     | —    | 2   | kΩ   |
| R <sub>AD</sub>  | СС | D | Internal resistance of analog source     |                                                          | -                                | _   | —    | 2   | kΩ   |
| I <sub>INJ</sub> | SR |   | Input current Injection                  | Current injection $V_{DD} =$<br>on one ADC_0 3.3 V ± 10% |                                  | -5  | —    | 5   | mA   |
|                  |    |   |                                          | from the converted one                                   | V <sub>DD</sub> =<br>5.0 V ± 10% | -5  | _    | 5   |      |
| INL              | СС | Т | Absolute value for integral nonlinearity | No overload                                              |                                  | _   | 0.5  | 1.5 | LSB  |
| DNL              | СС | Т | Absolute differential<br>nonlinearity    | No overload                                              |                                  | _   | 0.5  | 1.0 | LSB  |
| OFS              | СС | Т | Absolute offset error                    |                                                          | -                                | _   | 0.5  | —   | LSB  |
| GNE              | СС | Т | Absolute gain error                      |                                                          | -                                | —   | 0.6  | —   | LSB  |
| TUEP             | СС | Ρ | Total unadjusted error <sup>7</sup> for  | Without current i                                        | njection                         | -2  | 0.6  | 2   | LSB  |
|                  |    | Т | precise channels, input only pins        | With current injection                                   |                                  | -3  | —    | 3   |      |
| TUEX             | СС | Т | Total unadjusted error <sup>7</sup> for  | Without current i                                        | Without current injection        |     | 1    | 3   | LSB  |
|                  |    | Т | extended channel                         | With current inje                                        | ction                            | -4  |      | 4   |      |

 $^{1}$  V\_{DD} = 3.3 V  $\pm$  10% / 5.0 V  $\pm$  10%, T\_A = –40 to 125 °C, unless otherwise specified.

 $^2\,$  Analog and digital V\_{SS} **must** be common (to be tied together externally).

<sup>3</sup> V<sub>AINx</sub> may exceed V<sub>SS\_ADC0</sub> and V<sub>DD\_ADC0</sub> limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

<sup>4</sup> Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.

<sup>5</sup> During the sample time the input capacitance  $C_S$  can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within  $t_{ADC0\_S}$ . After the end of the sample time  $t_{ADC0\_S}$ , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock  $t_{ADC0\_S}$  depend on programming.

<sup>6</sup> This parameter does not include the sample time t<sub>ADC0\_S</sub>, but only the time for determining the digital result and the time to load the result's register with the conversion result.

<sup>7</sup> Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.



| Symbol            | 1  | C | Parameter                                               | Cor                                                                        | ditions <sup>1</sup>              |     | Unit |      |     |
|-------------------|----|---|---------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|-----|------|------|-----|
| - Cymbol          |    | U | i di dificter                                           | 001                                                                        | Min                               | Тур | Max  | Onic |     |
| I <sub>INJ</sub>  | SR | — | Input current Injection                                 | Current                                                                    | $V_{DD} = 3.3 \text{ V} \pm 10\%$ | -5  | —    | 5    | mA  |
|                   |    |   |                                                         | injection on<br>one ADC_1<br>input, different<br>from the<br>converted one | V <sub>DD</sub> = 5.0 V ± 10%     | -5  |      | 5    | -   |
|                   | ~~ | - |                                                         |                                                                            |                                   |     |      | •    |     |
| INLP              | CC | I | Absolute Integral non-linearity-Precise channels        | No overload                                                                |                                   | 1   | 3    | LSB  |     |
| INLX              | СС | Т | Absolute Integral<br>non-linearity-Extended<br>channels | No overload                                                                | _                                 | 1.5 | 5    | LSB  |     |
| DNL               | СС | Т | Absolute Differential<br>non-linearity                  | No overload                                                                |                                   | _   | 0.5  | 1    | LSB |
| OFS               | СС | Т | Absolute Offset error                                   |                                                                            | —                                 |     | 2    | _    | LSB |
| GNE               | СС | Т | Absolute Gain error                                     |                                                                            | —                                 |     | 2    | _    | LSB |
| TUEP <sup>7</sup> | СС | Ρ | Total Unadjusted Error for                              | Without curren                                                             | t injection                       | -6  | —    | 6    | LSB |
|                   |    | Т | precise channels, input only pins                       | With current in                                                            | jection                           | -8  | —    | 8    |     |
| TUEX <sup>7</sup> | СС | Т | Total Unadjusted Error for                              | Without current injection                                                  |                                   | -10 | —    | 10   | LSB |
|                   |    | Т | extended channel                                        | With current in                                                            | jection                           | -12 | —    | 12   |     |

| Table 42. ADC | 1 conversion characteris | stics (12-bit ADC | 1) ( | (continued) |
|---------------|--------------------------|-------------------|------|-------------|
|               |                          |                   |      |             |

<sup>1</sup> V<sub>DD</sub> = 3.3 V  $\pm$  10% / 5.0 V  $\pm$  10%, T<sub>A</sub> = -40 to 125 °C, unless otherwise specified

<sup>2</sup> Analog and digital  $V_{SS}$  must be common (to be tied together externally).

- <sup>3</sup> V<sub>AINx</sub> may exceed V<sub>SS\_ADC1</sub> and V<sub>DD\_ADC1</sub> limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0xFFF.
- <sup>4</sup> During the sample time the input capacitance C<sub>S</sub> can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t<sub>ADC1\_S</sub>. After the end of the sample time t<sub>ADC1\_S</sub>, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t<sub>ADC1\_S</sub> depend on programming.
- <sup>5</sup> This parameter does not include the sample time t<sub>ADC1\_S</sub>, but only the time for determining the digital result and the time to load the result's register with the conversion result.
- <sup>6</sup> Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.
- <sup>7</sup> Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.



78

# 3.18.2 DSPI characteristics

### Table 44. DSPI characteristics<sup>1</sup>

| Na   | Sumb                             |    | ~ | Deremeter                   |                           | DSPI0/D                 | SPI1/DS             | PI5/DSPI6                | C                       | SPI2/DS             | SPI4                      | l Init |
|------|----------------------------------|----|---|-----------------------------|---------------------------|-------------------------|---------------------|--------------------------|-------------------------|---------------------|---------------------------|--------|
| INO. | Symbo                            | U  |   | Farameter                   | Min                       | Тур                     | Мах                 | Min                      | Тур                     | Мах                 | Unit                      |        |
| 1    | t <sub>SCK</sub>                 | SR | D | SCK cycle time              | Master mode<br>(MTFE = 0) | 125                     | —                   |                          | 333 <sup>2</sup>        | —                   |                           | ns     |
|      |                                  |    | D |                             | Slave mode<br>(MTFE = 0)  | 125                     | _                   | _                        | 333                     |                     | _                         |        |
|      |                                  |    | D |                             | Master mode<br>(MTFE = 1) | 83                      | —                   | _                        | 125                     | —                   |                           |        |
|      |                                  |    | D |                             | Slave mode<br>(MTFE = 1)  | 83                      | _                   | _                        | 125                     | _                   | _                         |        |
| _    | f <sub>DSPI</sub>                | SR | D | DSPI digital controller fre | quency                    | —                       |                     | f <sub>CPU</sub>         | _                       |                     | f <sub>CPU</sub>          | MHz    |
| 2    | t <sub>CSCext</sub> <sup>3</sup> | SR | D | CS to SCK delay             | Slave mode                | 32                      |                     | _                        | 32                      |                     | —                         | ns     |
| 3    | t <sub>ASCext</sub> <sup>4</sup> | SR | D | After SCK delay             | Slave mode                | 1/f <sub>DSPI</sub> + 5 | —                   | _                        | 1/f <sub>DSPI</sub> + 5 | —                   | _                         | ns     |
| 4    | t <sub>SDC</sub>                 | CC | D | SCK duty cycle              | Master mode               | —                       | t <sub>SCK</sub> /2 | —                        |                         | t <sub>SCK</sub> /2 | —                         | ns     |
|      |                                  | SR | D |                             | Slave mode                | t <sub>SCK</sub> /2     | _                   | _                        | t <sub>SCK</sub> /2     |                     | —                         |        |
| 5    | t <sub>A</sub>                   | SR | D | Slave access time           | Slave mode                | _                       |                     | 1/f <sub>DSPI</sub> + 70 | _                       |                     | 1/f <sub>DSPI</sub> + 130 | ns     |
| 6    | t <sub>DI</sub>                  | SR | D | Slave SOUT disable time     | Slave mode                | 7                       | —                   | _                        | 7                       | _                   | _                         | ns     |
| 7    | t <sub>PCSC</sub>                | CC | D | PCSx to PCSS time           | —                         | 13 <sup>5</sup>         | —                   | —                        | 13 <sup>5</sup>         | —                   | —                         |        |
| 8    | t <sub>PASC</sub>                | CC | D | PCSS to PCSx time           | —                         | 13 <sup>5</sup>         | —                   | —                        | 13 <sup>5</sup>         | —                   | —                         |        |
| 9    | t <sub>SUI</sub>                 | SR | D | Data setup time for         | Master mode               | 43                      |                     | —                        | 145                     |                     | —                         | ns     |
|      |                                  |    |   | inputs                      | Slave mode                | 5                       |                     | _                        | 5                       |                     | —                         |        |
| 10   | t <sub>HI</sub>                  | SR | D | Data hold time for inputs   | Master mode               | 0                       |                     | _                        | 0                       |                     | —                         | ns     |
|      |                                  |    |   |                             | Slave mode                | 2 <sup>6</sup>          | _                   | —                        | 2 <sup>6</sup>          | _                   | —                         |        |
| 11   | t <sub>SUO</sub> 7               | CC | D | Data valid after SCK        | Master mode               | —                       | —                   | 32                       | _                       | —                   | 50                        | ns     |
|      |                                  |    |   | eage                        | Slave mode                | —                       |                     | 52                       | —                       |                     | 160                       |        |





Note: Numbers shown reference Table 44.





Note: Numbers shown reference Table 44.





# 4 Package characteristics

4.1 Package mechanical data

# 4.1.1 176 LQFP



Figure 33. 176 LQFP package mechanical drawing (Part 1 of 3)





Figure 34. 176 LQFP package mechanical drawing (Part 2 of 3)