

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SCI, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	19
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	32-SDIP (0.400", 10.16mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f63bk1b1

ST7263Bxx Contents

		0.0.4	
		6.2.1	General description
		6.2.2	External clock
7	Inter	rupts .	
	7.1		pt register (ITRFRE)
	,		pt. 10g. o. c. (
8	Powe	er savin	ng modes
	8.1	Introdu	uction40
	8.2	Halt m	ode
	8.3		node
	8.4		node
	0.1	•••	
9	I/O p	orts	
	9.1	Introdu	uction 43
	9.2	Function	onal description
	9.3		rt implementation
	0.0	9.3.1	Port A
		9.3.2	Port B
		9.3.3	Port C
		9.3.4	Port D
		9.3.5	Register description
		9.3.6	Related documentation
10	Misc	ellaneo	us register 53
11	On o	hin nar	ipherals
"			•
	11.1		dog timer (WDG)
		11.1.1	Introduction
		11.1.2	Main features
		11.1.3 11.1.4	Functional description
			Software Watchdog option
		11.1.5 11.1.6	Hardware Watchdog option
		11.1.7	Interrupts
		11.1.7	Register description
	11.2		timer
	11.2	וט-טונ	uniei

	13.11	8-bit ADC	162
14	Packa	age characteristics	165
	14.1	Package mechanical data	166
	14.2	Thermal characteristics	171
	14.3	Soldering and glueability information	171
15	Devic	ee configuration and ordering information	172
	15.1	Option byte	172
	15.2	Device ordering information and transfer of customer code	173
	15.3	Development tools	174
		15.3.1 Evaluation tools and starter kits	174
		15.3.2 Development and debugging tools	174
		15.3.3 Programming tools	175
		15.3.4 Order codes for ST7263Bx development tools	175
	15.4	ST7 application notes	177
16	Know	n limitations	181
	16.1	PA2 limitation with OCMP1 enabled	181
	16.2	Unexpected RESET fetch	181
	16.3	USB behavior with LVD disabled	181
	16.4	I2C multimaster	181
	16.5	Halt mode power consumption with ADC on	182
	16.6	SCI wrong BREAK duration	182
17	Revis	sion history	184

Introduction ST7263Bxx

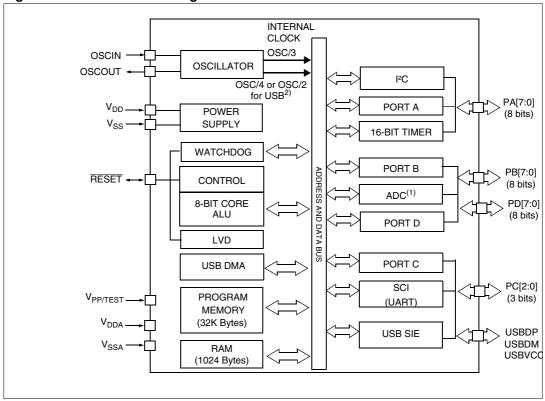
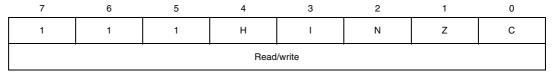



Figure 1. General block diagram

- ADC channels: 12 on 48-pin devices (Port B and Port D[3:0]) 8 on 34 and 32-pin devices (Port B) None on 24-pin devices
- 2. 12 or 24 MHz OSCIN frequency required to generate 6 MHz USB clock.
- 3. The drive from USBVCC is sufficient to only drive an external pull-up in addition to the internal transceiver.

Condition Code register (CC)

Reset value: 111x1xxx

The 8-bit Condition Code register contains the interrupt mask and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.

These bits can be individually tested and/or controlled by specific instructions.

Bit 4 H Half carry

This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instruction. It is reset by hardware during the same instructions.

0: No half carry has occurred.

1: A half carry has occurred.

This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.

Bit 3 I Interrupt mask

This bit is set by hardware when entering in interrupt or by software to disable all interrupts except the TRAP software interrupt. This bit is cleared by software.

0: Interrupts are enabled.

1: Interrupts are disabled.

This bit is controlled by the RIM, SIM and IRET instructions and is tested by the JRM and JRNM instructions.

Note: Interrupts requested while I is set are latched and can be processed when I is cleared. By default an interrupt routine is not interruptible because the I bit is set by hardware at the start of the routine and reset by the IRET instruction at the end of the routine. If the I bit is cleared by software in the interrupt routine, pending interrupts are serviced regardless of the priority level of the current interrupt routine.

ST7263Bxx Interrupts

7 Interrupts

The ST7 core may be interrupted by one of two different methods: maskable hardware interrupts as listed in *Table 9* and a non-maskable software interrupt (TRAP). The Interrupt processing flowchart is shown in *Figure 19*.

The maskable interrupts must be enabled clearing the I bit in order to be serviced. However, disabled interrupts may be latched and processed when they are enabled (see external interrupts subsection).

When an interrupt has to be serviced:

- Normal processing is suspended at the end of the current instruction execution.
- The PC, X, A and CC registers are saved onto the stack.
- The I bit of the CC register is set to prevent additional interrupts.
- The PC is then loaded with the interrupt vector of the interrupt to service and the first instruction of the interrupt service routine is fetched (refer to *Table 9* for vector addresses).

The interrupt service routine should finish with the IRET instruction which causes the contents of the saved registers to be recovered from the stack.

Note:

As a consequence of the IRET instruction, the I bit will be cleared and the main program will resume.

Priority management

By default, a servicing interrupt cannot be interrupted because the I bit is set by hardware entering in interrupt routine.

In the case several interrupts are simultaneously pending, a hardware priority defines which one will be serviced first (see *Table 9*).

Non-maskable software interrupts

This interrupt is entered when the TRAP instruction is executed regardless of the state of the I bit. It will be serviced according to the flowchart on *Figure 19*.

Interrupts and low power mode

All interrupts allow the processor to leave the Wait low power mode. Only external and specific mentioned interrupts allow the processor to leave the Halt low power mode (refer to the "Exit from HALT" column in *Table 9*).

External interrupts

The pins ITi/PAk and ITj/PBk (i=1,2; j= 5,6; k=4,5) can generate an interrupt when a rising edge occurs on this pin. Conversely, the ITI/PAn and ITm/PBn pins (l=3,4; m= 7,8; n=6,7) can generate an interrupt when a falling edge occurs on this pin.

Interrupt generation will occur if it is enabled with the ITiE bit (i=1 to 8) in the ITRFRE register and if the I bit of the CC is reset.

ST7263Bxx Interrupts

Table 9. Interrupt mapping

N°	Source block	Description	Register label	Priority order	Exit from Halt	Vector address
	RESET	Reset	N/A		yes	FFFEh-FFFFh
	TRAP	Software interrupt	IN/A	Highest		FFFCh-FFFDh
	FLASH	Flash Start Programming interrupt		Priority	yes	FFFAh-FFFBh
	USB	End Suspend mode	ISTR		V00	FFF8h-FFF9h
1	lTi	External interrupts	ITRFRE		yes	FFF6h-FFF7h
2	TIMER	Timer Peripheral interrupts	TIMSR] ↓		FFF4h-FFF5h
3	I ² C	I ² C Peripheral interrupts	I ² CSR1	Lowest		FFF2h-FFF3h
3	1-0	I-C Peripheral Interrupts	I ² CSR2	Priority	no	FFF2II-FFF3II
4	SCI	SCI Peripheral interrupts	SCISR			FFF0h-FFF1h
5	USB	USB Peripheral interrupts	ISTR			FFEEh-FFEFh

7.1 Interrupt register (ITRFRE)

Address: 0008h

Reset value: 0000 0000 (00h)

7	_	_		_			0
IT8E	IT7E	IT6E	IT5E	IT4E	IT3E	IT2E	IT1E
Read/write							

[7:0] **TiE (i=1 to 8)**. Interrupt Enable Control Bits.

If an ITiE bit is set, the corresponding interrupt is generated when

- A rising edge occurs on the pin PA4/IT1 or PA5/IT2 or PB4/IT5 or PB5/IT6
- Or a falling edge occurs on the pin PA6/IT3 or PA7/IT4 or PB6/IT7 or PB7/IT8 No interrupt is generated elsewhere.

Note: Analog input must be disabled for interrupts coming from port B.

ST7263Bxx I/O ports

9.3 I/O port implementation

The hardware implementation on each I/O port depends on the settings in the DDR register and specific feature of the I/O port such as ADC input or true open drain.

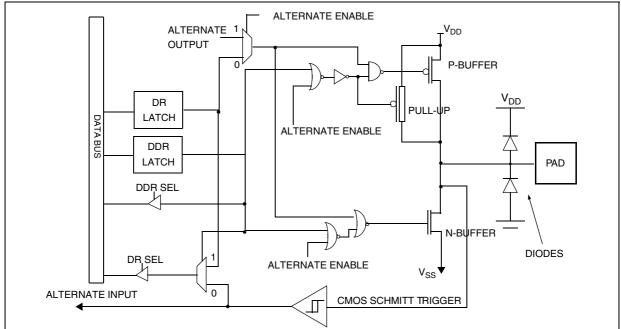
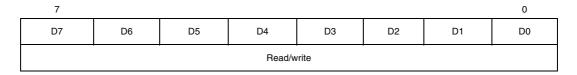

9.3.1 Port A

Table 11. Port A0, A3, A4, A5, A6, A7 description


PORT A	I/Os		Alternate function		
PORTA	Input ⁽¹⁾	Output	Signal	Condition	
PA0	with pull-up	push-pull	MCO (Main Clock output)	MCO = 1 (MISCR)	
PA3	with pull-up	push-pull	Timer EXTCLK	CC1 =1 CC0 = 1 (Timer CR2)	
PA4	مدر الرحم والمنافرة		Timer ICAP1		
FA4	with pull-up	Push-pull	IT1 Schmitt triggered input	IT1E = 1 (ITIFRE)	
PA5	with pull-up		Timer ICAP2		
FAS	with pull-up	Push-pull	IT2 Schmitt triggered input	IT2E = 1 (ITIFRE)	
PA6 ⁽²⁾	with pull-up		Timer OCMP1	OC1E = 1	
FAO.	with pull-up	Push-pull	IT3 Schmitt triggered input	IT3E = 1 (ITIFRE)	
PA7 with pull-up			Timer OCMP2	OC2E = 1	
I A/	with pull-up	Push-pull	IT4 Schmitt triggered input	IT4E = 1 (ITIFRE)	

- 1. Reset state.
- 2. Not available on SO24

Figure 22. PA0, PA3, PA4, PA5, PA6, PA7 and PD[7:4] configuration

ST7263Bxx I/O ports

[7:0] **D[7:0]** Data register 8 bits.

Data Direction register (PxDDR)

Address

Port A Data Direction register (PADDR): 0001h Port B Data Direction register (PBDDR): 0003h Port C Data Direction register (PCDDR): 0005h Port D Data Direction register (PDDDR): 0007h

Reset value

Port A: 0000 0000 (00h) Port B: 0000 0000 (00h) Port C: 1111 x000 (FXh) Port D: 0000 0000 (00h)

Note: For Port C, unused bits (7-3) are not accessible

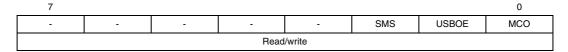
7
DD7
DD6
DD5
DD4
DD3
DD2
DD1
DD0
Read/write

[7:0]D **D[7:0]** Data Direction register 8 bits.

The DDR register gives the input/output direction configuration of the pins. Each bit is set and cleared by software.

0: input mode1: output mode

Table 16. I/O ports register map


Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
00	PADR	MSB							LSB
01	PADDR	MSB							LSB
02	PBDR	MSB							LSB
03	PBDDR	MSB						LSB	
04	PCDR	MSB							LSB
05	PCDDR	MSB							LSB
06	PDDR	MSB							LSB
07	PDDDR	MSB							LSB

10 Miscellaneous register

Miscellaneous register (MISCR)

Address: 0009h

Reset value: 0000 0000 (00h)

[7:3] Reserved

2 SMS Slow mode Select.

This bit is set by software and only cleared by hardware after a reset. If this bit is set, it enables the use of an internal divide-by-2 clock divider (refer to *Figure 18 on page 36*). The SMS bit has no effect on the USB frequency.

0: Divide-by-2 disabled and CPU clock frequency is standard

1: Divide-by-2 enabled and CPU clock frequency is halved.

1 USBOE USB enable.

If this bit is set, the port PC2 (PB1 on SO24) outputs the USB output enable signal (at "1" when the ST7 USB is transmitting data).

Unused bits 7-4 are set.

0 MCO Main Clock Out selection

This bit enables the MCO alternate function on the PA0 I/O port. It is set and cleared by software.

0: MCO alternate function disabled (I/O pin free for general-purpose I/O)

1: MCO alternate function enabled (f_{CPU} on I/O port)

On-chip peripherals ST7263Bxx

PRESC= Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits, see *Table 24*) If the timer clock is an external clock, the formula is:

$$\Delta \text{ OC} iR = \Delta t * f_{\text{FXT}}$$

Where:

 Δt = Output compare period (in seconds)

f_{FXT} = External timer clock frequency (in hertz)

Clearing the output compare interrupt request (that is, clearing the OCFi bit) is done by:

- 1. Reading the SR register while the OCF*i* bit is set.
- 2. An access (read or write) to the OCiLR register.

The following procedure is recommended to prevent the OCF*i* bit from being set between the time it is read and the write to the OC*i*R register:

- Write to the OCiHR register (further compares are inhibited).
- Read the SR register (first step of the clearance of the OCF*i* bit, which may be already set).
- Write to the OCiLR register (enables the output compare function and clears the OCFi bit).

Note: 1 After a processor write cycle to the OCiHR register, the output compare function is inhibited until the OCiLR register is also written.

- 2 If the OCiE bit is not set, the OCMPi pin is a general I/O port and the OLVLi bit will not appear when a match is found but an interrupt could be generated if the OCIE bit is set.
- 3 In both internal and external clock modes, OCFi and OCMPi are set while the counter value equals the OCiR register value (see Figure 35 on page 67 for an example with f_{CPU}/2 and Figure 36 on page 67 for an example with f_{CPU}/4). This behavior is the same in OPM or PWM mode.
- 4 The output compare functions can be used both for generating external events on the OCMPi pins even if the input capture mode is also used.
- The value in the 16-bit OC_iR register and the OLVi bit should be changed after each successful comparison in order to control an output waveform or establish a new elapsed timeout.

Forced Compare output capability

When the FOLVi bit is set by software, the OLVLi bit is copied to the OCMPi pin. The OLVi bit has to be toggled in order to toggle the OCMPi pin when it is enabled (OCiE bit = 1). The OCFi bit is then not set by hardware, and thus no interrupt request is generated.

The FOLVLi bits have no effect in both One Pulse mode and PWM mode.

577

When a overrun error occurs:

- The OR bit is set.
- The RDR content will not be lost.
- The shift register will be overwritten.
- An interrupt is generated if the RIE bit is set and the I bit is cleared in the CC register.

The OR bit is reset by an access to the SCISR register followed by a SCIDR register read operation.

Noise error

Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise. Normal data bits are considered valid if three consecutive samples (8th, 9th, 10th) have the same bit value, otherwise the NF flag is set. In the case of start bit detection, the NF flag is set on the basis of an algorithm combining both valid edge detection and three samples (8th, 9th, 10th). Therefore, to prevent the NF flag getting set during start bit reception, there should be a valid edge detection as well as three valid samples.

When noise is detected in a frame:

- The NF flag is set at the rising edge of the RDRF bit.
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The NF flag is reset by a SCISR register read operation followed by a SCIDR register read operation.

During reception, if a false start bit is detected (e.g. 8th, 9th, 10th samples are 011,101,110), the frame is discarded and the receiving sequence is not started for this frame. There is no RDRF bit set for this frame and the NF flag is set internally (not accessible to the user). This NF flag is accessible along with the RDRF bit when a next valid frame is received.

Note:

If the application Start Bit is not long enough to match the above requirements, then the NF Flag may get set due to the short Start Bit. In this case, the NF flag may be ignored by the application software when the first valid byte is received.

See also Section .

Framing error

A framing error is detected when:

- The stop bit is not recognized on reception at the expected time, following either a
 de-synchronization or excessive noise.
- A break is received.

When the framing error is detected:

- the FE bit is set by hardware
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The FE bit is reset by a SCISR register read operation followed by a SCIDR register read operation.

Interrupt/DMA register (IDR)

Reset value: xxxx 0000 (x0h)

7 0

DA7 DA6 EP1 EP0 CNT3 CNT2 CNT1 CNT0

Read.write

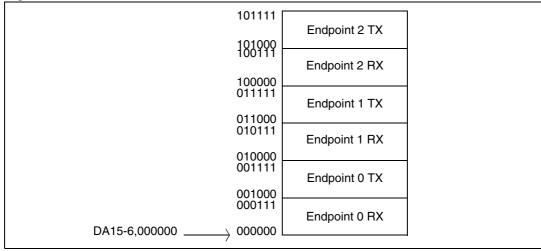
[7:6] **DA[7:6]** *DMA* address bits 7-6.

Software must reset these bits. See the description of the DMAR register and *Figure 45*.

[5:4] **EP[1:0]** *Endpoint number* (read-only). These bits identify the endpoint which required attention.

00: Endpoint 0 01: Endpoint 1

10: Endpoint 2


When a CTR interrupt occurs (see register ISTR) the software should read the EP bits to identify the endpoint which has sent or received a packet.

[3:0] CNT[3:0] Byte count (read only).

This field shows how many data bytes have been received during the last data reception.

Note: Not valid for data transmission.

Figure 45. DMA buffers

On-chip peripherals ST7263Bxx

2 ARLO Arbitration lost.

This bit is set by hardware when the interface loses the arbitration of the bus to another master. An interrupt is generated if ITE=1. It is cleared by software reading SR2 register or by hardware when the interface is disabled (PE=0).

After an ARLO event the interface switches back automatically to Slave mode (M/SL=0).

The SCL line is not held low while ARLO=1.

0: No arbitration lost detected

1: Arbitration lost detected

Note: In a Multimaster environment, when the interface is configured in Master Receive mode it does not perform arbitration during the reception of the Acknowledge Bit. Mishandling of the ARLO bit from the I2CSR2 register may occur when a second master simultaneously requests the same data from the same slave and the I²C master does not acknowledge the data. The ARLO bit is then left at 0 instead of being set.

1 BERR Bus error.

This bit is set by hardware when the interface detects a misplaced Start or Stop condition. An interrupt is generated if ITE=1. It is cleared by software reading SR2 register or by hardware when the interface is disabled (PE=0).

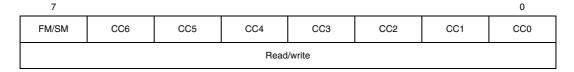
The SCL line is not held low while BERR=1.

0: No misplaced Start or Stop condition

1: Misplaced Start or Stop condition

Note: If a Bus Error occurs, a Stop or a repeated Start condition should be generated by the Master to re-synchronize communication, get the transmission acknowledged and the bus released for further communication

0 GCAL General Call (Slave mode).


This bit is set by hardware when a general call address is detected on the bus while ENGC=1. It is cleared by hardware detecting a Stop condition (STOPF=1) or when the interface is disabled (PE=0).

0: No general call address detected on bus

1: general call address detected on bus

I²C Clock Control register (CCR)

Reset value: 0000 0000 (00h)

7 FM/SM Fast/Standard I²C mode.

This bit is set and cleared by software. It is not cleared when the interface is disabled (PE=0).

0: Standard I2C mode

1: Fast I2C mode

[6:0] **CC[6:0]** 7-bit clock divider.

These bits select the speed of the bus (F_{SCL}) depending on the I²C mode. They are not cleared when the interface is disabled (PE=0).

Refer to the Electrical Characteristics section for the table of value.

Note: The programmed F_{SCL} assumes no load on SCL and SDA lines.

Instruction set ST7263Bxx

Table 51. Instructions supporting Direct, Indexed, Indirect and Indirect Indexed addressing modes (continued)

Long and Short instructions	Function
ВСР	Bit Compare
Short Instructions only	Function
CLR	Clear
INC, DEC	Increment/Decrement
TNZ	Test Negative or Zero
CPL, NEG	1 or 2 Complement
BSET, BRES	Bit Operations
BTJT, BTJF	Bit Test and Jump Operations
SLL, SRL, SRA, RLC, RRC	Shift and Rotate Operations
SWAP	Swap Nibbles
CALL, JP	Call or Jump subroutine

12.1.7 Relative mode (Direct, Indirect)

This addressing mode is used to modify the PC register value by adding an 8-bit signed offset to it.

Table 52. Instructions supporting relative addressing mode

Available relative direct/Indirect instructions	Function	
JRxx	Conditional Jump	
CALLR	Call Relative	

The relative addressing mode consists of two sub-modes:

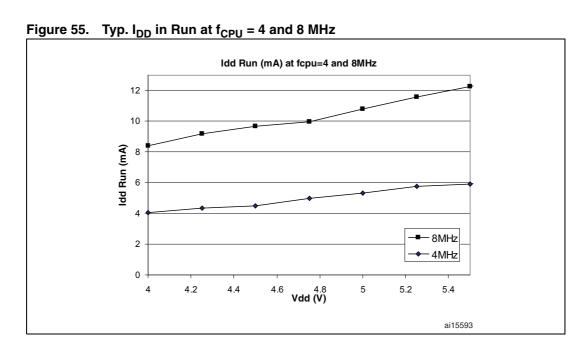
Relative (Direct)

The offset follows the opcode.

Relative (Indirect)

The offset is defined in memory, of which the address follows the opcode.

Electrical characteristics ST7263Bxx


13.4 Supply current characteristics

The following current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To get the total device consumption, the two current values must be added (except for Halt mode for which the clock is stopped).

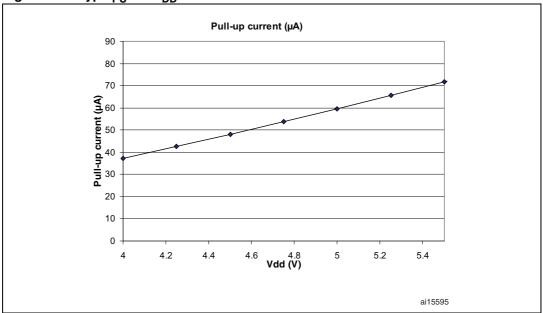
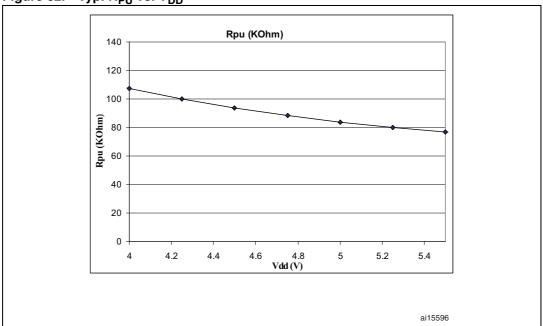
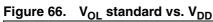
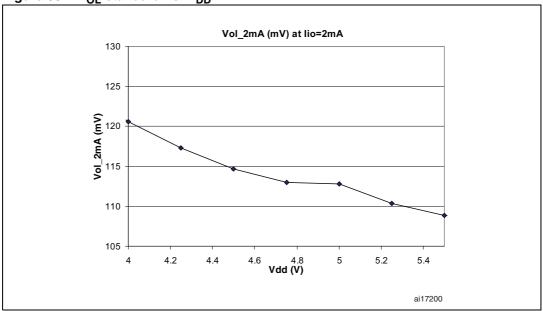
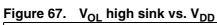
Table 60. Supply current characteristics

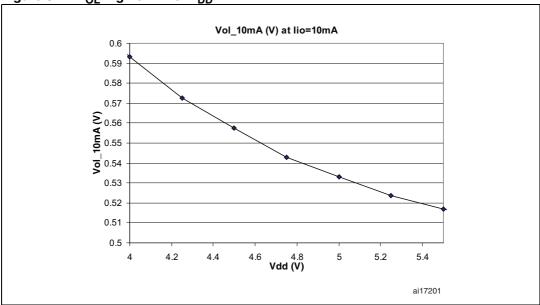
Symbol	Parameter	Conditions		Тур	Max	Unit
$\Delta I_{\text{DD}(\Delta \text{Ta})}$	Supply current variation vs. temperature	Constant V _{DD} and f _{CPL}	Constant V _{DD} and f _{CPU}			%
CPU Run mode I/Os in i		I/Os in input mode	f _{CPU} = 4 MHz	7.5	9 ⁽²⁾⁽¹⁾	mΛ
	CFO Null Illoue	I/Os in input mode	f _{CPU} = 8 MHz	10.5	13 ⁽²⁾	mA
	CPU Wait mode		f _{CPU} = 4 MHz	6	8 ⁽¹⁾	mA
I _{DD}	CFO Wait mode	f _{CPU} = 8 MH	f _{CPU} = 8 MHz	8.5	11 ⁽²⁾	ША
	CPU Halt mode ⁽³⁾	LVD disabled		25	40 ⁽¹⁾	μΑ
	USB Suspend mode ⁽⁴⁾	LVD disabled		100	120	^
	OSD Suspena mode	LVD enabled		230	-	μΑ

- 1. Not tested in production, guaranteed by characterization.
- 2. Oscillator and watchdog running. All others peripherals disabled.
- 3. USB Transceiver and ADC are powered down.
- CPU in Halt mode. Current consumption of external pull-up (1.5Kohms to USBVCC) and pull-down (15Kohms to V_{SSA}) not included.

Electrical characteristics ST7263Bxx

Figure 61. Typ. I_{PU} vs. V_{DD}


Figure 62. Typ. R_{PU} vs. V_{DD}

Electrical characteristics ST7263Bxx

USER EXTERNAL RESET CIRCUIT 0.01µF PULSE GENERATOR WATCHDOG

Figure 74. RESET pin protection when LVD is disabled

13.10 Communication interface characteristics

13.10.1 USB interface

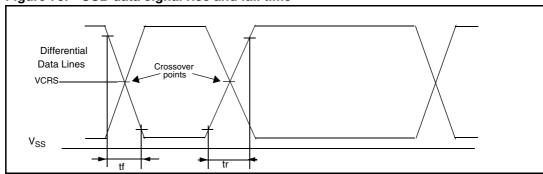

Operating conditions T_A = 0 to +70 °C, V_{DD} = 4.0 to 5.25 V unless otherwise specified.

Table 73. USB DC characteristics

Symbol	Parameter	Conditions	Min.	Max.	Unit
V _{DI}	Differential input sensitivity	I(D+, D-)	0.2	-	
V _{CM}	Differential common mode range	Includes V _{DI} range	0.8	2.5	
V _{SE}	Single ended receiver threshold		0.8	2.0	V ⁽¹⁾
V _{OL}	Static output low	$R_L^{(2)}$ of 1.5 K Ω to 3.6 V	-	0.3	V . /
V _{OH}	Static output high	$R_L^{(2)}$ of 15 K Ω to V_{SS}	2.8	3.6	
USBV	USBVCC: voltage level ⁽³⁾	V _{DD} =5 V	3.00	3.60	

- 1. All the voltages are measured from the local ground potential.
- 2. R_I is the load connected on the USB drivers.
- 3. To improve EMC performance (noise immunity), it is recommended to connect a 100nF capacitor to the USBVCC pin.

Figure 75. USB data signal rise and fall time

 V_{DD} ∠ o.ev R_{AIN} AINx ADC ∑ _{0.6V} ±1μΑ . 0.1μF ST72XXX

Figure 77. Typical application with ADC

Table 79. ADC accuracy with V_{DD}=5 V, f_{CPU}= 8 MHz, f_{ADC}=4 MHz, R_{AIN}< 10 $\kappa\Omega$

Symbol	Parameter	Тур	Max ⁽¹⁾⁽²⁾
IE _T I	Total unadjusted error ⁽³⁾	1.5	2
IE _{OI}	Offset error ⁽³⁾	0.5	1
IE _{GI}	Gain Error ⁽³⁾	0.5	1.5
IE _D I	Differential linearity error ⁽³⁾	1	1.5
IE _L I	Integral linearity error ⁽³⁾	1	1.5

- Data based on characterization results over the whole temperature range, not tested in production.
- Data based on characterization results, to guarantee 99.73% within \pm max value from 0 to 70 °C (\pm 3s distribution limits).
- ADC Accuracy vs. Negative Injection Current:
 For I_{INJ}=0.8mA, the typical leakage induced inside the die is 1.6μA and the effect on the ADC accuracy is a loss of 1 LSB for each 10KΩ increase of the external analog source impedance. This effect on the ADC accuracy has been observed under worst-case conditions for injection:
 negative injection

 - injection to an input with analog capability, adjacent to the enabled Analog input
 - at 5V V_{DD} supply, and worst case temperature.

Table 88. ST7 application notes (continued)

Identification	Description
AN1276	BLDC Motor Start Routine for the ST72141 Microcontroller
AN1321	Using the ST72141 Motor Control MCU in Sensor mode
AN1325	Using the ST7 USB LOW-SPEED Firmware V4.x
AN1445	Emulated 16-bit Slave SPI
AN1475	Developing an ST7265X Mass Storage Application
AN1504	Starting a PWM Signal Directly at High Level Using the ST7 16-bit Timer
AN1602	16-bit Timing Operations Using ST7262 or ST7263B ST7 USB MCUs
AN1633	Device Firmware Upgrade (DFU) Implementation in ST7 Non-USB Applications
AN1712	Generating a High Resolution Sinewave Using ST7 PWMART
AN1713	SMBus Slave Driver for ST7 I ² C Peripherals
AN1753	Software UART Using 12-bit ART
AN1947	ST7MC PMAC Sine Wave Motor Control Software Library

General purpose

AN1476	Low Cost Power Supply for Home Appliances
AN1526	ST7FLITE0 Quick Reference Note
AN1709	EMC Design for ST Microcontrollers
AN1752	ST72324 Quick Reference Note

Product evaluation

AN 910	Performance Benchmarking
AN 990	ST7 Benefits vs Industry Standard
AN1077	Overview of Enhanced CAN Controllers for ST7 and ST9 MCUs
AN1086	U435 Can-Do Solutions for Car Multiplexing
AN1103	Improved B-EMF detection for Low Speed, Low Voltage with ST72141
AN1150	Benchmark ST72 vs PC16
AN1151	Performance Comparison Between ST72254 & PC16F876
AN1278	LIN (Local Interconnect Network) Solutions

Product migration

AN1131	Migrating Applications from ST72511/311/214/124 to ST72521/321/324
AN1322	Migrating an Application from ST7263 Rev.B to ST7263B
AN1365	Guidelines for Migrating ST72C254 Applications to ST72F264
AN1604	How to Use ST7MDT1-TRAIN with ST72F264
AN2200	Guidelines for Migrating ST7LITE1x Applications to ST7FLITE1xB

Product optimization

AN 982	Using ST7 with Ceramic Resonator

178/186 Doc ID 7516 Rev 8

