

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 28x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21334b-24pvxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

CY8C21x34B

Contents

F SOC T directional Overview	5
The PSoC Core	5
The Digital System	5
The Analog System	6
Additional System Resources	6
PSoC Device Characteristics	7
Development Tools	8
PSoC Designer Software Subsystems	8
Designing with PSoC Designer	9
Select User Modules	9
Configure User Modules	9
Organize and Connect	9
Generate, Verify, and Debug	9
SmartSense	9
Pin Information	10
16-pin Part Pinout	10
20-pin Part Pinout	11
20-pin Part Pinout 28-pin Part Pinout	11 12
20-pin Part Pinout 28-pin Part Pinout 32-pin Part Pinout	11 12 13
20-pin Part Pinout 28-pin Part Pinout 32-pin Part Pinout 56-pin Part Pinout	11 12 13 15
20-pin Part Pinout 28-pin Part Pinout 32-pin Part Pinout 56-pin Part Pinout Register Reference	11 12 13 15 17
20-pin Part Pinout	
20-pin Part Pinout	11 12 13 15 17 17 17 20 20 21
20-pin Part Pinout	
20-pin Part Pinout	11 12 13 15 17 17 17 20 21 21 27

Packaging Information	35
Thermal Impedances	
Solder Reflow Peak Temperature	
Development Tool Selection	39
Software	
Development Kits	
Evaluation Tools	
Device Programmers	40
Accessories (Emulation and Programming)	40
Ordering Information	41
Ordering Code Definitions	41
Acronyms	42
Reference Documents	42
Document Conventions	43
Units of Measure	
Numeric Conventions	43
Glossary	43
Errata	48
Part Numbers Affected	
CY8C21X34 Qualification Status	
CY8C21X34 Errata Summary	49
Document History Page	50
Sales, Solutions, and Legal Information	52
Worldwide Sales and Design Support	52
Products	52
PSoC® Solutions	
Cypress Developer Community	52
Technical Support	52

Pin Information

The CY8C21x34B PSoC device is available in a variety of packages which are listed in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O and connection to the common analog bus. However, V_{SS}, V_{DD}, SMP, and XRES are not capable of Digital I/O.

16-pin Part Pinout

Figure 4. CY8C21234B 16-pin PSoC Device

Table 2. Pin Definitions – CY8C21234B 16-pin (SOIC)

Din No	Туре		Namo	Description					
FIII NO.	Digital	Analog	Name	Description					
1	I/O	I, M	P0[7]	Analog column mux input					
2	I/O	I, M	P0[5]	Analog column mux input					
3	I/O	I, M	P0[3]	Analog column mux input, integrating input					
4	I/O	I, M	P0[1]	Analog column mux input, integrating input					
5	Power		SMP	Switch-mode pump (SMP) connection to required external components					
6	Power		V _{SS}	Ground connection					
7	I/O	М	P1[1]	I ² C serial clock (SCL), ISSP-SCLK ^[5]					
8	Power		V _{SS}	Ground connection					
9	I/O	М	P1[0]	I ² C serial data (SDA), ISSP-SDATA ^[5]					
10	I/O	М	P1[2]						
11	I/O	М	P1[4]	Optional external clock input (EXTCLK)					
12	I/O	I, M	P0[0]	Analog column mux input					
13	I/O	I, M	P0[2]	Analog column mux input					
14	I/O	I, M	P0[4]	Analog column mux input					
15	I/O	I, M	P0[6]	Analog column mux input					
16	Power		V _{DD}	Supply voltage					

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Table 5. Pin Definitions - CY8C21434B/CY8C21634B 32-pin (QFN)^[8]

Din No	Туре		Namo	Description				
FILLINO.	Digital	Analog	Name	Description				
1	I/O	I, M	P0[1]	Analog column mux input, integrating input				
2	I/O	М	P2[7]					
3	I/O	М	P2[5]					
4	I/O	М	P2[3]					
5	I/O	М	P2[1]					
6	I/O	М	P3[3]	In CY8C21434B part				
6	Power		SMP	SMP connection to required external components in CY8C21634B part				
7	I/O	М	P3[1]	In CY8C21434B part				
7	Power		V _{SS}	Ground connection in CY8C21634B part				
8	I/O	М	P1[7]	I ² C SCL				
9	I/O	М	P1[5]	I ² C SDA				
10	I/O	М	P1[3]					
11	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK ^[9]				
12	Power		V _{SS}	Ground connection				
13	I/O	М	P1[0]	I ² C SDA, ISSP-SDATA ^[9]				
14	I/O	М	P1[2]					
15	I/O	М	P1[4]	Optional external clock input (EXTCLK)				
16	I/O	М	P1[6]					
17	Input		XRES	Active high external reset with internal pull-down				
18	I/O	М	P3[0]					
19	I/O	М	P3[2]					
20	I/O	М	P2[0]					
21	I/O	М	P2[2]					
22	I/O	М	P2[4]					
23	I/O	М	P2[6]					
24	I/O	I, M	P0[0]	Analog column mux input				
25	I/O	I, M	P0[2]	Analog column mux input				
26	I/O	I, M	P0[4]	Analog column mux input				
27	I/O	I, M	P0[6]	Analog column mux input				
28	Power		V _{DD}	Supply voltage				
29	I/O	I, M	P0[7]	Analog column mux input				
30	I/O	I, M	P0[5]	Analog column mux input				
31	I/O	I, M	P0[3]	Analog column mux input, integrating input				
32	Power		V _{SS}	Ground connection				

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Notes

The center pad on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not high Z at POR. See the *PSoC Technical Reference Manual* for details.

Din No	Туре		Din Nome	Description				
PIN NO.	Digital	Analog	Pin Name	Description				
19	I/O		P3[3]					
20	I/O		P3[1]					
21			NC	No connection				
22			NC	No connection				
23	I/O		P1[7]	I ² C SCL				
24	I/O		P1[5]	I ² C SDA				
25			NC	No connection				
26	I/O		P1[3]	I _{FMTEST}				
27	I/O		P1[1]	I ² C SCL, ISSP-SCLK ^[10]				
28	Power		V _{SS}	Ground connection				
29			NC	No connection				
30			NC	No connection				
31	I/O		P1[0]	I ² C SDA, ISSP-SDATA ^[10]				
32	I/O		P1[2]	V _{FMTEST}				
33	I/O		P1[4]	Optional external clock input (EXTCLK)				
34	I/O		P1[6]					
35			NC	No connection				
36			NC	No connection				
37			NC	No connection				
38			NC	No connection				
39			NC	No connection				
40			NC	No connection				
41	Input		XRES	Active high external reset with internal pull-down				
42	OCD		HCLK	OCD high-speed clock output				
43	OCD		CCLK	OCD CPU clock output				
44	I/O		P3[0]					
45	I/O		P3[2]					
46			NC	No connection				
47			NC	No connection				
48	I/O	I	P2[0]					
49	I/O	I	P2[2]					
50	I/O		P2[4]					
51	I/O		P2[6]					
52	I/O	I	P0[0]	Analog column mux input				
53	I/O	I	P0[2]	Analog column mux input and column output				
54	I/O	I	P0[4]	Analog column mux input and column output				
55	I/O	I	P0[6]	Analog column mux input				
56	Power		V _{DD}	Supply voltage				

Table 6. Pin Definitions - CY8C21001 56-pin (SSOP) (continued)

LEGEND: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.

Note 10. These are the ISSP pins, which are not High Z at POR. See the *PSoC Technical Reference Manual* for details.

Operating Temperature

Table 11. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature	-40	-	+85	°C	
TJ	Junction temperature	-40	_	+100	ç	The temperature rise from ambient to junction is package specific. See Table 36 on page 38. You must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip-Level Specifications

Table 12 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 12. DC Chip-level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DD}	Supply voltage	2.40	-	5.25	V	See Table 20 on page 25
I _{DD}	Supply current, IMO = 24 MHz	_	3	4	mA	Conditions are $V_{DD} = 5.0 \text{ V}$, T _A = 25 °C, CPU = 3 MHz, 48 MHz disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.366 kHz
I _{DD3}	Supply current, IMO = 6 MHz using SLIMO mode.	_	1.2	2	mA	Conditions are $V_{DD} = 3.3 \text{ V}$, T _A = 25 °C, CPU = 3 MHz, clock doubler disabled. VC1 = 375 kHz, VC2 = 23.4 kHz, VC3 = 0.091 kHz
I _{DD27}	Supply current, IMO = 6 MHz using SLIMO mode.	_	1.1	1.5	mA	Conditions are $V_{DD} = 2.55 \text{ V}$, T _A = 25 °C, CPU = 3 MHz, clock doubler disabled. VC1 = 375 kHz, VC2 = 23.4 kHz, VC3 = 0.091 kHz
I _{SB27}	Sleep (mode) current with POR, LVD, sleep timer, WDT, and internal slow oscillator active. Mid temperature range.	-	2.6	4	μA	V_{DD} = 2.55 V, 0 °C \leq T _A \leq 40 °C
I _{SB}	Sleep (mode) current with POR, LVD, Sleep Timer, WDT, and internal slow oscillator active.	-	2.8	5	μA	V_{DD} = 3.3 V, –40 °C \leq T_{A} \leq 85 °C
V _{REF}	Reference voltage (Bandgap)	1.28	1.30	1.32	V	Trimmed for appropriate V_{DD} V_{DD} = 3.0 V to 5.25 V
V _{REF27}	Reference voltage (Bandgap)	1.16	1.30	1.33	V	Trimmed for appropriate V_{DD} V_{DD} = 2.4 V to 3.0 V
AGND	Analog ground	V _{REF} – 0.003	V_{REF}	V _{REF} + 0.003	V	

DC General-Purpose I/O Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 13. 5 V and 3.3 V DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} – 1.0	-	-	V	$I_{OH} = 10$ mA, $V_{DD} = 4.75$ to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])
V _{OL}	Low output level	-	-	0.75	V	$I_{OL} = 25$ mA, $V_{DD} = 4.75$ to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5]))
I _{OH}	High level source current	10	_	-	mA	$V_{OH} = V_{DD} - 1.0 V$, see the limitations of the total current in the note for V_{OH}
I _{OL}	Low level sink current	25	-	-	mA	V_{OL} = 0.75 V, see the limitations of the total current in the note for V_{OL}
V _{IL}	Input low level	-	-	0.8	V	V _{DD} = 3.0 to 5.25
V _{IH}	Input high level	2.1	_		V	V _{DD} = 3.0 to 5.25
V _H	Input hysteresis	-	60	-	mV	
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent Temp = 25 °C
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent Temp = 25 °C

Table 14. 2.7 V DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} – 0.4	-	-	V	I_{OH} = 2.5 mA (6.25 Typ), V_{DD} = 2.4 to 3.0 V (16 mA maximum, 50 mA Typ combined I_{OH} budget)
V _{OL}	Low output level	-	_	0.75	V	I_{OL} = 10 mA, V_{DD} = 2.4 to 3.0 V (90 mA maximum combined I_{OL} budget)
I _{OH}	High level source current	2.5	_	_	mA	$V_{OH} = V_{DD} - 0.4 V$, see the limitations of the total current in the note for V_{OH}
I _{OL}	Low level sink current	10	_	_	mA	$V_{OL} = 0.75$ V, see the limitations of the total current in the note for V_{OL}
V _{IL}	Input low level	-	-	0.75	V	V _{DD} = 2.4 to 3.0
V _{IH}	Input high level	2.0	-	-	V	V _{DD} = 2.4 to 3.0
V _H	Input hysteresis	-	90	-	mV	
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent Temp = 25 °C
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent Temp = 25 °C

DC Switch Mode Pump Specifications

Table 18 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Figure 14. Basic Switch Mode Pump Circuit

Table 18.	DC Switch	Mode Pump	(SMP)	Specifications
-----------	-----------	-----------	-------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PUMP5V}	5 V output voltage from pump	4.75	5.0	5.25	V	Configured as in Note 11 Average, neglecting ripple SMP trip voltage is set to 5.0 V
V _{PUMP3V}	3.3 V output voltage from pump	3.00	3.25	3.60	V	Configured as in Note 11 Average, neglecting ripple. SMP trip voltage is set to 3.25 V
V _{PUMP2V}	2.6 V output voltage from pump	2.45	2.55	2.80	V	Configured as in Note 11 Average, neglecting ripple. SMP trip voltage is set to 2.55 V
I _{PUMP}	Available output current $V_{BAT} = 1.8 V$, $V_{PUMP} = 5.0 V$ $V_{BAT} = 1.5 V$, $V_{PUMP} = 3.25 V$ $V_{BAT} = 1.3 V$, $V_{PUMP} = 2.55 V$	5 8 8	_ _ _	_ _ _	mA mA mA	Configured as in Note 11 SMP trip voltage is set to 5.0 V SMP trip voltage is set to 3.25 V SMP trip voltage is set to 2.55 V
V _{BAT5V}	Input voltage range from battery	1.8	-	5.0	V	Configured as in Note 11 SMP trip voltage is set to 5.0 V
V _{BAT3V}	Input voltage range from battery	1.0	-	3.3	V	Configured as in Note 11 SMP trip voltage is set to 3.25 V
V _{BAT2V}	Input voltage range from battery	1.0	-	2.8	V	Configured as in Note 11 SMP trip voltage is set to 2.55 V
VBATSTART	Minimum input voltage from battery to start pump	1.2	-	-	V	Configured as in Note 11 0 °C \leq T _A \leq 100. 1.25 V at T _A = -40 °C
ΔV_{PUMP_Line}	Line regulation (over Vi range)	-	5	_	%V _O	Configured as in Note 11 V _O is the "V _{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 20 on page 25
ΔV_{PUMP_Load}	Load regulation	_	5	_	%V _O	Configured as in Note 11 V _O is the "V _{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 20 on page 25
ΔV_{PUMP_Ripple}	Output voltage ripple (depends on cap/load)	-	100	_	mVpp	Configured as in Note 11 Load is 5 mA

Note

11. $L_1 = 2 \text{ mH}$ inductor, $C_1 = 10 \text{ mF}$ capacitor, $D_1 = \text{Schottky}$ diode. See Figure 14.

Table 18. DC Switch Mode Pump (SMP) Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
E ₃	Efficiency	35	50	-	%	Configured as in Note 11 Load is 5 mA. SMP trip voltage is set to 3.25 V
E ₂	Efficiency	35	80	-	%	For I load = 1mA, V_{PUMP} = 2.55 V, V_{BAT} = 1.3 V, 10 µH inductor, 1 µF capacitor, and Schottky diode
F _{PUMP}	Switching frequency	-	1.3	-	MHz	
DC _{PUMP}	Switching duty cycle	-	50	-	%	

DC Analog Mux Bus Specifications

Table 19 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °Č, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 19. DC Analog Mux Bus Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{SW}	Switch resistance to common analog bus	-	-	400 800	Ω	$V_{DD} \ge 2.7 V$ 2.4 V $\le V_{DD} \le 2.7 V$
R _{VDD}	Resistance of initialization switch to V _{DD}	-	-	800	Ω	

DC POR and LVD Specifications

Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 20. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0} V _{PPOR1} V _{PPOR2}	V _{DD} value for PPOR trip PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_ _ _	2.36 2.82 4.55	2.40 2.95 4.70	V V V	V_{DD} must be greater than or equal to 2.5 V during startup, the reset from the XRES pin, or reset from watchdog
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	$\begin{array}{l} V_{DD} \mbox{ value for LVD trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ \end{array}$	2.40 2.85 2.95 3.06 4.37 4.50 4.62 4.71	2.45 2.92 3.02 3.13 4.48 4.64 4.73 4.81	2.51 ^[12] 2.99 ^[13] 3.09 3.20 4.55 4.75 4.83 4.95	V V V V V V V V	
Vpumpo Vpump1 Vpump2 Vpump3 Vpump4 Vpump5 Vpump6 Vpump7	V _{DD} value for pump trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.45 2.96 3.03 3.18 4.54 4.62 4.71 4.89	2.55 3.02 3.10 3.25 4.64 4.73 4.82 5.00	$\begin{array}{c} 2.62^{[14]}\\ 3.09\\ 3.16\\ 3.32^{[15]}\\ 4.74\\ 4.83\\ 4.92\\ 5.12\end{array}$	V V V V V V V V V	

Notes

- 12. Always greater than 50 mV above V_{PPOR} (PORLEV = 00) for falling supply. 13. Always greater than 50 mV above V_{PPOR} (PORLEV = 01) for falling supply. 14. Always greater than 50 mV above V_{LVD0}.

15. Always greater than 50 mV above V_{LVD3}.

AC Electrical Characteristics

AC Chip-Level Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 23.	5 V	and 3.3	V AC	Chip-Le	vel S	pecifications	5
	J V	anu 5.5	V AU	Omp-Le	101	pecifications	2

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO24}	IMO frequency for 24 MHz	23.4	24	24.6 ^[19,20]	MHz	Trimmed for 5 V or 3.3 V operation using factory trim values. See Figure 13 on page 20. SLIMO mode = 0
F _{IMO6}	IMO frequency for 6 MHz	5.5	6	6.5 ^[19,20]	MHz	Trimmed for 5 V or 3.3 V operation using factory trim values. See Figure 13 on page 20. SLIMO mode = 1
F _{CPU1}	CPU frequency (5 V nominal)	0.091	24	24.6 ^[19]	MHz	24 MHz only for SLIMO mode = 0
F _{CPU2}	CPU frequency (3.3 V nominal)	0.091	12	12.3 ^[20]	MHz	SLIMO mode = 0
F _{BLK5}	Digital PSoC block frequency (5 V nominal)	0	48	49.2 ^[19,21]	MHz	Refer to AC Digital Block Specifications on page 30
F _{BLK33}	Digital PSoC block frequency (3.3 V nominal)	0	24	24.6 ^[21]	MHz	
F _{32K1}	ILO frequency	15	32	64	kHz	
F _{32K_U}	ILO untrimmed frequency	5	_	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the system resets section of the <i>PSoC</i> <i>Technical Reference Manual</i> for details on this timing
t _{XRST}	External reset pulse width	10	-	_	μs	
DC24M	24 MHz duty cycle	40	50	60	%	
DC _{ILO}	ILO duty cycle	20	50	80	%	
Step24M	24 MHz trim step size	-	50	-	kHz	
Fout48M	48 MHz output frequency	46.8	48.0	49.2 ^[19,20]	MHz	Trimmed. Using factory trim values
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.3	MHz	
SR _{POWER_UP}	Power supply slew rate	-	-	250	V/ms	V _{DD} slew rate during power-up
t _{POWERUP}	Time from end of POR to CPU executing code	-	16	100	ms	Power-up from 0 V. See the System Resets section of the PSoC Technical Reference Manual
t _{jit_IMO}	24-MHz IMO cycle-to-cycle jitter (RMS) ^[22]	_	200	700	ps	
	24-MHz IMO long term N cycle-to-cycle jitter (RMS) ^[22]	_	300	900	ps	N = 32
	24-MHz IMO period jitter (RMS) ^[22]	_	100	400	ps	

Notes 19.4.75 V < V_{DD} < 5.25 V. 20.3.0 V < V_{DD} < 3.6 V. See application note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3 V.

 ^{21.} See the individual user module datasheets for information on maximum frequencies for user modules.
 22. Refer to Cypress Jitter Specifications Application Note AN5054 "Understanding Datasheet Jitter Specifications for Cypress Timing Products" at www.cypress.com under Application Notes for more information.

AC General Purpose I/O Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 85$ °C, 3.0 V to 3.6 V and -40 °C $\leq T_A \leq 85$ °C, or 2.4 V to 3.0 V and -40 °C $\leq T_A \leq 85$ °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 25. 5 V and 3.3 V AC GPIO Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12	MHz	Normal strong mode
TRiseF	Rise time, normal strong mode, Cload = 50 pF	3	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% to 90%
TFallF	Fall time, normal strong mode, Cload = 50 pF	2	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% to 90%
TRiseS	Rise time, slow strong mode, Cload = 50 pF	7	27	-	ns	V _{DD} = 3 to 5.25 V, 10% to 90%
TFallS	Fall time, slow strong mode, Cload = 50 pF	7	22	-	ns	V _{DD} = 3 to 5.25 V, 10% to 90%

Table 26. 2.7 V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	3	MHz	Normal strong mode
TRiseF	Rise time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%
TFallF	Fall time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%
TRiseS	Rise time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%
TFallS	Fall time, slow strong mode, Cload = 50 pF	18	40	120	ns	V_{DD} = 2.4 to 3.0 V, 10% to 90%

Figure 15. GPIO Timing Diagram

AC Operational Amplifier Specifications

Table 27 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 27. AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{COMP}	Comparator mode response time, 50 mV overdrive	-	1	100 200	ns ns	V _{DD} ≥ 3.0 V 2.4 V < V _{DD} < 3.0 V

Table 29. 2.7 V AC Digital Block Specifications

Function	Description	Min	Тур	Max	Units	Notes
All functions	Block input clock frequency	-	-	12.7	MHz	2.4 V < V _{DD} < 3.0 V
Timer	Capture pulse width	100 ^[27]	-	-	ns	
	Input clock frequency, with or without capture	_	-	12.7	MHz	
Counter	Enable input pulse width	100	_	_	ns	
	Input clock frequency, no enable input	_	-	12.7	MHz	
	Input clock frequency, enable input	_	-	12.7	MHz	
Dead Band	Kill pulse width:					
	Asynchronous restart mode	20	_	-	ns	
	Synchronous restart mode	100	-	-	ns	
	Disable mode	100	-	-	ns	
	Input clock frequency	_	-	12.7	MHz	
CRCPRS (PRS Mode)	Input clock frequency	-	_	12.7	MHz	
CRCPRS (CRC Mode)	Input clock frequency	-	-	12.7	MHz	
SPIM	Input clock frequency	-	_	6.35	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock (SCLK) frequency	_	-	4.1	MHz	
	Width of SS_ Negated between transmissions	100	-	-	ns	
Transmitter	Input clock frequency	_	_	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.
Receiver	Input clock frequency	_	-	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.

AC External Clock Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 30. 5 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency	0.093	-	24.6	MHz	
-	High period	20.6	-	5300	ns	
-	Low period	20.6	-	-	ns	
-	Power-up IMO to switch	150	-	-	μs	

Table 31. 3.3 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.093	_	12.3	MHz	Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater	0.186	_	24.6	MHz	If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met
_	High period with CPU clock divide by 1	41.7	_	5300	ns	
-	Low period with CPU clock divide by 1	41.7	-	-	ns	
-	Power-up IMO to switch	150	_	_	μs	

Table 32. 2.7 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.093	1	3.08	MHz	Maximum CPU frequency is 3 MHz at 2.7 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements
Foscext	Frequency with CPU clock divide by 2 or greater	0.186	_	6.35	MHz	If the frequency of the external clock is greater than 3 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met
_	High period with CPU clock divide by 1	160	-	5300	ns	
_	Low period with CPU clock divide by 1	160	-	_	ns	
_	Power-up IMO to switch	150	1	_	μs	

AC Programming Specifications

Table 33 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Description	Min	Тур	Max	Units	Notes
Rise time of SCLK	1	-	20	ns	
Fall time of SCLK	1	-	20	ns	
Data setup time to falling edge of SCLK	40	-	-	ns	
Data hold time from falling edge of SCLK	40	-	-	ns	
Frequency of SCLK	0	-	8	MHz	
Flash erase time (block)	-	10	-	ms	
Flash block write time	-	40	-	ms	
Data out delay from falling edge of SCLK	-	-	45	ns	3.6 < V _{DD}
Data out delay from falling edge of SCLK	-	-	50	ns	$3.0 \leq V_{DD} \leq 3.6$
Data out delay from falling edge of SCLK	-	-	70	ns	$2.4 \leq V_{DD} \leq 3.0$
Flash erase time (Bulk)	_	20	-	ms	Erase all blocks and protection fields at once
Flash block erase + flash block write time	-	_	100 ^[28]	ms	$0 \ ^{\circ}C \le Tj \le 100 \ ^{\circ}C$
Flash block erase + flash block write time	-	-	200 ^[28]	ms	$-40 \text{ °C} \le Tj \le 0 \text{ °C}$
	DescriptionRise time of SCLKFall time of SCLKData setup time to falling edge of SCLKData hold time from falling edge of SCLKFrequency of SCLKFlash erase time (block)Flash block write timeData out delay from falling edge of SCLKData out delay from falling edge of SCLKData out delay from falling edge of SCLKFlash erase time (Bulk)Flash block erase + flash block write timeFlash block erase + flash block write time	DescriptionMinRise time of SCLK1Fall time of SCLK1Data setup time to falling edge of SCLK40Data hold time from falling edge of SCLK40Frequency of SCLK0Flash erase time (block)-Flash block write time-Data out delay from falling edge of SCLK-Data out delay from falling edge of SCLK-Data out delay from falling edge of SCLK-Flash erase time (Bulk)-Flash block erase + flash block write time-Flash block erase + flash block write time-	DescriptionMinTypRise time of SCLK1-Fall time of SCLK1-Data setup time to falling edge of SCLK40-Data hold time from falling edge of SCLK40-Frequency of SCLK0-Flash erase time (block)-10Flash block write time-40Data out delay from falling edge of SCLKData out delay from falling edge of SCLKFlash erase time (Bulk)-20Flash block erase + flash block write timeFlash block erase + flash block write time	DescriptionMinTypMaxRise time of SCLK1-20Fall time of SCLK1-20Data setup time to falling edge of SCLK40Data hold time from falling edge of SCLK40Frequency of SCLK0-8Flash erase time (block)-10-Flash block write time-40-Data out delay from falling edge of SCLK45Data out delay from falling edge of SCLK50Data out delay from falling edge of SCLK70Flash erase time (Bulk)-200-Flash block erase + flash block write time100 ^[28] Flash block erase + flash block write time200 ^[28]	DescriptionMinTypMaxUnitsRise time of SCLK1-20nsFall time of SCLK1-20nsData setup time to falling edge of SCLK40nsData hold time from falling edge of SCLK40nsFrequency of SCLK0-8MHzFlash erase time (block)-10-msData out delay from falling edge of SCLK-40-msData out delay from falling edge of SCLK-50nsData out delay from falling edge of SCLK70nsFlash erase time (Bulk)-20-msFlash block erase + flash block write time100 ^[28] msFlash block erase + flash block write time200 ^[28] ms

Table 33. AC Programming Specifications

AC I²C Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 34.	AC	Characteristics	of the	² C SDA	and SCL	Pins for	$V_{DD} \ge 3.0 V$
-----------	----	-----------------	--------	--------------------	---------	----------	--------------------

Symbol	Description	Standard Mode		Fast Mode		Unito
Symbol	Description	Min	Max	Min	Max	Units
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz
T _{HDSTAI2C}	Hold time (repeated) start condition. After this period, the first clock pulse is generated	4.0	-	0.6	-	μs
T _{LOWI2C}	Low period of the SCL clock	4.7	-	1.3	-	μs
T _{HIGHI2C}	High period of the SCL clock	4.0	-	0.6	-	μs
T _{SUSTAI2C}	Setup time for a repeated start condition	4.7	-	0.6	-	μs
T _{HDDATI2C}	Data hold time	0	-	0	-	μs
T _{SUDATI2C}	Data setup time	250	-	100 ^[29]	-	ns
T _{SUSTOI2C}	Setup time for stop condition	4.0	-	0.6	-	μs
T _{BUFI2C}	Bus free time between a stop and start condition	4.7	-	1.3	-	μs
T _{SPI2C}	Pulse width of spikes suppressed by the input filter.	_	-	0	50	ns

Notes

 ^{28.} For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note AN2015 (Design Aids - Reading and Writing PSoC[®] Flash) for more information.
 29. A Fast-Mode I²C-bus device may be used in a Standard-Mode I²C-bus system, but it must meet the requirement T_{SU:DAT} ≥ 250 ns. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If the device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line T_{rmax} + T_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

Table 35.	2.7 V AC	Characteristics	s of the I ² C SDA	and SCL Pins	(Fast Mode no	t Supported)
-----------	----------	-----------------	-------------------------------	--------------	---------------	--------------

Symbol	Description	Standa	rd Mode	Fast Mode		Unito
Symbol	Description	Min	Max	Min	Max	Units
F _{SCLI2C}	SCL clock frequency	0	100	-	-	kHz
T _{HDSTAI2C}	Hold time (repeated) start condition. After this period, the first clock pulse is generated.	4.0	-	-	-	μs
T _{LOWI2C}	Low period of the SCL clock	4.7	-	-	-	μs
T _{HIGHI2C}	High period of the SCL clock	4.0	-	-	-	μs
T _{SUSTAI2C}	Setup time for a repeated start condition	4.7	-	-	-	μs
T _{HDDATI2C}	Data hold time	0	-	-	-	μs
T _{SUDATI2C}	Data setup time	250	-	—	-	ns
T _{SUSTOI2C}	Setup time for stop condition	4.0	-	—	_	μs
T _{BUFI2C}	Bus free time between a stop and start condition	4.7	-	-	-	μs
T _{SPI2C}	Pulse width of spikes are suppressed by the input filter.	_	-	-	-	ns

Figure 20. 32-pin QFN (5 × 5 × 1.0 mm) LT32B (3.5 × 3.5) E-Pad (Sawn) Package Outline, 001-30999

TOP VIEW

<u>SIDE VIEW</u>

BOTTOM VIEW

Figure 21. 32-pin QFN (5 × 5 × 0.55 mm) 1.3 × 2.7 E-Pad (Sawn Type) Package Outline, 001-48913

Important Note For information on the preferred dimensions for mounting QFN packages, see the following application note, *Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845* available at http://www.cypress.com.

Figure 22. 56-pin SSOP (300 Mils) Package Outline, 51-85062

51-85062 *F

Thermal Impedances

Table 36. Thermal Impedances per Package

Package	Typical θ _{JA} ^[30]	Typical θ _{JC}
16-pin SOIC	123 °C/W	55 °C/W
20-pin SSOP	117 °C/W	41 °C/W
28-pin SSOP	96 °C/W	39 °C/W
32-pin QFN ^[31] 5 × 5 mm 0.60 Max	27 °C/W	15 °C/W
32-pin QFN ^[31] 5 × 5 mm 0.93 Max	22 °C/W	12 °C/W
56-pin SSOP	48 °C/W	24 °C/W

Solder Reflow Peak Temperature

Table 37 lists the maximum solder reflow peak temperatures to achieve good solderability. Thermal ramp rate during preheat should be 3 °C/s or lower.

Table 37. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Time at Maximum Temperature
16-pin SOIC	260 °C	30 s
20-pin SSOP	260 °C	30 s
28-pin SSOP	260 °C	30 s
32-pin QFN	260 °C	30 s
56-pin SSOP	260 °C	30 s

Notes

 ^{30.} T_J = T_A + Power × θ_{JA}
 31. To achieve the thermal impedance specified for the QFN package, refer to *Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices* - AN72845 available at http://www.cypress.com.

^{32.} Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

Development Tool Selection

This section presents the development tools available for all current PSoC device families including the CY8C21x34B family.

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of cost at http://www.cypress.com and includes a free C compiler.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or operates directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com.

Development Kits

All development kits can be purchased from the Cypress Online Store.

CY3280-BK1 Universal CapSense Controller - Basic Kit 1

The CY3280-BK1 Universal CapSense Controller Kit is designed for easy prototyping and debug of CapSense designs with pre-defined control circuitry and plug-in hardware. The kit comes with controller boards for the CY8C20x34 and CY8C21x34 PSoC devices as well as a breadboard module and a button(5) / slider module.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation, and the software interface allows you to run, halt, and single step the processor, and view the content of specific memory locations. Advance emulation features also supported through PSoC Designer. The kit includes:

- PSoC Designer software CD
- ICE-Cube in-circuit emulator
- ICE Flex-Pod for CY8C29x66 family
- Cat-5 adapter
- Mini-Eval programming board
- 110 ~ 240 V power supply, Euro-Plug adapter
- iMAGEcraft C compiler
- ISSP cable
- USB 2.0 cable and Blue Cat-5 cable
- Two CY8C29466-24PXI 28-PDIP chip samples

Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows you to program PSoC devices through the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC through a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-Pin CY8C29466-24PXI PDIP PSoC device sample
- 28-Pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- Two 28-Pin CY8C29466-24PXI PDIP PSoC device samples
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LFXI PSoC device. The board includes both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- PSoCEvalUSB board
- LCD module
- MIniProg programming unit
- Mini USB cable
- PSoC Designer and example projects CD
- Getting Started guide
- Wire pack

Device Programmers

All device programmers can be purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular programmer base
- Three programming module cards

Accessories (Emulation and Programming)

Table 38. Emulation and Programming Accessories

MiniProg programming unit

- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Part Number	Pin Package	Flex-Pod Kit ^[33]	Foot Kit ^[34]	Adapter
CY8C21234B-24SXI	16-Pin SOIC	CY3250-21X34	CY3250-16SOIC-FK	Adapters can be found at
CY8C21334B-24PVXI	20-Pin SSOP	CY3250-21X34	CY3250-20SSOP-FK	http://www.emulation.com.
CY8C21534B-24PVXI	28-Pin SSOP	CY3250-21X34	CY3250-28SSOP-FK	

Notes

Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.
 Foot kit includes surface mount feet that can be soldered to the target PCB.