E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 28x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21334b-24pvxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article "How to Design with PSoC[®] 1, PowerPSoC[®], and PLC – KBA88292". Following is an abbreviated list for PSoC 1:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP
- In addition, PSoC Designer includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 1 are:
 - □ Getting Started with PSoC[®] 1 AN75320
 - □ PSoC[®] 1 Getting Started with GPIO AN2094
 - □ PSoC[®] 1 Analog Structure and Configuration AN74170
 - □ PSoC[®] 1 Switched Capacitor Analog Blocks AN2041
 - □ Selecting Analog Ground and Reference AN2219

Note: For CY8C21x34B devices related Application note please click here.

- Development Kits:
 - CY3210-PSoCEval1 supports all PSoC 1 Mixed-Signal Array families, including automotive, except CY8C25/26xxx devices. The kit includes an LCD module, potentiometer, LEDs, and breadboarding space.
 - CY3214-PSoCEvalUSB features a development board for the CY8C24x94 PSoC device. Special features of the board include USB and CapSense development and debugging support.

Note: For CY8C21x34B devices related Development Kits please click here.

The MiniProg1 and MiniProg3 devices provide interfaces for flash programming and debug.

PSoC Designer

PSoC Designer is a free Windows-based Integrated Design Environment (IDE). Develop your applications using a library of pre-characterized analog and digital peripherals in a drag-and-drop design environment. Then, customize your design leveraging the dynamically generated API libraries of code. Figure 1 shows PSoC Designer windows. **Note:** This is not the default view.

- 1. Global Resources all device hardware settings.
- 2. **Parameters** the parameters of the currently selected User Modules.
- 3. Pinout information related to device pins.
- 4. **Chip-Level Editor** a diagram of the resources available on the selected chip.
- 5. Datasheet the datasheet for the currently selected UM
- 6. User Modules all available User Modules for the selected device.
- 7. **Device Resource Meter** device resource usage for the current project configuration.
- 8. Workspace a tree level diagram of files associated with the project.
- 9. Output output from project build and debug operations.

Note: For detailed information on PSoC Designer, go to PSoC[®] Designer > Help > Documentation > Designer Specific Documents > IDE User Guide.

Figure 1. PSoC Designer Layout

CY8C21x34B

Contents

F SOC T directional Overview	5
The PSoC Core	5
The Digital System	5
The Analog System	6
Additional System Resources	6
PSoC Device Characteristics	7
Development Tools	8
PSoC Designer Software Subsystems	8
Designing with PSoC Designer	9
Select User Modules	9
Configure User Modules	9
Organize and Connect	9
Generate, Verify, and Debug	9
SmartSense	9
Pin Information	10
16-pin Part Pinout	10
20-pin Part Pinout	11
20-pin Part Pinout 28-pin Part Pinout	11 12
20-pin Part Pinout 28-pin Part Pinout 32-pin Part Pinout	11 12 13
20-pin Part Pinout 28-pin Part Pinout 32-pin Part Pinout 56-pin Part Pinout	11 12 13 15
20-pin Part Pinout 28-pin Part Pinout 32-pin Part Pinout 56-pin Part Pinout Register Reference	11 12 13 15 17
20-pin Part Pinout	
20-pin Part Pinout	11 12 13 15 17 17 17 20 20 21
20-pin Part Pinout	
20-pin Part Pinout	11 12 13 15 17 17 17 20 21 21 27

Packaging Information	35
Thermal Impedances	
Solder Reflow Peak Temperature	
Development Tool Selection	39
Software	
Development Kits	
Evaluation Tools	
Device Programmers	40
Accessories (Emulation and Programming)	40
Ordering Information	41
Ordering Code Definitions	41
Acronyms	42
Reference Documents	42
Document Conventions	43
Units of Measure	
Numeric Conventions	43
Glossary	43
Errata	48
Part Numbers Affected	
CY8C21X34 Qualification Status	
CY8C21X34 Errata Summary	49
Document History Page	50
Sales, Solutions, and Legal Information	52
Worldwide Sales and Design Support	52
Products	52
PSoC® Solutions	
Cypress Developer Community	52
Technical Support	52

The Analog System

The analog system consists of four configurable blocks that allow for the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the common PSoC analog functions for this device (most available as user modules) are:

- ADCs (single or dual, with 8-bit or 10-bit resolution)
- Pin-to-pin comparator
- Single-ended comparators (up to two) with absolute (1.3 V) reference or 8-bit DAC reference
- 1.3-V reference (as a system resource)

In most PSoC devices, analog blocks are provided in columns of three, which includes one continuous time (CT) and two switched capacitor (SC) blocks. The CY8C21x34B devices provide limited functionality Type E analog blocks. Each column contains one CT Type E block and one SC Type E block. Refer to the *PSoC Technical Reference Manual* for detailed information on the CY8C21x34B's Type E analog blocks.

Figure 3. Analog System Block Diagram

The Analog Multiplexer System

The analog mux bus can connect to every GPIO pin. Pins may be connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with comparators and analog-to-digital converters. An additional 8:1 analog input multiplexer provides a second path to bring Port 0 pins to the analog array.

Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Track pad, finger sensing
- Chip-wide mux that allows analog input from any I/O pin
- Crosspoint connection between any I/O pin combinations

Additional System Resources

System resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include a switch-mode pump, low-voltage detection, and power-on-reset (POR).

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks may be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- The I²C module provides 100- and 400-kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- LVD interrupts can signal the application of falling voltage levels, while the advanced POR circuit eliminates the need for a system supervisor.
- An internal 1.3-V reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch-mode pump generates normal operating voltages from a single 1.2-V battery cell, providing a low cost boost converter.
- Versatile analog multiplexer system.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted in Table 1.

Table 1.	PSoC	Device	Characteristics
----------	------	--------	-----------------

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size	SmartSense Enabled
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2K	32K	_
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[3]	1K	16K	-
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16K	-
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1K	16K	_
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4K	-
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8K	-
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[3]	1 K	16K	-
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[3]	512	8K	-
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[3]	512	8K	-
CY8C21x34B	up to 28	1	4	up to 28	0	2	4 ^[3]	512	8K	Y
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[3]	256	4K	-
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[3,4]	512	8K	-
CY8C20xx6A	up to 36	0	0	up to 36	0	0	3 ^[3,4]	up to 2K	up to 32K	Y

Notes

Limited analog functionality.
 Two analog blocks and one CapSense[®].

Table 5. Pin Definitions - CY8C21434B/CY8C21634B 32-pin (QFN)^[8]

Din No	Туре		Namo	Description				
FILLINO.	Digital	Analog	Name	Description				
1	I/O	I, M	P0[1]	Analog column mux input, integrating input				
2	I/O	М	P2[7]					
3	I/O	М	P2[5]					
4	I/O	М	P2[3]					
5	I/O	М	P2[1]					
6	I/O	М	P3[3]	In CY8C21434B part				
6	Power		SMP	SMP connection to required external components in CY8C21634B part				
7	I/O	М	P3[1]	In CY8C21434B part				
7	Power		V _{SS}	Ground connection in CY8C21634B part				
8	I/O	М	P1[7]	I ² C SCL				
9	I/O	М	P1[5]	I ² C SDA				
10	I/O	М	P1[3]					
11	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK ^[9]				
12	Power		V _{SS}	Ground connection				
13	I/O	М	P1[0]	I ² C SDA, ISSP-SDATA ^[9]				
14	I/O	М	P1[2]					
15	I/O	М	P1[4]	Optional external clock input (EXTCLK)				
16	I/O	М	P1[6]					
17	Input		XRES	Active high external reset with internal pull-down				
18	I/O	М	P3[0]					
19	I/O	М	P3[2]					
20	I/O	М	P2[0]					
21	I/O	М	P2[2]					
22	I/O	М	P2[4]					
23	I/O	М	P2[6]					
24	I/O	I, M	P0[0]	Analog column mux input				
25	I/O	I, M	P0[2]	Analog column mux input				
26	I/O	I, M	P0[4]	Analog column mux input				
27	I/O	I, M	P0[6]	Analog column mux input				
28	Power		V _{DD}	Supply voltage				
29	I/O	I, M	P0[7]	Analog column mux input				
30	I/O	I, M	P0[5]	Analog column mux input				
31	I/O	I, M	P0[3]	Analog column mux input, integrating input				
32	Power		V _{SS}	Ground connection				

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Notes

The center pad on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not high Z at POR. See the *PSoC Technical Reference Manual* for details.

Type Type		e	Din Nomo	Description				
PIN NO.	Digital	Analog	Pin Name	Description				
19	I/O		P3[3]					
20	I/O		P3[1]					
21			NC	No connection				
22			NC	No connection				
23	I/O		P1[7]	I ² C SCL				
24	I/O		P1[5]	I ² C SDA				
25			NC	No connection				
26	I/O		P1[3]	I _{FMTEST}				
27	I/O		P1[1]	I ² C SCL, ISSP-SCLK ^[10]				
28	Power		V _{SS}	Ground connection				
29			NC	No connection				
30			NC	No connection				
31	I/O		P1[0]	I ² C SDA, ISSP-SDATA ^[10]				
32	I/O		P1[2]	V _{FMTEST}				
33	I/O		P1[4]	Optional external clock input (EXTCLK)				
34	I/O		P1[6]					
35			NC	No connection				
36			NC	No connection				
37			NC	No connection				
38			NC	No connection				
39			NC	No connection				
40			NC	No connection				
41	Input		XRES	Active high external reset with internal pull-down				
42	OCD		HCLK	OCD high-speed clock output				
43	OCD		CCLK	OCD CPU clock output				
44	I/O		P3[0]					
45	I/O		P3[2]					
46			NC	No connection				
47			NC	No connection				
48	I/O	I	P2[0]					
49	I/O	I	P2[2]					
50	I/O		P2[4]					
51	I/O		P2[6]					
52	I/O	I	P0[0]	Analog column mux input				
53	I/O	I	P0[2]	Analog column mux input and column output				
54	I/O	I	P0[4]	Analog column mux input and column output				
55	I/O	I	P0[6]	Analog column mux input				
56	Power		V _{DD}	Supply voltage				

Table 6. Pin Definitions - CY8C21001 56-pin (SSOP) (continued)

LEGEND: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.

Note 10. These are the ISSP pins, which are not High Z at POR. See the *PSoC Technical Reference Manual* for details.

Register Reference

This chapter lists the registers of the CY8C21x34B PSoC device. For detailed register information, see the PSoC Technical Reference Manual.

Register Conventions

The register conventions specific to this section are listed in Table 7.

Table 7. Register Conventions

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks, Bank 0 and Bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set to 1, the user is in Bank 1.

Note In the following register mapping tables, blank fields are reserved and must not be accessed.

Table 8. Register Map 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASE10CR0	80	RW		C0	
PRTOIE	01	RW		41			81			C1	
PRT0GS	02	RW		42			82			C2	
PRT0DM2	03	RW		43			83			C3	
PRT1DR	04	RW		44		ASE11CR0	84	RW		C4	
PRT1IE	05	RW		45			85			C5	
PRT1GS	06	RW		46			86			C6	
PRT1DM2	07	RW		47			87			C7	
PRT2DR	08	RW		48			88			C8	
PRT2IE	09	RW		49			89			C9	
PRT2GS	0A	RW		4A			8A			CA	
PRT2DM2	0B	RW		4B			8B			СВ	
PRT3DR	0C	RW		4C			8C			CC	
PRT3IE	0D	RW		4D			8D			CD	
PRT3GS	0E	RW		4E			8E			CE	
PRT3DM2	0F	RW		4F			8F			CF	
	10			50			90		CUR PP	D0	RW
	11			51			91		STK PP	D1	RW
	12			52			92			D2	
	13			53		-	93		IDX PP	D3	RW
	14			54		-	94		MVR PP	D4	RW
	15			55			95		MVW PP	D5	RW
	16			56			96			De	RW
	10			57			97		120_01 0	D7	#
	17			57			00				# D\\/
	10			50			30			DO	#
	19			59		-	99			D9	# DW/
	1A 4D			5A CD			9A		INT_CLRU	DA	RW DW/
	1B			SB			9B		INT_CLR1	DB	RW
	10			50			90			DC	DW/
	10			50			9D		INT_CLR3	DD	RW
	1E			SE			9E		IN1_MSK3	DE	RW
	1F			5F	514/		9F			DF	514/
DBB00DR0	20	#	AMX_IN	60	RW		AU		INT_MSK0	EO	RW
DBB00DR1	21	W	AMUXCFG	61	RW		A1		INT_MSK1	E1	RW
DBB00DR2	22	RW	PWM_CR	62	RW		A2		INT_VC	E2	RC
DBB00CR0	23	#		63			A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4			E4	
DBB01DR1	25	W		65			A5			E5	
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#	ADC0_CR	68	#		A8			E8	
DCB02DR1	29	W	ADC1_CR	69	#		A9			E9	
DCB02DR2	2A	RW		6A			AA			EA	
DCB02CR0	2B	#		6B			AB			EB	
DCB03DR0	2C	#	TMP_DR0	6C	RW		AC			ĒC	
DCB03DR1	2D	W	TMP_DR1	6D	RW		AD			ED	
DCB03DR2	2E	RW	TMP_DR2	6E	RW		AE			EE	
DCB03CR0	2F	#	TMP_DR3	6F	RW		AF			EF	
	30			70		RDIORI	B0	RW		F0	
	31			71		RDI0SYN	B1	RW		F1	
	32		ACE00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34			74		RDI0LT1	B4	RW		F4	
	35			75		RDI0RO0	B5	RW		F5	
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	1
	37		ACE01CR2	77	RW		B7		CPU_F	F7	RL
	38		ľ	78			B8			F8	
	39			79			B9			F9	
	3A			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD		DAC D	FD	RW
	3E		ł	7E			BE		CPU SCR1	FE	#
	3F			7F			BF		CPU_SCR0	FF	#
Dis el Calda ano es	~					// A			0.0_0010		

Blank fields are reserved and must not be accessed.

Access is bit specific.

Operating Temperature

Table 11. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature	-40	-	+85	°C	
TJ	Junction temperature	-40	_	+100	ç	The temperature rise from ambient to junction is package specific. See Table 36 on page 38. You must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip-Level Specifications

Table 12 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 12. DC Chip-level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DD}	Supply voltage	2.40	-	5.25	V	See Table 20 on page 25
I _{DD}	Supply current, IMO = 24 MHz	_	3	4	mA	Conditions are $V_{DD} = 5.0 \text{ V}$, T _A = 25 °C, CPU = 3 MHz, 48 MHz disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.366 kHz
I _{DD3}	Supply current, IMO = 6 MHz using SLIMO mode.	_	1.2	2	mA	Conditions are $V_{DD} = 3.3 \text{ V}$, T _A = 25 °C, CPU = 3 MHz, clock doubler disabled. VC1 = 375 kHz, VC2 = 23.4 kHz, VC3 = 0.091 kHz
I _{DD27}	Supply current, IMO = 6 MHz using SLIMO mode.	_	1.1	1.5	mA	Conditions are $V_{DD} = 2.55 \text{ V}$, T _A = 25 °C, CPU = 3 MHz, clock doubler disabled. VC1 = 375 kHz, VC2 = 23.4 kHz, VC3 = 0.091 kHz
I _{SB27}	Sleep (mode) current with POR, LVD, sleep timer, WDT, and internal slow oscillator active. Mid temperature range.	-	2.6	4	μA	V_{DD} = 2.55 V, 0 °C \leq T _A \leq 40 °C
I _{SB}	Sleep (mode) current with POR, LVD, Sleep Timer, WDT, and internal slow oscillator active.	-	2.8	5	μA	V_{DD} = 3.3 V, –40 °C \leq T_{A} \leq 85 °C
V _{REF}	Reference voltage (Bandgap)	1.28	1.30	1.32	V	Trimmed for appropriate V_{DD} V_{DD} = 3.0 V to 5.25 V
V _{REF27}	Reference voltage (Bandgap)	1.16	1.30	1.33	V	Trimmed for appropriate V_{DD} V_{DD} = 2.4 V to 3.0 V
AGND	Analog ground	V _{REF} – 0.003	V_{REF}	V _{REF} + 0.003	V	

DC Operational Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 15.	5 V DC O	perational Am	plifier S	pecifications
	5,000			peemeanons

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	µV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins 7-to-1)	1	200	-	pА	Gross tested to 1 µA
I _{EBOA00}	Input leakage current (Port 0, Pin 0 analog pin)	Ι	50	-	nA	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0.0	-	V _{DD} -1.0	V	
G _{OLOA}	Open loop gain	-	80	-	dB	
I _{SOA}	Amplifier supply current	_	10	30	μA	

Table 16. 3.3 V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	_	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	_	10	-	µV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	_	200	-	pА	Gross tested to 1 µA
I _{EBOA00}	Input leakage current (Port 0, Pin 0 analog pin)	_	50	-	nA	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	-	V _{DD} – 1.0	V	
G _{OLOA}	Open loop gain	_	80	-	dB	
I _{SOA}	Amplifier supply current	_	10	30	μA	

Table 17. 2.7 V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	µV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
I _{EBOA00}	Input leakage current (Port 0, Pin 0 analog pin)	_	50	_	nA	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	-	V _{DD} – 1.0	V	
G _{OLOA}	Open loop gain	-	80	-	dB	
I _{SOA}	Amplifier supply current	_	10	30	μA	

DC Switch Mode Pump Specifications

Table 18 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Figure 14. Basic Switch Mode Pump Circuit

Table 18.	DC Switch	Mode Pump	(SMP)	Specifications
-----------	-----------	-----------	-------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PUMP5V}	5 V output voltage from pump	4.75	5.0	5.25	V	Configured as in Note 11 Average, neglecting ripple SMP trip voltage is set to 5.0 V
V _{PUMP3V}	3.3 V output voltage from pump	3.00	3.25	3.60	V	Configured as in Note 11 Average, neglecting ripple. SMP trip voltage is set to 3.25 V
V _{PUMP2V}	2.6 V output voltage from pump	2.45	2.55	2.80	V	Configured as in Note 11 Average, neglecting ripple. SMP trip voltage is set to 2.55 V
I _{PUMP}	Available output current $V_{BAT} = 1.8 V$, $V_{PUMP} = 5.0 V$ $V_{BAT} = 1.5 V$, $V_{PUMP} = 3.25 V$ $V_{BAT} = 1.3 V$, $V_{PUMP} = 2.55 V$	5 8 8	_ _ _	_ _ _	mA mA mA	Configured as in Note 11 SMP trip voltage is set to 5.0 V SMP trip voltage is set to 3.25 V SMP trip voltage is set to 2.55 V
V _{BAT5V}	Input voltage range from battery	1.8	-	5.0	V	Configured as in Note 11 SMP trip voltage is set to 5.0 V
V _{BAT3V}	Input voltage range from battery	1.0	-	3.3	V	Configured as in Note 11 SMP trip voltage is set to 3.25 V
V _{BAT2V}	Input voltage range from battery	1.0	-	2.8	V	Configured as in Note 11 SMP trip voltage is set to 2.55 V
VBATSTART	Minimum input voltage from battery to start pump	1.2	-	-	V	Configured as in Note 11 0 °C \leq T _A \leq 100. 1.25 V at T _A = -40 °C
ΔV_{PUMP_Line}	Line regulation (over Vi range)	-	5	_	%V _O	Configured as in Note 11 V _O is the "V _{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 20 on page 25
ΔV_{PUMP_Load}	Load regulation	_	5	_	%V _O	Configured as in Note 11 V _O is the "V _{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 20 on page 25
ΔV_{PUMP_Ripple}	Output voltage ripple (depends on cap/load)	—	100	_	mVpp	Configured as in Note 11 Load is 5 mA

Note

11. $L_1 = 2 \text{ mH}$ inductor, $C_1 = 10 \text{ mF}$ capacitor, $D_1 = \text{Schottky}$ diode. See Figure 14.

Table 29. 2.7 V AC Digital Block Specifications

Function	Description	Min	Тур	Max	Units	Notes
All functions	Block input clock frequency	-	-	12.7	MHz	2.4 V < V _{DD} < 3.0 V
Timer	Capture pulse width	100 ^[27]	-	-	ns	
	Input clock frequency, with or without capture	_	-	12.7	MHz	
Counter	Enable input pulse width	100	_	_	ns	
	Input clock frequency, no enable input	_	-	12.7	MHz	
	Input clock frequency, enable input	_	-	12.7	MHz	
Dead Band	Kill pulse width:					
	Asynchronous restart mode	20	_	-	ns	
	Synchronous restart mode	100	-	-	ns	
	Disable mode	100	-	-	ns	
	Input clock frequency	_	-	12.7	MHz	
CRCPRS (PRS Mode)	Input clock frequency	-	_	12.7	MHz	
CRCPRS (CRC Mode)	Input clock frequency	-	_	12.7	MHz	
SPIM	Input clock frequency	-	_	6.35	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock (SCLK) frequency	_	-	4.1	MHz	
	Width of SS_ Negated between transmissions	100	-	-	ns	
Transmitter	Input clock frequency	_	_	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.
Receiver	Input clock frequency	_	-	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.

AC External Clock Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 30. 5 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency	0.093	-	24.6	MHz	
-	High period	20.6	-	5300	ns	
-	Low period	20.6	-	-	ns	
-	Power-up IMO to switch	150	-	-	μs	

Table 31. 3.3 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.093	_	12.3	MHz	Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater	0.186	_	24.6	MHz	If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met
_	High period with CPU clock divide by 1	41.7	_	5300	ns	
-	Low period with CPU clock divide by 1	41.7	-	-	ns	
-	Power-up IMO to switch	150	_	_	μs	

Table 32. 2.7 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.093	1	3.08	MHz	Maximum CPU frequency is 3 MHz at 2.7 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements
Foscext	Frequency with CPU clock divide by 2 or greater	0.186	_	6.35	MHz	If the frequency of the external clock is greater than 3 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met
_	High period with CPU clock divide by 1	160	-	5300	ns	
_	Low period with CPU clock divide by 1	160	-	_	ns	
_	Power-up IMO to switch	150	1	_	μs	

Figure 21. 32-pin QFN (5 × 5 × 0.55 mm) 1.3 × 2.7 E-Pad (Sawn Type) Package Outline, 001-48913

Important Note For information on the preferred dimensions for mounting QFN packages, see the following application note, *Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845* available at http://www.cypress.com.

Figure 22. 56-pin SSOP (300 Mils) Package Outline, 51-85062

51-85062 *F

Thermal Impedances

Table 36. Thermal Impedances per Package

Package	Typical θ _{JA} ^[30]	Typical θ _{JC}
16-pin SOIC	123 °C/W	55 °C/W
20-pin SSOP	117 °C/W	41 °C/W
28-pin SSOP	96 °C/W	39 °C/W
32-pin QFN ^[31] 5 × 5 mm 0.60 Max	27 °C/W	15 °C/W
32-pin QFN ^[31] 5 × 5 mm 0.93 Max	22 °C/W	12 °C/W
56-pin SSOP	48 °C/W	24 °C/W

Solder Reflow Peak Temperature

Table 37 lists the maximum solder reflow peak temperatures to achieve good solderability. Thermal ramp rate during preheat should be 3 °C/s or lower.

Table 37. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Time at Maximum Temperature
16-pin SOIC	260 °C	30 s
20-pin SSOP	260 °C	30 s
28-pin SSOP	260 °C	30 s
32-pin QFN	260 °C	30 s
56-pin SSOP	260 °C	30 s

Notes

 ^{30.} T_J = T_A + Power × θ_{JA}
 31. To achieve the thermal impedance specified for the QFN package, refer to *Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices* - AN72845 available at http://www.cypress.com.

^{32.} Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	Switch Mode Pump	Temperature Range	Digital Blocks	Analog Blocks	Digital I/O Pins	Analog Inputs	Analog Outputs	XRES Pin
16-Pin (150-Mil) SOIC	CY8C21234B-24SXI	8 K	512	Yes	–40 °C to +85 °C	4	4	12	12 ^[35]	0	No
16-Pin (150-Mil) SOIC (Tape and Reel)	CY8C21234B-24SXIT	8 K	512	Yes	–40 °C to +85 °C	4	4	12	12 ^[35]	0	No
20-Pin (210-Mil) SSOP	CY8C21334B-24PVXI	8 K	512	No	–40 °C to +85 °C	4	4	16	16 ^[35]	0	Yes
20-Pin (210-Mil) SSOP (Tape and Reel)	CY8C21334B-24PVXIT	8 K	512	No	–40 °C to +85 °C	4	4	16	16 ^[35]	0	Yes
28-Pin (210-Mil) SSOP	CY8C21534B-24PVXI	8 K	512	No	–40 °C to +85 °C	4	4	24	24 ^[35]	0	Yes
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C21534B-24PVXIT	8 K	512	No	–40 °C to +85 °C	4	4	24	24 ^[35]	0	Yes
32-Pin (5 × 5 mm 1.00 max) Sawn QFN	CY8C21434B-24LTXI	8 K	512	No	–40 °C to +85 °C	4	4	28	28 ^[35]	0	Yes
32-Pin (5 × 5 mm 1.00 max) Sawn QFN ^[36] (Tape and Reel)	CY8C21434B-24LTXIT	8 K	512	No	–40 °C to +85 °C	4	4	28	28 ^[35]	0	Yes
32-Pin (5 × 5 mm 0.60 max) Thin Sawn QFN	CY8C21434B-24LQXI	8 K	512	No	–40 °C to +85 °C	4	4	28	28 ^[35]	0	Yes
32-Pin (5 × 5 mm 0.60 max) Thin Sawn QFN (Tape and Reel)	CY8C21434B-24LQXIT	8 K	512	No	–40 °C to +85 °C	4	4	28	28 ^[35]	0	Yes
56-Pin OCD SSOP	CY8C21001-24PVXI	8 K	512	Yes	–40 °C to +85 °C	4	4	26	26 ^[35]	0	Yes

Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).

Ordering Code Definitions

Notes

35. All Digital I/O Pins also connect to the common analog mux.36. Refer to the section 32-pin Part Pinout on page 13 for pin differences.

Glossary (continued)

duty cycle	The relationship of a clock period high time to its low time, expressed as a percent.			
emulator	Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.			
External Reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.			
Flash	An electrically programmable and erasable, non-volatile technology that provides you the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is OFF.			
Flash block	The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes.			
frequency	The number of cycles or events per unit of time, for a periodic function.			
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.			
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.			
ICE	The in-circuit emulator that allows you to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).			
input/output (I/O)	A device that introduces data into or extracts data from a system.			
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.			
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.			
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.			
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.			
low-voltage detect (LVD)	A circuit that senses Vdd and provides an interrupt to the system when Vdd falls below a selected threshold.			
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the Flash, SRAM, and register space.			
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .			

Document History Page

Document Title: CY8C21x34B, PSoC [®] Programmable System-on-Chip™ CapSense [®] Controller with SmartSense™ Auto-tuning 1–21 Buttons, 0–4 Sliders, Proximity Document Number: 001-67345					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	3169205	YVA	02/16/2011	New data sheet.	
*A	3247292	YVA	05/11/2011	Updated Packaging Information. Post to external web.	
*В	3846480	SRLI	12/19/2012	Updated Features. Updated Packaging Information: spec 51-85062 – Changed Revision from *D to *F. spec 001-48913 – Changed Revision from *B to *C. spec 001-44368 – Changed Revision from *B to *C. spec 001-30999 – Changed Revision from *C to *D. spec 51-85068 – Changed Revision from *D to *E. Updated Ordering Information (Updated part numbers).	
*C	3894458	SRLI	02/09/2013	Updated Document Title to read as "CY8C21x34B, PSoC [®] Programmable System-on-Chip [™] CapSense [®] Controller with SmartSense [™] Auto-tuning 1–21 Buttons, 0–4 Sliders, Proximity". Updated Packaging Information (Updated Solder Reflow Peak Temperature (Changed Time at Maximum Temperature from 20 s to 30 s in Table 37)).	
*D	4297481	DCHE	03/04/2014	Updated Development Tools: Added hyperlink for "PSoC Designer™". Updated PSoC Designer Software Subsystems: Updated In-Circuit Emulator: Added hyperlink for "in-circuit emulator" in description. Updated Development Tool Selection: Updated Software: Updated PSoC Designer™: Updated hyperlinks in description. Updated PSoC Programmer: Updated hyperlinks in description. Updated Development Kits: Updated Development Kits: Updated CY3210-MiniProg1: Updated CY3210-MiniProg1: Updated CY3214-PSoCEvalUSB: Updated CY3214-PSoCEvalUSB: Updated Device Programmers: Updated Device Programmers: Updated CY3216 Modular Programmer: Updated hyperlinks in description. Updated Packaging Information: spec 001-44368 – Changed Revision from *C to *D. spec 001-443913 – Changed Revision from *C to *D. Updated to new template. Completing Sunset Review.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2011–2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other sont, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress paratry grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software in binary code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other leailure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-67345 Rev. *G

Revised February 3, 2017

Page 52 of 52

PSoC Designer[™] and Programmable System-on-Chip[™] are trademarks and PSoC[®] and CapSense[®] are registered trademarks of Cypress Semiconductor Corporation. Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.