

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	H8S/2600
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	73
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	120-TQFP
Supplier Device Package	120-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2633te16v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		H8S/2633	Group	H8S/2633R Group			
	H8S/2633F-ZTAT	H8S/2633	H8S/2632	H8S/2631	H8S/2633RF-ZTAT	H8S/2695	
32 kHz oscillator	See section 23A, C H8S/2632, H8S/26		•	See section 23B, Clock Pulse Generator (H8S/2633R, H8S/2695)	_		
Clock Pulse Generator	See section 23A, C H8S/2632, H8S/26		· ·	See section 23B, Clock Pulse Generator (H8S/2633R, H8S/2695)			
EXTAL input level	See section 25, Electrical Characteristics (H8S/2633, H8S/2632, H8S/2631, H8S/2633F)				See section 26, Electrical Characteristics (H8S/2633R)	See section 27, Electrical Characteristics (H8S/2695)	
Recommended external PLL circuit				See section 23B, Clock Pulse Generator (H8S/2633R, H8S/2695)			
Interrupt processing vector table	See section 5, Interrupt Controller See table 5.4 (a)					See section 5, Interrupt Controller See table 5.4 (b)	

Name	Symbol	I/O	Function
Lower column strobe [*]	LCAS*	Output	DRAM lower column address strobe signal*
Wait	WAIT	Input	Wait request signal when accessing external 3-state access space.
Bus request	BREQ	Input	Request signal that releases bus to external device.
Bus request acknowledge	BACK	Output	Acknowledge signal indicating that bus has been released.
Bus request output	BREQO	Output	External bus request signal used when internal bus master accesses external space when external bus is released.

Note: * This function is not available in the H8S/2695.

7.1.4 Register Configuration

Table 7.2 summarizes the registers of the bus controller.

Table 7.2 Bus Controller Registers

			Initial		
Name	Abbreviation	R/W	Power-On Reset	Manual Reset	Address ^{*1}
Bus width control register	ABWCR	R/W	H'FF/H'00*2	Retained	H'FED0
Access state control register	ASTCR	R/W	H'FF	Retained	H'FED1
Wait control register H	WCRH	R/W	H'FF	Retained	H'FED2
Wait control register L	WCRL	R/W	H'FF	Retained	H'FED3
Bus control register H	BCRH	R/W	H'D0	Retained	H'FED4
Bus control register L	BCRL	R/W	H'08	Retained	H'FED5
Pin function control register	PFCR	R/W	H'0D/H'00	Retained	H'FDEB
Memory control register	MCR ^{*3}	R/W	H'00	Retained	H'FED6
DRAM control register	DRAMCR*3	R/W	H'00	Retained	H'FED7
Refresh timer counter	RTCNT ^{*3}	R/W	H'00	Retained	H'FED8
Refresh time constant register	RTCOR*3	R/W	H'FF	Retained	H'FED9

Notes: 1. Lower 16 bits of the address.

- 2. Determined by the MCU operating mode.
- 3. This function is not available in the H8S/2695.

8.5.4 Repeat Mode

Repeat mode can be specified by setting the RPE bit in DMACR to 1, and clearing the DTIE bit to 0. In repeat mode, MAR is updated after each byte or word transfer in response to a single transfer request, and this is executed the number of times specified in ETCR. On completion of the specified number of transfers, MAR and ETCRL are automatically restored to their original settings and operation continues.

One address is specified by MAR, and the other by IOAR. The transfer direction can be specified by the DTDIR bit in DMACR.

Table 8.8 summarizes register functions in repeat mode.

	Fun			
Register	DTDIR = 0	DTDIR = 1	Initial Setting	Operation
23 0	Source address register	Destination address register	Start address of transfer destination or transfer source	Incremented/ decremented every transfer. Initial setting is restored when value reaches H'0000
23 15 0 H'FF IOAR	Destination address register	Source address register	Start address of transfer source or transfer destination	Fixed
7 0 ETCRH	Holds numb transfers	per of	Number of transfers	Fixed
7 ▼ 0 ETCRL	Transfer co	unter	Number of transfers	Decremented every transfer. Loaded with ETCRH value when count reaches H'00

Table 8.8 Register Functions in Repeat Mode

Legend:

- MAR: Memory address register
- IOAR: I/O address register
- ETCR: Transfer count register
- DTDIR: Data transfer direction bit

9.3.4 Location of Register Information in Address Space

Figure 9.5 shows how the register information should be located in the address space.

Locate the MRA, SAR, MRB, DAR, CRA, and CRB registers, in that order, from the start address of the register information (contents of the vector address). In the case of chain transfer, register information should be located in consecutive areas.

Locate the register information in the on-chip RAM (addresses: H'FFEBC0 to H'FFEFBF).

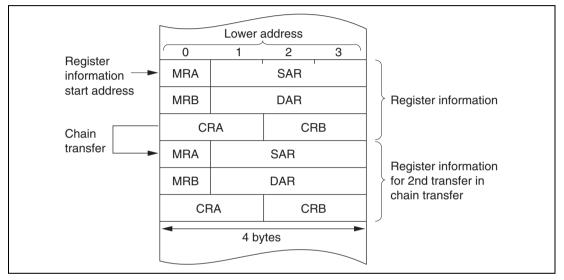


Figure 9.5 Location of Register Information in Address Space

Selection Method and Pin Functions

P16/PO14/ The p TIOCA2/PWM2/ the T IRQ1 in TIO

Pin

The pin function is switched as shown below according to the combination of the TPU channel 2 setting (by bits MD3 to MD0 in TMDR2, bits IOA3 to IOA0 in TIOR2, and bits CCLR1 and CCLR0 in TCR2), OEA bit in DACR3, bit NDER14 in NDERH, and bit P16DDR.

TPU Channel 2 Setting	Table Below (1)	Table Below (2)					
OEA	_	0	0	0	1		
P16DDR	_	0	1	1	—		
NDER14	_	_	0	1	—		
Pin function	TIOCA2 output	P16 input	P16 output	PO14 output	PWM2 output		
		TIOCA2 input*1					
IRQ1 input							

TPU Channel 2 Setting	(2)	(1)	(2)	(1)	(1)	(2)	
MD3 to MD0	B'0000,	, B'01xx	B'001x	B'0010	B'0011		
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00			
CCLR1, CCLR0	—	—	_		Other than B'01	B'01	
Output function		Output compare output		PWM mode 1 output ^{*2}	PWM mode 2 output	—	

x: Don't care

- Notes: 1. TIOCA2 input when MD3 to MD0 = B'0000 or B'01xx, and IOA3 = 1.
 - 2. TIOCB2 output is disabled.

Port B Data Register (PBDR)

Bit	:	7	6	5	4	3	2	1	0
		PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PBDR is an 8-bit readable/writable register that stores output data for the port B pins (PB7 to PB0). PBDR is initialized to H'00 by a power-on reset, and in hardware standby mode. It retains its prior state by a manual reset or in software standby mode.

Port B Register (PORTB)

Bit	:	7	6	5	4	3	2	1	0	
		PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	
Initial va	alue :	*	*	*	*	*	*	*	*	
R/W	:	R	R	R	R	R	R	R	R	
Note: * Determined by state of pins PB7 to PB0.										

Note: * Determined by state of pins PB7 to PB0.

PORTB is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port B pins (PB7 to PB0) must always be performed on PBDR.

If a PORTB read is performed while PBDDR bits are set to 1, the PBDR values are read. If a PORTB read is performed while PBDDR bits are cleared to 0, the pin states are read.

After a power-on reset and in hardware standby mode, PORTB contents are determined by the pin states, as PBDDR and PBDR are initialized. PORTB retains its prior state in software standby mode.

Port	Description	Pins	Mode 4	Mode 5	Mode 6	Mode 7
Port 7	8-bit I/O port	P77/TxD3 P76/RxD3 P75/SCK3 P74/MRES P73/CS7 P72/CS6 P71/CS5 P70/CS4	8-bit I/O port als output pins (CS- RxD3, TxD3), ar (MRES)	8-bit I/O port also function- ing as SCI I/O pins (SCK3, RxD3, TxD3) and the manual reset input pin (MRES)		
Port 9	8-bit input port	P97/AN15 P96/AN14 P95/AN13 P94/AN12 P93/AN11 P92/AN10 P91/AN9 P90/AN8	8-bit input port a (AN15 to AN8)	r analog inputs		
Port A	 4-bit I/O port Built-in MOS input pull-up Open-drain output capability 	PA3/A19/SCK2 PA2/A18/RxD2 PA1/A17/TxD2 PA0/A16	4-bit I/O port als 2) I/O pins (TxD outputs (A19 to	2, RxD2, SCK2)		4-bit I/O port also function- ing as SCI (channel 2) I/O pins (TxD2, RxD2, SCK2)
Port B	8-bit I/O port Built-in MOS input pull-up Open-drain output capability	PB7/A15/TIOCB5 PB6/A14/TIOCA5 PB5/A13/TIOCB4 PB4/A12/TIOCA4 PB3/A11/TIOCD3 PB2/A10/TIOCC3 PB1/A9/TIOCB3 PB0/A8/TIOCA3	8-bit I/O port als (TIOCB5, TIOC/ TIOCC3, TIOCE outputs (A15 to	8-bit I/O port also functioning as TPU I/O pins (TIOCB5, TIOCA5, TIOCB4, TIOCA4, TIOCD3, TIOCC3, TIOCC3, TIOCB3, TIIOCA3)		

P1DR is initialized to H'00 by a power-on reset, and in hardware standby mode. It retains its prior state by a manual reset or in software standby mode.

Port 1 Register (PORT1)

Bit	:	7	6	5	4	3	2	1	0	
		P17	P16	P15	P14	P13	P12	P11	P10	
Initial va	alue :	*	*	*	*	*	*	*	*	
R/W	:	R	R	R	R	R	R	R	R	
Note: * Determined by state of pine P17 to P10										

Note: * Determined by state of pins P17 to P10.

PORT1 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 1 pins (P17 to P10) must always be performed on P1DR.

If a PORT1 read is performed while P1DDR bits are set to 1, the P1DR values are read. If a PORT1 read is performed while P1DDR bits are cleared to 0, the pin states are read.

After a power-on reset and in hardware standby mode, PORT1 contents are determined by the pin states, as P1DDR and P1DR are initialized. PORT1 retains its prior state by a manual reset or in software standby mode.

Pin	Selection Meth	od and Pin	Function	IS					
PF3/LWR/ADTRG/ IRQ3	The pin function is switched as shown below according to the operating mode, the bus mode, A/D converter bits TRGS1 and TRGS0, and bit PF3DDR.								
	Operating mode		Modes 4 to 6					Мос	le 7
	Bus mode	16-bit bus mode	8-bit bus mode			е		_	-
	PF3DDR	—	0			1		0	1
	Pin function	LWR output pin	PF3 inp pin	out		output in		3 input pin	PF3 output pin
					AD	TRG i	nput	pin*1	
					IF	RQ3 inp	out pi	in ^{*2}	
	Notes: 1. ADT	•							
 When used as an external interrupt input pin, do not use as an I/O pin for another function. 									
PF2/ WAIT/ BREQO	The pin function is switched as shown below according to the combination of the operating mode and bits BREQOE, WAITE, ABW5 to ABW2, and PF2DDR.								
	Operating Mode	Modes 4 to 6					Mode 7		
	BREQOE		0			1	—		
	WAITE	0			1			—	
	PF2DDR	0	1	-				0	1
	Pin function	PF2 input pin	PF2 output pin	in	AIT put pin	BRE outp pir	ut	PF2 input pin	PF2 output pin
PF1/BACK	The pin function the operating me						g to t	he coml	pination of
	Operating Mode		Modes 4	to 6	;			Мос	le 7
	BRLE		0			1		_	_
	PF1DDR	0	1			_		0	1
	Pin function	PF1 input pin	PF1 out pin	tput		.CK ut pin		1 input pin	PF1 output pin

Waveform Output by Compare Match

The TPU can perform 0, 1, or toggle output from the corresponding output pin using compare match.

Example of setting procedure for waveform output by compare match: Figure 11.9 shows an example of the setting procedure for waveform output by compare match

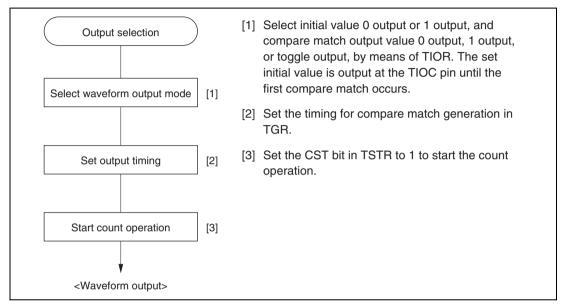


Figure 11.9 Example of Setting Procedure for Waveform Output by Compare Match

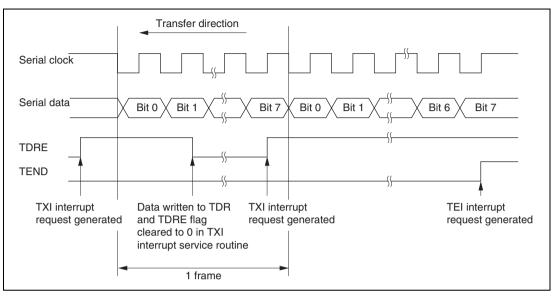


Figure 16.17 shows an example of SCI operation in transmission.

Figure 16.17 Example of SCI Operation in Transmission

Serial data reception (clocked synchronous mode): Figure 16.18 shows a sample flowchart for serial reception.

The following procedure should be used for serial data reception.

When changing the operating mode from asynchronous to clocked synchronous, be sure to check that the ORER, PER, and FER flags are all cleared to 0.

The RDRF flag will not be set if the FER or PER flag is set to 1, and neither transmit nor receive operations will be possible.

16.4 SCI Interrupts

The SCI has four interrupt sources: the transmit-end interrupt (TEI) request, receive-error interrupt (ERI) request, receive-data-full interrupt (RXI) request, and transmit-data-empty interrupt (TXI) request. Table 16.13 shows the interrupt sources and their relative priorities. Individual interrupt sources can be enabled or disabled with the TIE, RIE, and TEIE bits in the SCR. Each kind of interrupt request is sent to the interrupt controller independently.

When the TDRE flag in SSR is set to 1, a TXI interrupt request is generated. When the TEND flag in SSR is set to 1, a TEI interrupt request is generated. A TXI interrupt can activate the DMAC^{*} or DTC^{*} to perform data transfer. The TDRE flag is cleared to 0 automatically when data transfer is performed by the DMAC^{*} or DTC^{*}. The DMAC^{*} or DTC^{*} cannot be activated by a TEI interrupt request.

When the RDRF flag in SSR is set to 1, an RXI interrupt request is generated. When the ORER, PER, or FER flag in SSR is set to 1, an ERI interrupt request is generated. An RXI interrupt can activate the DMAC^{*} or DTC^{*} to perform data transfer. The RDRF flag is cleared to 0 automatically when data transfer is performed by the DMAC^{*} or DTC^{*}. The DMAC^{*} or DTC^{*} cannot be activated by an ERI interrupt request.

Note that the $DMAC^*$ cannot be activated by interrupts of SCI channels 2 to 4.

Note: * DMAC and DTC functions are not available in the H8S/2695.

Bit 4		
TRS	Description	
0	Receive mode	(Initial value)
	[Clearing conditions]	
	1. When 0 is written by software (in cases other than setting c	ondition 3)
	2. When 0 is written in TRS after reading TRS = 1 (in case of	clearing condition 3)
	3. When bus arbitration is lost after transmission is started in I	² C bus format master
	mode	
1	Transmit mode	
	[Setting conditions]	
	1. When 1 is written by software (in cases other than clearing	conditions 3 and 4)
	 When 1 is written in TRS after reading TRS = 0 (in case of and 4) 	clearing conditions 3
	3. When 1 is received as the R/W bit of the first frame in I ² C bit	us format slave mode

Bit 3—Acknowledge Bit Judgement Selection (ACKE): Specifies whether the value of the acknowledge bit returned from the receiving device when using the I²C bus format is to be ignored and continuous transfer is performed, or transfer is to be aborted and error handling, etc., performed if the acknowledge bit is 1. When the ACKE bit is 0, the value of the received acknowledge bit is not indicated by the ACKB bit, which is always 0.

In the H8S/2633 Group, the DTC^{*} can be used to perform continuous transfer. The DTC^{*} is activated when the IRTR interrupt flag is set to 1 (IRTR is one of two interrupt flags, the other being IRIC). When the ACKE bit is 0, the TDRE, IRIC, and IRTR flags are set on completion of data transmission, regardless of the value of the acknowledge bit. When the ACKE bit is 1, the TDRE, IRIC, and IRTR flags are set on completion of data transmission when the acknowledge bit is 0, and the IRIC flag alone is set on completion of data transmission when the acknowledge bit is 1.

When the DTC^{*} is activated, the TDRE, IRIC, and IRTR flags are cleared to 0 after the specified number of data transfers have been executed. Consequently, interrupts are not generated during continuous data transfer, but if data transmission is completed with a 1 acknowledge bit when the ACKE bit is set to 1, the DTC^{*} is not activated and an interrupt is generated, if enabled.

Depending on the receiving device, the acknowledge bit may be significant, in indicating completion of processing of the received data, for instance, or may be fixed at 1 and have no significance.

Note: * The DTC function is not available in the H8S/2695.

22.5 Register Descriptions

Bit:	7	6	5	4	3	2	1	0
	FWE	SWE1	ESU1	PSU1	EV1	PV1	E1	P1
Initial value:	*	0	0	0	0	0	0	0
R/W:	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W

22.5.1 Flash Memory Control Register 1 (FLMCR1)

Note: * Determined by the state of the FWE pin.

FLMCR1 is an 8-bit register used for flash memory operating mode control. Program-verify mode or erase-verify mode for addresses H'00000 to H'3FFFF is entered by setting SWE1 bit to 1 when FWE = 1, then setting the PV1 or EV1 bit. Program mode for addresses H'00000 to H'3FFFF is entered by setting SWE1 bit to 1 when FWE = 1, then setting the PSU1 bit, and finally setting the P1 bit. Erase mode for addresses H'00000 to H'3FFFF is entered by setting SWE1 bit to 1 when FWE = 1, then setting the ESU1 bit, and finally setting the E1 bit. FLMCR1 is initialized by a power-on reset, and in hardware standby mode and software standby mode. Its initial value is H'80 when a high level is input to the FWE pin, and H'00 when a low level is input. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

Writes are enabled only in the following cases: Writes to bit SWE1 of FLMCR1 enabled when FWE = 1, to bits ESU1, PSU1, EV1, and PV1 when FWE = 1 and SWE1 = 1, to bit E1 when FWE = 1, SWE1 = 1 and ESU1 = 1, and to bit P1 when FWE = 1, SWE1 = 1, and PSU1 = 1.

Bit 7—Flash Write Enable Bit (FWE): Sets hardware protection against flash memory programming/erasing.

FWE	_ Description
0	When a low level is input to the FWE pin (hardware-protected state)
1	When a high level is input to the FWE pin

23A.3.2 External Clock Input

Circuit Configuration: An external clock signal can be input as shown in the examples in figure 23A.6. If the XTAL pin is left open, make sure that stray capacitance is no more than 10 pF.

In example (b), make sure that the external clock is held high in standby mode.

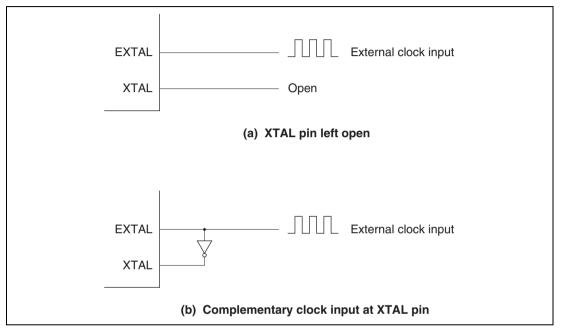
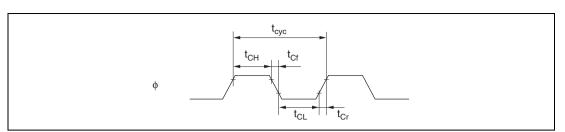



Figure 23A.6 External Clock Input (Examples)

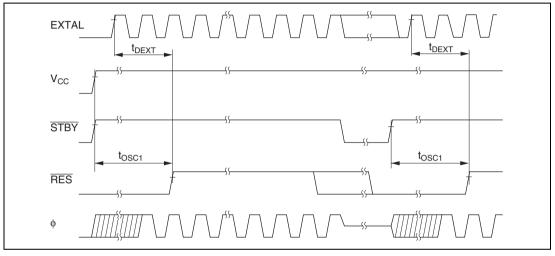


Figure 25.3 Oscillator Settling Timing

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
MOS input pull-up current	Ports A to E	I _P	50	_	300	μΑ	$V_{in} = 0 V$
Input	RES	C _{in}	_	_	30	рF	$V_{in} = 0 V$
capacitance	NMI	-	_	_	30	рF	f = 1 MHz
	All input pins except RES and NMI	-		_	15	pF	[–] T _a = 25°C
Current dissipation ^{*2}	Normal operation	I_cc *4	_	70	84	mA	f = 28 MHz
	Sleep mode	-	_	55	77	mA	f = 28 MHz
	All modules stopped		_	40	_	mA	f = 28 MHz (reference values)
	Medium-speed mode (\phi/32)	-		54	_	mA	f = 28 MHz (reference values)
	Standby	-	_	0.1	5.0	μΑ	$T_a \le 50^\circ C$
	mode		_	_	20	_	50°C < T _a
Analog power supply	During A/D conversion	Al _{cc}	—	0.6	2.0	mA	$AV_{cc} = 5.0 V$
current	Idle	-	—	0.1 T _a = 25°C	5.0	μΑ	
Reference power supply	During A/D conversion	AI_{cc}	—	4.0	5.0	mA	$V_{ref} = 5.0 V$
current	Idle	-	_	0.1 T _a = 25°C	5.0	μΑ	
RAM standby v	voltage*3	V_{RAM}	2.0	_	_	V	

Notes: 1. If the A/D converter is not used, do not leave the AV_{cc}, V_{ref}, and AV_{ss} pins open. Apply a voltage between 3.3 V and 5.5 V to the AV_{cc} and V_{ref} pins by connecting them to PV_{cc}, for instance. Set V_{ref} \leq AV_{cc}.

- 2. Current dissipation values are for $V_{\mu} = AV_{cc}$ (ports 4 and 9), or PV_{cc} (other), and $V_{\mu} = 0$ V, with all output pins unloaded and the on-chip MOS pull-up transistors in the off state.
- 3. The values are for $V_{_{RAM}} \leq PV_{_{CC}} <$ 3.0 V, $V_{_{IH}}$ min = $PV_{_{CC}} -$ 0.1 V, and $V_{_{IL}}$ max = 0.1 V.
- 4. I_{cc} depends on PV_{cc} and f as follows:

 I_{cc} max = 15 (mA) + 0.45 (mA/(MHz × V)) × PV_{cc} × f (normal operation)

 I_{cc} max = 15 (mA) + 0.40 (mA/(MHz × V)) × PV_{cc} × f (sleep mode)

Instruction code		1st byte	2nd byte	byte	3rd	3rd byte	4th byte	oyte	5th byte	te	6th byte						
	AH	AL	ВН	ВГ	Ю	СГ	Н	Ы	표	Ш	FH						
											Ţ		Instrue	ction wher ction wher	Instruction when most significant bit of FH is 0 Instruction when most significant bit of FH is 1.	nificant bit nificant bit	of FH is 0 of FH is 1
НАЦВНВІСНСІДНОІЕН	0	-	0	e		4	5	9	2	80	6	۲	8	υ		ш	ш
6A10aaa6*					Ļ												
6A10aaa7*						Νб	BXOR BIXOR	BAND	BLD BLD								
6A18aaa6*									<u> </u> 2								
6A18aaa7*	DOE	DNG	всги	r													
Instruction code	18	1st byte	2nd byte	byte	3rd	3rd byte	4th byte	oyte	5th byte	te	6th byte	71	7th byte	8th byte	/te		
	AH	AL	ВН	BL	СН	СГ	Н	DL	H	E	FI	GH	GL	포	н		
											Ļ			ction wher ction wher	Instruction when most significant bit of HH is 0 Instruction when most significant bit of HH is 1	nificant bit nificant bit	of HH is 0 of HH is 1

RENESAS

BST BIST BIAND BIXOR BIOR BCLR BNOT BSET 6A38aaaaaaa7* 6A38aaaaaaa6*

Mar 02, 2011

ο΄ Γ

Page 1187 of 1434

.. ..

ш

ш

C

ш

∢

ი

ω

 \sim

9

ß

4

ო

N

-

0

GL GL ... FHFLGH 6A30aaaaaaa6*

6A30aaaaaaa7*

BLD

BAND

BXOR

BOR

BTST

NDRH—Next Data Register H

Same trigger for pulse output groups.

Bit :	7	6	5	4	3	2	1	0
	NDR15	NDR14	NDR13	NDR12	NDR11	NDR10	NDR9	NDR8
Initial value :	0	0	0	0	0	0	0	0
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit :	7	6	5	4	3	2	1	0
	—	—	—	—	—	—	—	_
Initial value :	1	1	1	1	1	1	1	1
R/W :	_	_	_	_	_	_	_	_
Different trigge	ers for puls	e output g	roups.					
Bit :	7	6	5	4	3	2	1	0
	NDR15	NDR14	NDR13	NDR12	_	_	_	_
Initial value :	0	0	0	0	1	1	1	1
R/W :	R/W	R/W	R/W	R/W	_	_	_	_
Bit :	7	6	5	4	3	2	1	0
	—	—	—	—	NDR11	NDR10	NDR9	NDR8
Initial value :	1	1	1	1	0	0	0	0
R/W :		_	_	_	R/W	R/W	R/W	R/W

Note: For details see section 12.2.4, Notes on NDR Access.

H'FE2C, H'FE2E PPG

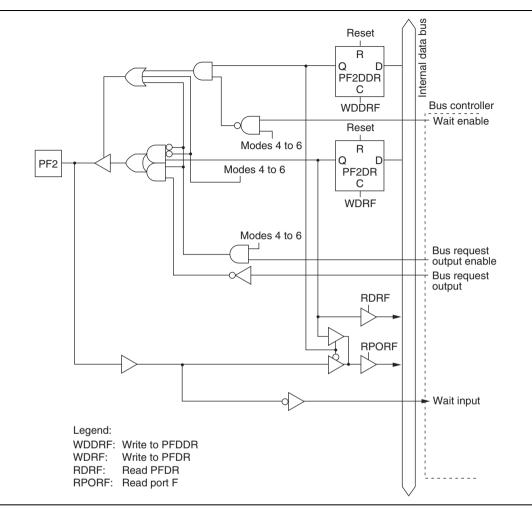


Figure C.23 (c) Port F Block Diagram (Pin PF2)