

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8S/2600
Core Size	16-Bit
Speed	25MHz
Connectivity	I ² C, IrDA, SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	73
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	128-BFQFP
Supplier Device Package	128-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2633f25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.8.4 Program Execution State

In this state the CPU executes program instructions in sequence.

7.2.9 Refresh Timer Counter (RTCNT)*

Bit	: 7		6	5	4	3	2	1	0
Initial value):	0	0	0	0	0	0	0	0
R/W	:	R/W							

RTCNT is an 8-bit read/write up-counter.

RTCNT counts up using the internal clock selected by the DRAMCR CKS2 to CKS0 bits.

When RTCNT matches the value in RTCOR (compare match), the DRAMCR CMF flag is set to 1 and RTCNT is cleared to H'00. If, at this point, DRAMCR RFSHE is set to 1, the refresh cycle starts. When the DRAMCR CMIE bit is set to 1, a compare match interrupt (CMI) is also generated.

RTCNT is initialized to H'00 at a power-on reset and in hardware standby mode. It is not initialized at a manual reset or in software standby mode.

Note: * This function is not available in the H8S/2695.

7.2.10 Refresh Time Constant Register (RTCOR)*

RTCOR is an 8-bit read/write register that sets the RTCNT compare match cycle.

The values of RTCOR and RTCNT are constantly compared and, when both value match, the DRAMCR CMF flag is set to 1 and RTCNT is cleared to H'00.

RTCOR is initialized to H'FF at a power-on reset and in hardware standby mode. It is not initialized at a manual reset or in software standby mode.

Note: * This function is not available in the H8S/2695.

16-Bit Access Space: Figure 7.5 illustrates data alignment control for the 16-bit access space. With the 16-bit access space, the upper data bus (D15 to D8) and lower data bus (D7 to D0) are used for accesses. The amount of data that can be accessed at one time is one byte or one word, and a longword transfer instruction is executed as two word transfer instructions.

In byte access, whether the upper or lower data bus is used is determined by whether the address is even or odd. The upper data bus is used for an even address, and the lower data bus for an odd address.

Figure 7.5 Access Sizes and Data Alignment Control (16-Bit Access Space)

(4) Notes

The setting of the ICIS0 and ICIS1 bits is invalid when accessing the DRAM space. For example, if the 2nd of successive reads of different areas is a DRAM access, only the T_p cycle is inserted, not the T_1 cycle. Figure 7.36 shows the timing. Note, however, that ICIS0 and ICIS1 settings are valid in burst access in RAS down mode, and an idle cycle is inserted. Figures 7.37 (a) and (b) show the timing.

Figure 7.36 Example of DRAM Access after External Read

Figure 7.37 (a) Example Idle Cycle Operation in RAS Down Mode (ICIS1=1)

Bit 0—Data Transfer End Interrupt Enable 0A (DTIE0A): Enables or disables the channel 0 transfer end interrupt.

Bit 0

DTIE0A	 Description	
0	Transfer end interrupt disabled	(Initial value)
1	Transfer end interrupt enabled	

8.4 **Register Descriptions (3)**

8.4.1 DMA Write Enable Register (DMAWER)

The DMAC can activate the DTC with a transfer end interrupt, rewrite the channel on which the transfer ended using a DTC chain transfer, and reactivate the DTC. DMAWER applies restrictions so that only specific bits of DMACR for the specific channel and also DMATCR and DMABCR can be changed to prevent inadvertent changes being made to registers other than those for the channel concerned. The restrictions applied by DMAWER are valid for the DTC.

Figure 8.2 shows the transfer areas for activating the DTC with a channel 0A transfer end interrupt, and reactivating channel 0A. The address register and count register area is re-set by the first DTC transfer, then the control register area is re-set by the second DTC chain transfer.

When re-setting the control register area, perform masking by setting bits in DMAWER to prevent modification of the contents of the other channels.

Figure 8.5 illustrates operation in idle mode.

Figure 8.5 Operation in Idle Mode

The number of transfers is specified as 16 bits in ETCR. ETCR is decremented by 1 each time a transfer is executed, and when its value reaches H'0000, the DTE bit is cleared and transfer ends. If the DTIE bit is set to 1 at this time, an interrupt request is sent to the CPU or DTC.

The maximum number of transfers, when H'0000 is set in ETCR, is 65,536.

Transfer requests (activation sources) consist of A/D converter conversion end interrupts, external requests, SCI transmission complete and reception complete interrupts, and TPU channels 0 to 5 compare match/input capture A interrupts. External requests can be set for channel B only.

When the DMAC is used in single address mode, only channel B can be set.

• Mode 7

Setting a PADDR bit to 1 makes the corresponding port A pin an output port, while clearing the bit to 0 makes the pin an input port.

Port A Data Register (PADR)

Bit :	7	7 6		4	3	2	1	0
	—	—	_	_	PA3DR	PA2DR	PA1DR	PA0DR
Initial value :	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W :	_		_	—	R/W	R/W	R/W	R/W

PADR is an 8-bit readable/writable register that stores output data for the port A pins (PA3 to PA0).

Bits 7 to 4 are reserved; they return an undetermined value if read, and cannot be modified.

PADR is initialized to H'0 (bits 3 to 0) by a powr-on reset, and in hardware standby mode. It retains its prior state by a manual reset or in software standby mode.

Port A Register (PORTA)

Bit :	7	6	5	4	3	2	1	0
	—	—		—	PA3	PA2	PA1	PA0
Initial value :	Undefined	Undefined	Undefined	Undefined	*	*	*	*
R/W :	_	_	_	_	R	R	R	R

Note: * Determined by state of pins PA3 to PA0.

PORTA is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port A pins (PA3 to PA0) must always be performed on PADR.

Bits 7 to 4 are reserved; they return an undetermined value if read, and cannot be modified.

If a PORTA read is performed while PADDR bits are set to 1, the PADR values are read. If a PORTA read is performed while PADDR bits are cleared to 0, the pin states are read.

After a power-on reset and in hardware standby mode, PORTA contents are determined by the pin states, as PADDR and PADR are initialized. PORTA retains its prior state by a manual reset or in software standby mode.

10A.11.4 MOS Input Pull-Up Function

Port E has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes 4 to 6 when 8-bit bus mode is selected, or in mode 7, and can be specified as on or off on an individual bit basis.

When a PEDDR bit is cleared to 0 in modes 4 to 6 when 8-bit bus mode is selected, or in mode 7, setting the corresponding PEPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a power-on reset, and in hardware standby mode. The prior state is retained by a manual reset or in software standby mode.

Table 10A.21 summarizes the MOS input pull-up states.

Modes		Power-On Reset	Hardware Standby Mode	Manual Reset	Software Standby Mode	In Other Operations
7		OFF	OFF	ON/OFF	ON/OFF	ON/OFF
4 to 6	8-bit bus					
	16-bit bus	_		OFF	OFF	OFF

Table 10A.21 MOS Input Pull-Up States (Port E)

Legend:

OFF: MOS input pull-up is always off.

ON/OFF: On when PEDDR = 0 and PEPCR = 1; otherwise off.

	Bit 7	Bit 6	Bit 5	Bit 4					
Channel	IOB3	IOB2	IOB1	IOB0	Descriptio	on			
3	0	0	0	0	TGR3B	Output disabled	(Initial value)		
				1	is output	Initial output is 0	0 output at compare match		
			1	0	register	output	1 output at compare match		
				1	_		Toggle output at compare match		
		1	0	0	-	Output disabled			
				1	-	Initial output is 1	0 output at compare match		
			1 0 output		output	1 output at compare match			
				1	_		Toggle output at compare match		
	1	0	0	0	TGR3B	Capture input	Input capture at rising edge		
				1	is input	source is	Input capture at falling edge		
			1	*	register	noobo pin	Input capture at both edges		
			1	*	*	_	Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/count-down*1	

*: Don't care

Note: 1. When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and φ/1 is used as the TCNT4 count clock, this setting is invalid and input capture is not generated.

• When TGR is an input capture register

Figure 11.20 shows an operation example in which TGRA has been designated as an input capture register, and buffer operation has been designated for TGRA and TGRC.

Counter clearing by TGRA input capture has been set for TCNT, and both rising and falling edges have been selected as the TIOCA pin input capture input edge.

As buffer operation has been set, when the TCNT value is stored in TGRA upon occurrence of input capture A, the value previously stored in TGRA is simultaneously transferred to TGRC.

Figure 11.20 Example of Buffer Operation (2)

Contention between TCNT Write and Clear Operations: If the counter clear signal is generated in the T2 state of a TCNT write cycle, TCNT clearing takes precedence and the TCNT write is not performed.

Figure 11.49 shows the timing in this case.

Figure 11.49 Contention between TCNT Write and Clear Operations

Figure 16.25 Sample Flowchart for Mode Transition during Transmission

sample-and-hold circuit in the A/D converter exceeds the current input via the input impedance (R_{in}) , an error will arise in the analog input pin voltage. Careful consideration is therefore required when deciding the circuit constants.

Figure 19.7 Example of Analog Input Protection Circuit

Table 19.7 Analog Pin Specifications

Item	Min	Мах	Unit
Analog input capacitance	—	20	pF
Permissible signal source impedance	_	5	kΩ

24.1.1 Register Configuration

Power-down modes are controlled by the SBYCR, SCKCR, LPWRCR, TCSR (WDT1^{*}), and MSTPCR registers. Table 24.3 summarizes these registers.

Note: * WDT1 is not available in the H8S/2695.

Table 24.3 Power-Down Mode Registers

Name	Abbreviation	R/W	Initial Value	Address*1
Standby control register	SBYCR	R/W	H'08	H'FDE4
System clock control register	SCKCR	R/W	H'00	H'FDE6
Low-power control register	LPWRCR	R/W	H'00	H'FDEC
Timer control/status register (WDT1) ^{*2}	TCSR	R/W	H'00	H'FFA2
Module stop control register	MSTPCRA	R/W	H'3F	H'FDE8
A, B, C	MSTPCRB	R/W	H'FF	H'FDE9
	MSTPCRC	R/W	H'FF	H'FDEA

Notes: 1. Lower 16 bits of the address.

2. WDT1 is not available in the H8S/2695.

	No. of States*1	Advanced	4	Ð	7	Ð	Ð	9	ო	ъ	m	S	7/9/11 [1]		7/9/11 [1]		[2]	[2]
	Condition Code	I H N Z V C	0	 0 ↔ + 	 0 ↔ + 	0 ↔ ↔ 	 0 ↔ ↔ 	 0 ↔ + 	 0 ↔ + 	 0 ↔ ↔ 	 0 ↔ ↔ 	0						
		Operation	ERs32→@ERd	ERs32→@(d:16,ERd)	ERs32→@(d:32,ERd)	ERd32-4 \rightarrow ERd32,ERs32 \rightarrow @ERd	ERs32→@aa:16	ERs32→@aa:32	@SP→Rn16,SP+2→SP	@SP→ERn32,SP+4→SP	SP-2→SP,Rn16→@SP	SP-4→SP,ERn32→@SP	(@SP→ERn32,SP+4→SP)	Repeated for each register restored	(SP-4→SP,ERn32→@SP)	Repeated for each register saved	Group	Group
s)		_							~	4	~	4	4		4		33	33
s∕ yte	99	00															3/26	3/26
epo B) (B)	() () () () () () () () () () () () () ()@														185		H8S
g M ngth	ទ	B 🕲					9	ω									he	he
Ler	+nA3@\nA3	-@				4											int	int
on	(nA3,k)@		9	10												sed	sed
loti	ug	9 @	4														e n:	e n:
stru		uЯ															ot b	ot b
Ч	:	xx#															anne	anne
	erand Size	od0	-	_	_		-	_	≥	_	≥						Ő	Ő
		Mnemonic	MOV.L ERs, @ ERd	MOV.L ERs, @ (d:16,ERd)	MOV.L ERs, @ (d:32,ERd)	MOV.L ERs, @-ERd	MOV.L ERs,@aa:16	MOV.L ERs, @aa:32	POP.W Rn	POP.L ERn	PUSH.W Rn	PUSH.L ERn	LDM @SP+,(ERm-ERn)		STM (ERm-ERn), @-SP		MOVFPE @aa:16,Rd	MOVTPE Rs,@aa:16
			MOV	-	-	-	-		POP	-	PUSH		LDM ^{*4}		STM*4		MOVFPE	MOVTPE

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width (bits)
H'FF1A	TGR0B									TPU0	16
H'FF1B	_									_	
H'FF1C	TGR0C										
H'FF1D	_									_	
H'FF1E	TGR0D									_	
H'FF1F	_									_	
H'FF20	TCR1	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU1	16
H'FF21	TMDR1	_		_	_	MD3	MD2	MD1	MD0	_	
H'FF22	TIOR1	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FF24	TIER1	TTGE		TCIEU	TCIEV	_	_	TGIEB	TGIEA	_	
H'FF25	TSR1	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA		
H'FF26	TCNT1										
H'FF27	_										
H'FF28	TGR1A										
H'FF29	_									_	
H'FF2A	TGR1B										
H'FF2B											
H'FF30	TCR2	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU2	16
H'FF31	TMDR2	_	_	_	_	MD3	MD2	MD1	MD0		
H'FF32	TIOR2	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FF34	TIER2	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA		
H'FF35	TSR2	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA	_	
H'FF36	TCNT2										
H'FF37										_	
H'FF38	TGR2A										
H'FF39											
H'FF3A	TGR2B									_	
H'FF3B											
H'FF74 (write)	TCSR0/ TCNT0	OVF	WT/ĪT	TME	_		CKS2	CKS1	CKS0	WDT0	16
H'FF75 (read)	TCNT0										
H'FF76 (write)	RSTCSR	WOVF	RSTE	RSTS	_		—	—	—	_	
H'FF77 (read)	RSTCSR	WOVF	RSTE	RSTS	—	_	—	—	—	_	

Figure C.1 (d) Port 1 Block Diagram (Pin P15)

Figure C.16 (e) Port 7 Block Diagram (Pin P77)

Figure C.23 (d) Port F Block Diagram (Pin PF3)