

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	121
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 15x10b, 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5606bk0mlq6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin numb	
pin register function function lease	144 LQFP	176 LQFP
PD[5] PCR[53] AF0 GPIO[53] SIUL I I Tristate 46	68	82
AF1 — — — — — — AF2 — — — — — — — — — — — — — — — — — — —		
$- ADC1_P[9] ADC_1 I$		
PD[6] PCR[54] AF0 GPIO[54] SIUL I I Tristate 47	69	83
AF1 — — — — — — AF2 — — — — — — — — — — — — — — — — — — —		
$- ADC0_P[10] ADC_0 I \\ - ADC1_P[10] ADC_1 I$		
PD[7] PCR[55] AF0 GPIO[55] SIUL I I Tristate 48	70	84
AF1 — — — — — — AF2 — — — — — — — — — — — — — — — — — — —		
$- ADC1_P[11] ADC_1 I$		
PD[8] PCR[56] AF0 GPIO[56] SIUL I I Tristate 49	71	87
AF1 — — — — — — — AF2 — — — — — — — — — — — — — — — — — — —		
$- ADC1_P[12] ADC_1 I$		
PD[9] PCR[57] AF0 GPIO[57] SIUL I I Tristate 56	78	94
AF1 — — — — — — AF2 — — — — — — — — — — — — — — — — — — —		
$- ADC1_P[13] ADC_1 I$		
PD[10] PCR[58] AF0 GPIO[58] SIUL I I Tristate 57	79	95
AF1 — — — — — — AF2 — — — — — — — — — — — — — — — — — — —		
$- ADC1_P[14] ADC_1 I$		
PD[11] PCR[59] AF0 GPIO[59] SIUL I I Tristate 58	80	96
AF1 — — — — — — — — — — — — — — — — — — —		
- ADC1_P[15] ADC_1 I		
PD[12] PCR[60] AF0 GPIO[60] SIUL I/O J Tristate —	-	100
AF1 CS5_0 DSPI_0 O AF2 E0UC[24] eMIOS_0 I/O		
AF3 — — — — — — — — — — — — — — — — — — —		

3.2.3 NVUSRO[WATCHDOG_EN] field description

The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 7 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.

Value ²	Description
0	Disable after reset
1	Enable after reset

Table 7. WATCHDOG_EN field description¹

¹ See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register.

² The default manufacturing value is '1'. This value can be programmed by the customer in Shadow Flash.

3.3 Absolute maximum ratings

Table 8. Absolute maximum ratings

Symbol		Decomptor	Conditions	Va	Unit	
Symbo	1	Farameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD}	SR	Voltage on VDD_HV pins with respect to ground (V _{SS})	_	-0.3	6.0	V
V _{SS_LV}	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} – 0.1	V _{SS} + 0.1	V
V _{DD_BV}	SR	Voltage on VDD_BV pin (regulator supply) with	—	-0.3	6.0	V
		respect to ground (V _{SS})	Relative to V _{DD}	-0.3	V _{DD} + 0.3	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (V _{SS})	_	V _{SS} – 0.1	V _{SS} + 0.1	V
V _{DD_ADC}	DC SR Voltage on VDD_HV_ADC0, VDD_HV_ADC1		—	-0.3	6.0	V
		(ADC reference) with respect to ground (v_{SS})	Relative to V _{DD}	$V_{DD}-0.3$	V _{DD} + 0.3	
V _{IN}	SR	Voltage on any GPIO pin with respect to	—	-0.3	6.0	V
		(ground (v _{SS})	Relative to V _{DD}	—	V _{DD} + 0.3	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-10	10	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	—	-50	50	
I _{AVGSEG}	SR	Sum of all the static I/O current within a supply segment	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	70	mA
			V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	64	
T _{STORAGE}	SR	Storage temperature	—	-55	150	°C

Symbol		C	C	c	c	c	C	C	с	Parameter	Conditions ²	Pin count	Value			Unit
		•		Conditions	i ili oculit	Min	Тур	Max	Onic							
R_{\thetaJC}	СС		Thermal resistance,	Single-layer board — 1s	100	_	_	23	°C/W							
	junction-to-case ³		144	_	_	23										
				176			23									
				Four-layer board — 2s2p	100			19.8								
					144			19.2								
					176	_	—	18.8								

Table 11. LQFP thermal characteristics ¹	(continued)
---	-------------

¹ Thermal characteristics are targets based on simulation.

² $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C.

- ³ Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as R_{thJA} and R_{thJMA}.
- ⁴ Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as R_{th.IB}.
- ⁵ Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as R_{thJC}.

3.5.3 Power considerations

The average chip-junction temperature, T_J, in degrees Celsius, may be calculated using Equation 1:

$$T_{J} = T_{A} + (P_{D} \times R_{\theta JA})$$
 Eqn. 1

Where:

 T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$.

P_{INT} is the product of I_{DD} and V_{DD}, expressed in watts. This is the chip internal power.

 $P_{I/O}$ represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

Therefore, solving equations 1 and 2:

$$K = P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$$
 Eqn. 3

Where:

Symbol		<u>ر</u>	Paramotor	Conditions ¹			Unit		
Synn	100	C	Farameter		Conditions	Min	Тур	Max	Onit
V _{OH}	CC	Ρ	Output high level SLOW configuration	Push Pull	$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0 (recommended)	0.8V _{DD}	_	—	V
		С			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^2$	0.8V _{DD}	_	_	
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)	V _{DD} - 0.8	_	_	
V _{OL}	СС	Ρ	Output low level SLOW configuration	Push Pull	$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0 (recommended)		_	0.1V _{DD}	V
		С			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^2$		_	0.1V _{DD}	
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)	—	_	0.5	

Table 14. SLOW	configuration	output buffer	electrical	characteristics
	Janadon	output Nullo	0100111041	

¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified
² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

	Table 15.	MEDIUM config	guration outpu	ut buffer elec	trical characteristics
--	-----------	---------------	----------------	----------------	------------------------

Symbol C		C	Parameter	Parameter Conditions ¹		V	Unit		
Cym		Ŭ	i didileter		Conditions	Min	Тур	Мах	onne
V _{OH}	СС	С	Output high level MEDIUM configuration	Push Pull	I _{OH} = -3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	—	_	V
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}	_		
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$	0.8V _{DD}	—	_	
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	V _{DD} – 0.8	_	_	
		С			I _{OH} = −100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}			

Symbol		<u>ر</u>	Parameter	Conditions ¹		Unit		
		C	Falameter	Conditions	Min	Тур	Max	Unit
V _{IL}	SR	Ρ	Input low Level CMOS (Schmitt Trigger)	_	-0.4	—	0.35V _{DD}	V
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}	_	_	V
V _{OL}	СС	Ρ	Output low level	Push Pull, $I_{OL} = 2 \text{ mA}$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	_		0.1V _{DD}	V
				Push Pull, I _{OL} = 1 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	_	—	0.1V _{DD}	
				Push Pull, $I_{OL} = 1 \text{ mA}$, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_	_	0.5	
T _{tr}	СС	D	Output transition time output pin ³ MEDIUM configuration	C _L = 25 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	10	ns
				C _L = 50 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	20	
				C _L = 100 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	40	
				C _L = 25 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	12	
				C _L = 50 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	25	
				C _L = 100 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	40	
W _{FRST}	SR	Ρ	RESET input filtered pulse	—			40	ns
W _{NFRST}	SR	Ρ	RESET input not filtered pulse	—	1000	—	_	ns
I _{WPU}	СС	Ρ	Weak pull-up current absolute	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	10	—	150	μA
			value	$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$	10	—	150	
				$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^4$	10	—	250	

Table 21.	Reset electrical	characteristics	(continued)	١
		onaraotoristios	(oonunaca)	,

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the MC_RGM chapter of the MPC5606BK Microcontroller Reference Manual).

³ C_L includes device and package capacitance (C_{PKG} < 5 pF). ⁴ The configuration PAD3V5 = 1 when V_{DD} = 5 V is only transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

Each decoupling capacitor must be placed between each of the three V_{DD_LV}/V_{SS_LV} supply pairs to ensure stable voltage (see Section 3.4, Recommended operating conditions).

The internal voltage regulator requires controlled slew rate of V_{DD}/V_{DD_BV} as described in Figure 9.

Figure 9. V_{DD} and $V_{DD BV}$ maximum slope

When STANDBY mode is used, further constraints apply to the V_{DD}/V_{DD_BV} in order to guarantee correct regulator functionality during STANDBY exit. This is described in Figure 10.

STANDBY regulator constraints should normally be guaranteed by implementing equivalent of C_{STDBY} capacitance on application board (capacitance and ESR typical values), but would actually depend on the exact characteristics of the application's external regulator.

3.9 Power consumption in different application modes

Table 24 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application.

Symbo		~	Parameter	Conditions ²		Value			Unit
Symbo	1	C	Faiametei	Condition	115	Min	Тур	Max	Onit
I _{DDMAX} ³	СС	С	RUN mode maximum average current	_		—	81	130 ⁴	mA
I _{DDRUN} 5	СС	Т	RUN mode typical average	f _{CPU} = 8 MHz		—	12		mA
		Т	current	f _{CPU} = 16 MHz		_	27	_	
		С		f _{CPU} = 32 MHz		—	40	_	
		Ρ		f _{CPU} = 48 MHz		_	54	95	
		Ρ		f _{CPU} = 64 MHz		—	67	120	
IDDHALT	СС	С	HALT mode current ⁷	Slow internal RC	T _A = 25 °C	—	10	15	mA
		Ρ		running	T _A = 125 °C	—	15	28	
I _{DDSTOP}	СС	Ρ	STOP mode current ⁸	Slow internal RC	T _A = 25 °C	—	130	500	μΑ
		D		oscillator (128 kHz) running	T _A = 55 °C	—	180	_	
		D		3	T _A = 85 °C	—	1	5	mA
		D			T _A = 105 °C	—	3	9	
		Ρ			T _A = 125 °C	—	5	14	
I _{DDSTDBY2}	СС	Ρ	STANDBY2 mode current ⁹	Slow internal RC	T _A = 25 °C	_	17	80	μΑ
		С		oscillator (128 kHz)	T _A = 55 °C	—	30	_	
		С			T _A = 85 °C	_	110	_	
		С			T _A = 105 °C	—	280	950	
		С			T _A = 125 °C		460	1700	
I _{DDSTDBY1}	СС	С	STANDBY1 mode current ¹⁰	Slow internal RC	T _A = 25 °C	_	12	50	μΑ
		С		oscillator (128 kHz) running	T _A = 55 °C	—	24	_	
		С			T _A = 85 °C	—	48	_	
		С			T _A = 105 °C	_	150	500	
		С			T _A = 125 °C	—	260	_	

Table 24. Electrical characteristics in different application modes¹

¹ Except for I_{DDMAX}, all consumptions in this table apply to V_{DD BV} only and do not include V_{DD HV}.

² V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

³ Running consumption is given on voltage regulator supply (V_{DDREG}). I_{DDMAX} is composed of three components: I_{DDMAX} = I_{DD}(V_{DD_BV}) + I_{DD}(V_{DD_HV}) + I_{DD}(V_{DD_HV_ADC}). It does not include a fourth component linked to I/Os toggling which is **highly** dependent on the application. The given value is thought to be a **worst case value** (64 MHz at 125 °C) with all peripherals running, and code fetched from code flash while modify operation on-going on data flash. Note that this value can be significantly reduced by the application: switch off unused peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

- ¹ Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.
- ² Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
- ³ The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.
- ⁴ Actual hardware programming times. This does not include software overhead.

Symbo	Symbol		Paramotor	Conditions		Value		Unit
Symbo	1		Faiametei	Conditions	Min	Тур	Max	Onit
P/E	CC	С	Number of program/erase cycles per block for 16 KB blocks over the operating temperature range (T _J)	_	100000			cycles
P/E	CC	С	Number of program/erase cycles per block for 32 KB blocks over the operating temperature range (T _J)	_	10000	100000	—	cycles
P/E	CC	С	Number of program/erase cycles per block for 128 KB blocks over the operating temperature range (T _J)	_	1000	100000	_	cycles
Retention	CC	С	Minimum data retention at 85 °C average ambient	Blocks with 0–1,000 P/E cycles	20	_	_	years
			temperature'	Blocks with 1,001–10,000 P/E cycles	10	_	_	years
				Blocks with 10,001–100,000 P/E cycles	5	_	_	years

Table 26. Flash module life

¹ Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability.

Table 27. Flash read access timing

Symbol		С	Parameter	Conditions ¹	Max	Unit
f _{READ}	CC	Ρ	Maximum frequency for Flash reading	2 wait states	64	MHz
		С		1 wait state	40	
		С		0 wait states	20	

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

3.10.2 Flash power supply DC characteristics

Table 28 shows the power supply DC characteristics on external supply.

Figure 16. Slow external crystal oscillator (32 kHz) electrical characteristics

Symbol		c	Parameter Conditions ¹		Unit				
Cymbol		Ŭ	r urumotor	Conditione	Min	Тур	Мах		
f _{SXOSC}	SR		Slow external crystal oscillator frequency	_	32	32.768	40	kHz	
V _{SXOSC}	СС	Т	Oscillation amplitude	_	_	2.1	_	V	
I _{SXOSCBIAS}	СС	Т	Oscillation bias current	_		2.5		μA	
I _{SXOSC}	СС	Т	Slow external crystal oscillator consumption	_	—	—	8	μA	
T _{SXOSCSU}	СС	Т	Slow external crystal oscillator start-up time	_	_	—	2 ²	S	

Table 36. Slow external of	rystal oscillator	(32 kHz) electrical	characteristics
----------------------------	-------------------	---------------------	-----------------

V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified
Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

3.14 **FMPLL** electrical characteristics

The device provides a frequency modulated phase locked loop (FMPLL) module to generate a fast system clock from the FXOSC or FIRC sources.

Table 37.	FMPLL	electrical	characteristics
-----------	-------	------------	-----------------

Symbol		C	Parameter	Conditions ¹	Value			Unit
Cynib	Symbol C Parameter		r arameter	Conditions	Min	Тур	Max	onne
f _{PLLIN}	SR	—	FMPLL reference clock ²	—	4		64	MHz
Δ_{PLLIN}	SR		FMPLL reference clock duty cycle ²	_	40	—	60	%

Symbol		C	Parameter	Conditions ¹	Value			Unit
Symbo	,	C	Falancie	Conditions	Min	Тур	Max	Unit
f _{PLLOUT}	СС	Ρ	FMPLL output clock frequency	_	16	_	64	MHz
f _{VCO} ³	СС	Ρ	VCO frequency without frequency modulation	_	256	_	512	MHz
		Ρ	VCO frequency with frequency modulation	_	245.76	_	532.48	
f _{CPU}	SR		System clock frequency	_	—	_	64 ⁴	MHz
f _{FREE}	СС	Ρ	Free-running frequency	_	20	_	150	MHz
t _{LOCK}	СС	Ρ	FMPLL lock time	Stable oscillator (f _{PLLIN} = 16 MHz)		40	100	μs
Δt_{STJIT}	СС		FMPLL short term jitter ⁵	f _{sys} maximum	-4	_	4	%
Δt_{LTJIT}	СС	—	FMPLL long term jitter	f _{PLLCLK} at 64 MHz, 4000 cycles	—	_	10	ns
I _{PLL}	СС	С	FMPLL consumption	T _A = 25 °C	—		4	mA

Table 37. FMPLL	electrical	characteristics	(continued)	

¹ V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

³ Frequency modulation is considered $\pm 4\%$.

 $^4~$ f_{CPU} 64 MHz can be achieved only at up to 105 °C.

⁵ Short term jitter is measured on the clock rising edge at cycle n and n + 4.

3.15 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device.

Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics

Symbol		C	Parameter	Conditions ¹		Value			Unit
Symbol		C	r ai ainetei		manions	Min	Тур	Max	Onit
f _{FIRC}	СС	Ρ	Fast internal RC oscillator high	T _A = 25 °C, [•]	trimmed	_	16		MHz
	SR		frequency			12		20	
I _{FIRCRUN} 2,	СС	Т	Fast internal RC oscillator high frequency current in running mode	T _A = 25 °C, [•]	trimmed		_	200	μA
I _{FIRCPWD}	СС	D	Fast internal RC oscillator high frequency current in power down mode	T _A = 25 °C		_	_	10	μA
IFIRCSTOP	СС	Т	Fast internal RC oscillator high	T _A = 25 °C	sysclk = off		500		μΑ
			frequency and system clock current in stop mode		sysclk = 2 MHz	_	600	_	
					sysclk = 4 MHz	_	700	_	
					sysclk = 8 MHz		900		
					sysclk = 16 MHz		1250		

3.17 ADC electrical characteristics

3.17.1 Introduction

The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).

Figure 17. ADC_0 characteristic and error definitions

3.17.2 Input impedance and ADC accuracy

In the following analysis, the input circuit corresponding to the precise channels is considered.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as

Figure 21. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the antialiasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (T_C). Again the conversion period T_C is longer than the sampling time T_S , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time T_S , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

$$\frac{V_{A2}}{V_A} = \frac{C_{P1} + C_{P2} + C_F}{C_{P1} + C_{P2} + C_F + C_S}$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

ADC_0 (10-bit)	Eqn. 12
$C_F > 2048 \bullet C_S$	

ADC_1 (12-bit)
$$C_F > 8192 \bullet C_S$$

Egn. 11

Eqn. 13

Figure 22. ADC_1 characteristic and error definitions

Table 42. ADC	1	conversion	characteristics	(12-bit	ADC_	1)
_				•	_	- /

Symbol	1	C Parameter Conditions ¹			Value			
Gymbol	I	Ŭ	i arameter	Conditions	Min	Тур	Max	0.111
V _{SS_ADC1}	SR	—	Voltage on VSS_HV_ADC1 (ADC_1 reference) pin with respect to ground (V _{SS}) ²	_	-0.1	—	0.1	V
V _{DD_ADC1}	SR	—	Voltage on VDD_HV_ADC1 pin (ADC_1 reference) with respect to ground (V _{SS})	_	V _{DD} – 0.1	—	V _{DD} + 0.1	V

Symbol		<u>د</u>	Parameter Conditions ¹			Value			
Symbol		C	Faiametei	Conditions	Min	Тур	Max	Unit	
V _{AINx}	SR	—	Analog input voltage ³	_	V _{SS_ADC1} - 0.1	—	V _{DD_ADC1} + 0.1	V	
I _{ADC1pwd}	SR		ADC_1 consumption in power down mode	_	_	—	50	μA	
I _{ADC1run}	SR	—	ADC_1 consumption in running mode	_	—	—	6	mA	
f _{ADC1}	SR	_	ADC_1 analog frequency	V _{DD} = 3.3 V	3.33	—	20 + 4%	MHz	
				V _{DD} = 5 V	3.33	-	32 + 4%		
t _{ADC1_PU}	SR	—	ADC_1 power up delay	_	—	—	1.5	μs	
t _{ADC1_S}	СС	Т	Sample time ⁴ VDD = 3.3 V	f _{ADC1} = 20 MHz, ADC1_conf_sample_input = 12	600	-		ns	
			Sample time ⁴ VDD = 5.0 V	f _{ADC1} = 32 MHz, ADC1_conf_sample_input = 17	500	—	_		
			Sample time ⁴ VDD = 3.3 V	f _{ADC1} = 3.33 MHz, ADC1_conf_sample_input = 255	—	—	76.2	μs	
			Sample time ⁴ VDD = 5.0 V	f _{ADC1} = 3.33 MHz, ADC1_conf_sample_input = 255	—	—	76.2		
t _{ADC1_C}	СС	Ρ	Conversion time ⁵ VDD = 3.3 V	f _{ADC1} = 20MHz, ADC1_conf_comp = 0	2.4	—	—	μs	
			Conversion time ⁵ VDD = 5.0 V	f _{ADC 1} = 32 MHz, ADC1_conf_comp = 0	1.5	—	—	μs	
			Conversion time ⁵ VDD = 3.3 V	f _{ADC 1} = 13.33 MHz, ADC1_conf_comp = 0	—	—	3.6	μs	
			Conversion time ⁵ VDD = 5.0 V	f _{ADC1} = 13.33 MHz, ADC1_conf_comp = 0	—	—	3.6	μs	
Δ_{ADC1_SYS}	SR	_	ADC_1 digital clock duty cycle	ADCLKSEL = 1 ⁶	45	—	55	%	
C _S	СС	D	ADC_1 input sampling capacitance	_		—	5	pF	
C _{P1}	СС	D	ADC_1 input pin capacitance 1	_	—	—	3	pF	
C _{P2}	СС	D	ADC_1 input pin capacitance 2	—	—	—	1	pF	
C _{P3}	СС	D	ADC_1 input pin capacitance 3	—	—	—	1.5	pF	
R _{SW1}	СС	D	Internal resistance of analog source	_	—	-	1	kΩ	
R _{SW2}	СС	D	Internal resistance of analog source	_	—	—	2	kΩ	
R _{AD}	СС	D	Internal resistance of analog source	_		—	0.3	kΩ	

Table 42. ADC_1 conversion characteristics (12-bit ADC_1) (continued)

Note: Numbers shown reference Table 44.

Note: Numbers shown reference Table 44.

4 Package characteristics

4.1 Package mechanical data

4.1.1 176 LQFP

Figure 33. 176 LQFP package mechanical drawing (Part 1 of 3)

	NOTES:									
	1. DIMENSI PROTRI MOLD I	ONS D1 JSION IS MISMAT(AND E1 D 5 0.25MM CH AND AF	O NO PER S RE DE	OT INCLUDE SIDE. DIMEN TERMINED A	MOLD SIONS AT DAT	PROTRUSIO D1 AND E UM PLANE	ON. ALLO 1 DO INC DATUM	WABLE LUDE H.	
	2. DIMENS ALLOW, EXCEEL DAMBA BETWEN PITCH	ION 6 E ABLE D/ D THE N R CAN EN PRO PACKAC	OES NOT I AMBAR PRO IAXIMUM 5 NOT BE LO TRUSION A SES.	INCLUI DTRUS DIME DCATE ND At	DE DAMBAR SION SHALL NSION BY M D ON THE N ADJACEN	? PROT NOT (MORE - LOWER T LEAD	RUSION. D. CAUSE THE IHEN 0.08N RADIUS C) IS 0.07MI	AMBAR F LEAD W IM. R THE F M FOR O	ROTRUS IDTH TC OOT. M .4MM A	SION. D INIMUM ND 0.5MM
DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX	DIM	MIN	NOM MAX
Α			1.6	L1		1 REF				
A1	0.05		0.15	R1	0.08					
A2	1.35	1.4	1.45	R2	0.08		0.2			
b	0.17	0.22	0.27	S	С).2 REF	-			
b1	0.17	0.2	0.23	θ	0°	3.5°	7 °			
с	0.09		0.2	θ1	0°					
c1	0.09		0.16	θ2	11 °	12°	13 °			
D		26 BSC	:	θ3	11°	12°	13 °			
D1		24 BSC	:							
е		0.5 BS()							
E		26 BSC								
E1		24 BSC	:				IMENSION			
E1 L	0.45	24 BSC 0.6	0.75		UNIT	D	IMENSION TOLERANC	AND ES	REFER	ANCE DOCUMENT

Figure 35. 176 LQFP package mechanical drawing (Part 3 of 3)

Figure 37. 144 LQFP package mechanical drawing (Part 2 of 2)

5 Ordering information

Note: Not all options are available on all devices.

Figure 41. Commercial product code structure

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, inc. Reg. U.S. Pat. & Tm. Off. the power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2015-2016. All rights reserved.

Document Number: MPC5606B Rev. 4 02/2016

