

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	160MHz
Connectivity	CSIO, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	288KB (288K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/rochester-electronics/mb9bf164kpmc-g-jne2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

VBAT

The consumption power during the RTC operation can be reduced by supplying the power supply independent from the RTC (calendar circuit)/32 kHz oscillation circuit. The following circuits can also be used.

- ■RTC
- ■32 kHz oscillation circuit
- ■Power-on circuit
- ■Back up register: 32 bytes
- Port circuit

Debug

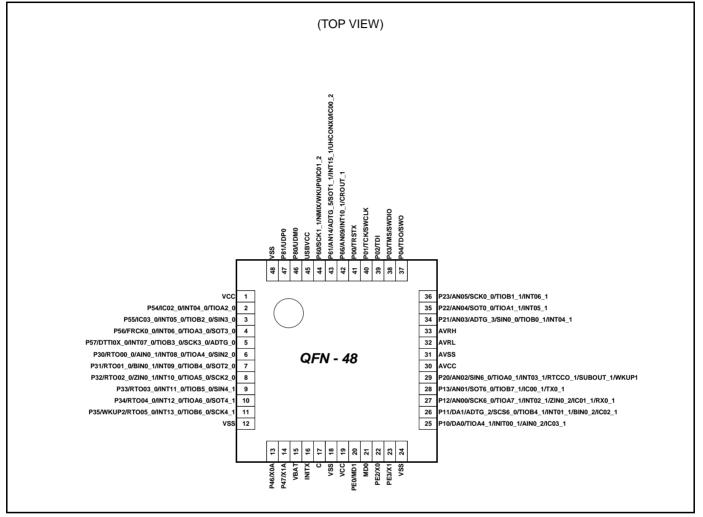
■Serial Wire JTAG Debug Port (SWJ-DP)

Unique ID

Unique value of the device (41-bit) is set.

Power Supply

Two Power Supplies

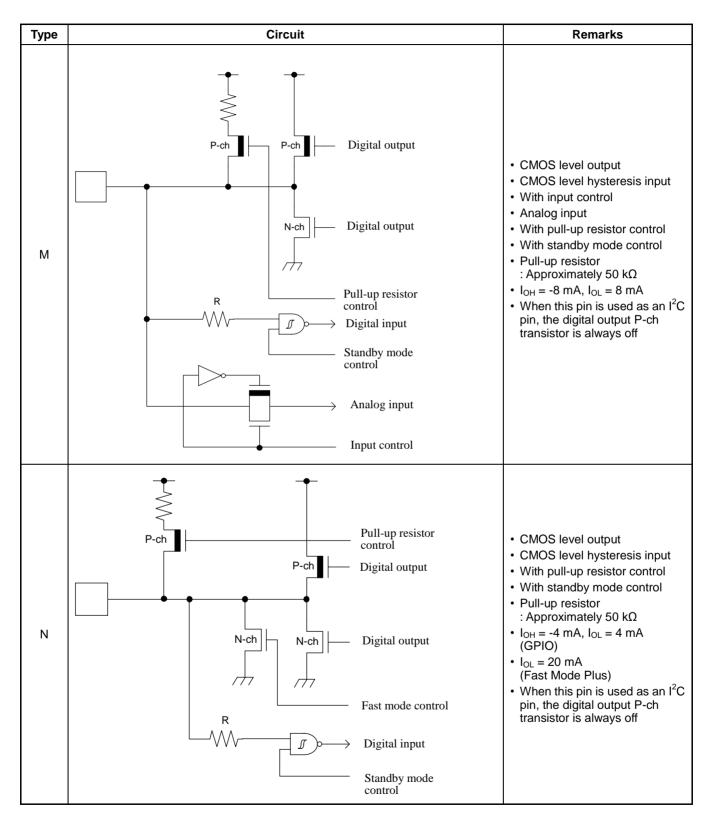

■Wide range voltage:	VCC	= 2.7 V to 5.5 V
■Power supply for VBAT:	VBAT	= 2.7 V to 5.5 V

2.10.1 Recovery cause: Interrupt/WKUP 1	106
2.10.2 Recovery Cause: Reset 1	
3. Ordering Information	
4. Package Dimensions	111
5. Major Changes	
Document History	117
ales, Solutions, and Legal Information	

LCC-48P-M73

Note:

 The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.



	No		I/O circuit	Pin state
LQFP64 QFN64	LQFP48 QFN48	Pin Name	type	type
		P57		
		DTTI0X_0		
		INT07_0		
9	5	TIOB3_0	N	К
		SCK3_0		
		(SCL3_0)		
		ADTG_0		
		P30		
		RTO00_0		
40		AIN0_1	0	K
10	6	INT08_0	G	K
		TIOA4_0		
		SIN2_0		
		P31		
		RTO01_0		
		BIN0_1		
11	7	INT09_0	G	K
		TIOB4_0		
		SOT2_0		
		(SDA2_0)		
		P32		
		RTO02_0		
10		ZIN0_1		К
12	8	INT10_0	G	
		TIOA5_0		
		SCK2_0		
		(SCL2_0) P33		
		RTO03_0		
13	9		G	К
13	9	INT11_0		ĸ
		TIOB5_0		
		SIN4_1		
		P34		
		RT004_0		
14	10	INT12_0	G	K
		TIOA6_0		
		SOT4_1 (SDA4_1)		
		(<u>3DA4_1)</u> P35		
		WKUP2		
		RTO05_0	<u> </u>	
15	11	INT13_0	G	Q
-		TIOB6_0		
		SCK4_1		
		(SCL4_1)		

Pin			Pin	Pin No		
function	Pin name	Function description	LQFP64 QFN64	LQFP48 QFN48		
	INT06_0	Eutomol interrupt request 06 input nin	8	4		
	INT06_1	External interrupt request 06 input pin	45	36		
	INT05_1 INT07_0 INT07_1 INT08_0	External interrupt request 07 input pin	9	5		
	INT07_1	External interrupt request 07 input pin	46	-		
	INT07_1 INT08_0 External inter	External interrupt request 08 input pin	10	6		
	INT08_1	External interrupt request os input pin	47	-		
	INT09_0	External interrupt request 09 input pin	11	7		
	INT09_1	External interrupt request 09 input pin	48	-		
	INT10_0	External interrupt request 10 input pin	12	8		
Esternal	INT10_1	External interrupt request to input pin	54	42		
External	INT11_0	Esternal internet or most 44 incut air	13	9		
Interrupt	INT11_1	External interrupt request 11 input pin	55	-		
	INT12_0		14	10		
	INT12_1	External interrupt request 12 input pin	56	-		
	INT13_0		15	11		
	INT13 1	External interrupt request 13 input pin	57	-		
	INT14_0		26	-		
	INT14 1	External interrupt request 14 input pin	58	-		
	 INT15_0		27	-		
	INT15_1	External interrupt request 15 input pin	59	43		
	NMIX	Non-Maskable Interrupt input pin	60	44		
	P00		53	41		
	P01		52	40		
	P02	General-purpose I/O port 0	51	39		
	P03		50	38		
	P04		49	37		
	P10		34	25		
	P11		35	26		
	P12	General-purpose I/O port 1	36	27		
	P13	1	37	28		
	P20		38	29		
	P21	1	43	34		
GPIO	P22	1	44	35		
	P23	General-purpose I/O port 2	45	36		
	P24		46	-		
	P25	1	47	-		
	P26	4	48	-		
	P30		10	6		
	P31	4	11	7		
	P31	4	12	8		
	P32	General-purpose I/O port 3	13	9		
	P34	4	14	10		
	P34 P35	4	14	10		
	F30		15	11		

6. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

6.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

us Type	Function	Power-on Reset or Low-voltage Detection State	INITX Input State	nput Reset Mode RTC Mode, or		RTC Mode, or		Deep Standby RTC Mode or Deep Standby Stop Mode State		Return from Deep Standby Mode State			
Pin status	Group	Power Supply Unstable		Supply able Stable			er Supply Stable	Power Sta	Supply ble	Power Supply Stable			
-		-	INITX=0	INITX=1	INITX=1	11	NITX=1	INIT	X=1	INITX=1			
		-	-	-	-	SPL=0	SPL=1	SPL=0	SPL=1	-			
	WKUP enabled	Setting	Setting	Setting			Maintain previous	WKUP input enabled	Hi-Z / WKUP input enabled				
Q	External interrupt	disabled	disabled	disabled	Maintain previous	previous	previous	previous	Maintain previous	state	GPIO	Hi-Z /	GPIO selected
	Resource other than above selected GPIO	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled	State		Hi-Z / Internal input fixed at 0	selected Internal input fixed at 0	Internal input fixed at 0				
R	GPIO selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at 0	GPIO selected Internal input fixed at "0" Hi-Z / Input enabled	Hi-Z / Internal input fixed at "0" Hi-Z / Input enabled	GPIO selected			

*1: Oscillation is stopped at Sub timer mode, sub CR timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep Standby Stop mode.

*2: Maintain previous state at timer mode. GPIO selected Internal input fixed at 0 at RTC mode, Stop mode.

*3: Maintain previous state at timer mode. Hi-Z/Internal input fixed at 0 at RTC mode, Stop mode.

12.2 Recommended Operating Conditions

-	Parameter		Symbol Conditions		Value		Remarks
r	arameter	Symbol	Conditions	Min	Max	Unit	Reillarks
Power supply vo	Itage	V _{cc}	-	2.7	5.5	V	
Power supply vo	ltage (VBAT)	V _{BAT}	-	2.7	5.5	V	
Analog power su	ipply voltage	AV _{CC}	-	2.7	5.5	V	AV _{CC} =V _{CC}
Analog reference	e voltage	AVRH	-	*1	AV _{cc}	V	
Operating	Junction temperature	Tj	-	- 40	+ 125	°C	
temperature	Ambient temperature	T _A	-	- 40	*2	°C	

*1: The minimum value of Analog reference voltage depends on the value of compare clock cycle (Tcck). See "5. 12-bit A/D Converter" for the details.

*2: The maximum temperature of the ambient temperature (Ta) can guarantee a range that does not exceed the junction temperature (Tj).

The calculation formula of the ambient temperature (Ta) is shown below.

```
T_A(Max) = Tj(Max) - Pd(Max) \times \theta ja
```

Pd: Power dissipation (W)

 θ ja: Package thermal resistance (°C/W)

Pd (Max) = $V_{CC} \times I_{CC}$ (Max) + Σ ($I_{OL} \times V_{OL}$) + Σ (($V_{CC} - V_{OH}$) × (- I_{OH}))

I_{OL}: L level output current

I_{OH}: H level output current

Vol: L level output voltage

V_{OH}: H level output voltage

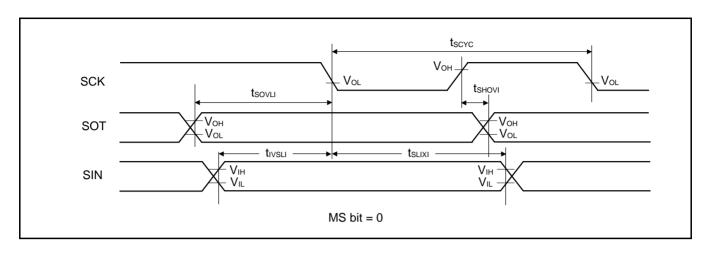
Package thermal resistance and maximum permissible power for each package are shown below. The operation is guaranteed maximum permissible power or less for semiconductor devices.

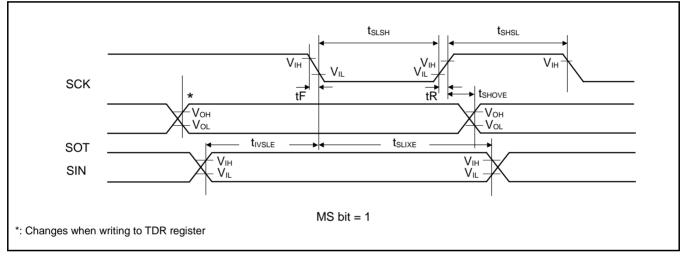
Table for Package Thermal Resistance and Maximum Permissible Power

Package	Printed circuit board	Thermal resistance θja	Maximum permissible power (mW)		
i denage		(°C/W)	T _A =+85°C	T _A =+105°C	
FPT-48P-M49	Single-layered both sides	87	460	230	
(0.5mm pitch)	4 layers	53	755	377	
LCC-48P-M73	Single-layered both sides	30	1333	667	
(0.5mm pitch)	4 layers	24	1667	833	
FPT-64P-M38	Single-layered both sides	70	571	286	
(0.5mm pitch)	4 layers	45	889	444	
FPT-64P-M39	Single-layered both sides	61	656	328	
(0.65mm pitch)	4 layers	40	1000	500	
LCC-64P-M24	Single-layered both sides	24	1667	833	
(0.5mm pitch)	4 layers	21	1905	952	

WARNING:

1. The recommended operating conditions are required to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.


Any use of semiconductor devices will be under their recommended operating condition.


Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.

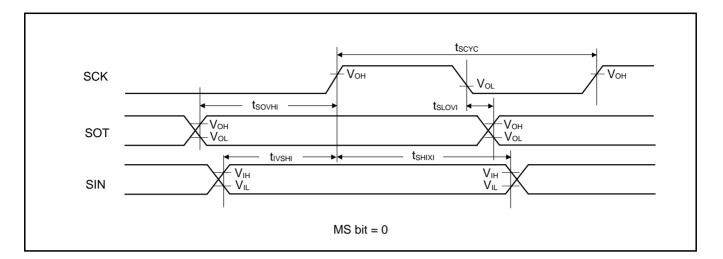
No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

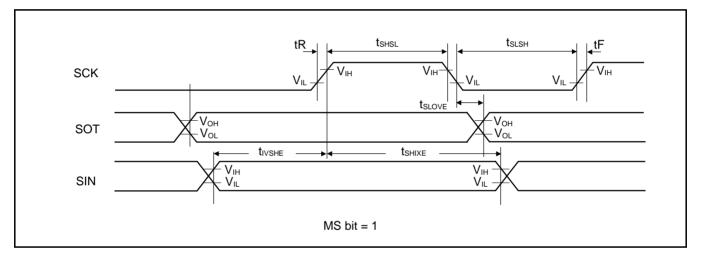
High-speed Synchronous Serial (SPI = 0, SCINV = 0)

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Parameter Symbol Pin Conditions V _{cc}		V _{cc} < 4	4.5V	V _{CC} ≥ 4	.5V	Unit	
Parameter	Symbol	Name	Conditions	Min	Мах	Min	Max	Unit
Serial clock cycle time	t _{scyc}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
$SCK\downarrow \rightarrow SOT$ delay time	t _{SLOVI}	SCKx, SOTx		-10	+10	-10	+10	ns
SIN→SCK↑		SCKx,	Internal shift clock operation	14		12.5	-	20
setup time	t _{ivshi}	SINx		12.5*	-	12.5	-	ns
$SCK\uparrow \rightarrow SIN$ hold time	t _{shixi}	SCKx, SINx		5	-	5	-	ns
Serial clock "L" pulse width	t _{sLSH}	SCKx		2t _{CYCP} – 5	-	2t _{CYCP} – 5	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
SCK↓→SOT delay time	t _{SLOVE}	SCKx, SOTx	External shift	-	15	-	15	ns
SIN→SCK↑ setup time	t _{IVSHE}	SCKx, SINx	clock operation	5	-	5	-	ns
		SCKx,		_		_		
SCK↑→SIN hold time	t _{SHIXE}	SINx		5	-	5	-	ns
SCK falling time	tF	SCKx]	-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

- The above characteristics apply to CLK synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
- These characteristics only guarantee the following pins.
 - No chip select: SIN0_1, SOT0_1, SCK0_1
 - Chip select: SIN6_0, SOT6_0, SCK6_0, SCS6_0
- When the external load capacitance $C_L = 30 \text{ pF}$. (For *, when $C_L = 10 \text{ pF}$)


High-speed Synchronous Serial (SPI = 0, SCINV = 1)


 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

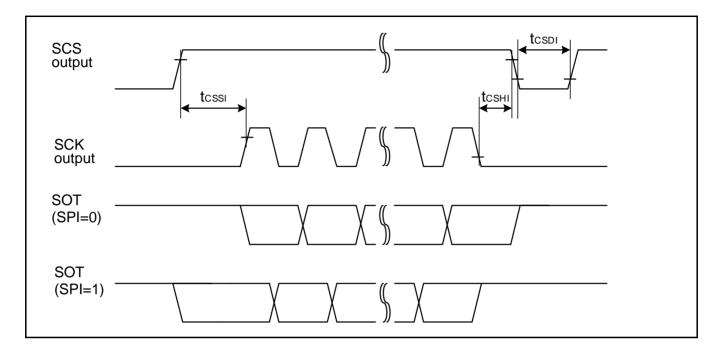
Parameter	Symbol	Pin Conditions V _{cc} < 4.5 V V _{cc} ≥	V _{CC} ≥ 4	.5 V	Unit			
Farameter	Symbol	Name	Conditions	Min	Max	Min	Max	Onit
Serial clock cycle time	t _{scyc}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
SCK ↑ →SOT delay time	t _{sHOVI}	SCKx, SOTx	Internal shift	-10	+10	-10	+10	ns
SIN→SCK↓ setup time	t _{IVSLI}	SCKx,	clock operation	14		12.5	-	ns
	ЧVSLI	SINx		12.5*		12.5		113
SCK $\downarrow \rightarrow$ SIN hold time	t _{SLIXI}	SCKx, SINx		5	-	5	-	ns
Serial clock "L" pulse width	t _{sLSH}	SCKx		2t _{CYCP} – 5	-	2t _{CYCP} – 5	-	ns
Serial clock "H" pulse width	t _{sHsL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
SCK ↑ →SOT delay time	t _{shove}	SCKx, SOTx	External shift	-	15	-	15	ns
SIN→SCK↓ setup time	t _{IVSLE}	SCKx, SINx	clock operation	5	-	5	-	ns
SCK ↓ →SIN hold time	t _{SLIXE}	SCKx, SINx		5	-	5	-	ns
SCK falling time	tF	SCKx]	-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

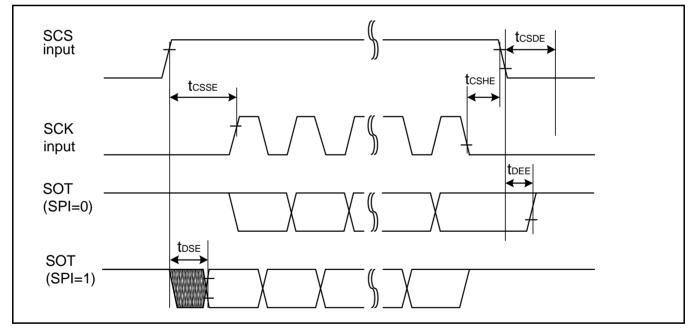
- The above characteristics apply to CLK synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
- These characteristics only guarantee the following pins.
 - No chip select: SIN0_1, SOT0_1, SCK0_1
 - Chip select: SIN6_0, SOT6_0, SCK6_0, SCS6_0
- When the external load capacitance $C_L = 30 \text{ pF}$. (For *, when $C_L = 10 \text{ pF}$)

When Using High-speed Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS=0, CSLVL=1)

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Conditions	V _{CC} < 4.5 V		V _{CC} ≥ 4.5 V		Unit
i arameter	Symbol	Conditions	Min	Max	Min	Max	
SCS↓→SCK↓setup time	t _{CSSI}		(*1)-20	(*1)+0	(*1)-20	(*1)+0	ns
$SCK{\uparrow}{\rightarrow}SCS{\uparrow} \text{ hold time}$	t _{CSHI}	Internal shift clock operation	(*2)+0	(*2)+20	(*2)+0	(*2)+20	ns
SCS deselect time	t _{CSDI}		(*3)-20+5t _{CYCP}	(*3)+20+5t _{CYCP}	(*3)-20+5t _{CYCP}	(*3)+20+5t _{CYCP}	ns
SCS↓→SCK↓setup time	t _{CSSE}		3t _{CYCP} +15	-	3t _{CYCP} +15	-	ns
$SCK{\uparrow}{\rightarrow}SCS{\uparrow} \text{ hold time}$	t _{CSHE}		0	-	0	-	ns
SCS deselect time	t _{CSDE}	External shift clock operation	3t _{CYCP} +15	-	3t _{CYCP} +15	-	ns
SCS↓→SOT delay time	t _{DSE}		-	25	-	25	ns
SCS↑→SOT delay time	t _{DEE}		0	-	0	-	ns


(*1): CSSU bit valuexserial chip select timing operating clock cycle [ns]


(*2): CSHD bit valuexserial chip select timing operating clock cycle [ns]

(*3): CSDS bit valuexserial chip select timing operating clock cycle [ns]

- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
- About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual.
- When the external load capacitance $C_L = 30 \text{ pF}$.

12.5 12-bit A/D Converter

Electrical Characteristics for the A/D Converter

$(V_{CC} = AV_{CC} =$: 2.7V to 5	5.5V, Vss =	$AV_{SS} =$	AVRL = 0V

		•	· · · · · · · · · · · · · · · · · · ·				
Parameter	Symbol	Pin Name	Value			Unit	Remarks
			Min	Тур	Max		Remarks
Resolution	-	-	-	-	12	bit	
Integral Nonlinearity	-	-	-4.5	-	+4.5	LSB	AVRH = 2.7 V to 5.5 V
Differential Nonlinearity	-	-	-2.5	-	+2.5	LSB	
Zero transition voltage	V _{ZT}	AN00 to AN14	-15	-	+15	mV	
Full-scale transition voltage	V _{FST}	AN00 to AN14	AVRH - 15	-	AVRH + 15	mV	
Conversion time	-	-	0.5* ¹	-	-	μs	$AV_{CC} \ge 4.5V$
Sampling time	Ts	-	*2	-	- 10	μs	$AV_{CC} \ge 4.5V$
			*2	-			$AV_{CC} < 4.5V$
Compare clock cycle*3	Tcck	-	25	-	1000	ns	$AV_{CC} \ge 4.5V$
			50	-	1000		$AV_{CC} < 4.5V$
State transition time to operation permission	Tstt	-	1.0	-	-	μs	
Power supply current (analog			-	0.69	0.92	mA	A/D 1 unit operation
+ digital)	-	AVCC	-	0.3	12	μA	When A/D stop
Reference power supply current	-	AVRH	-	1.1	1.97	mA	A/D 1unit operation AVRH=5.5 V
(between AVRH and AVSS)				0.2	4.2	μA	When A/D stop
Analog input capacity	C _{AIN}	-	-	-	10	pF	
Analog input resistance	R _{AIN}	-	-	-	1.2	kΩ	AV _{CC} ≥ 4.5 V
					1.8		$AV_{CC} < 4.5 V$
Interchannel disparity	-	-	-	-	4	LSB	
Analog port input current	-	AN00 to AN14	-	-	5	μA	
Analog input voltage	-	AN00 to AN14	AV _{SS}	-	AVRH	V	
Reference voltage	-	AVRH	4.5	-	AV _{CC}	V	Tcck < 50 ns
			2.7	-	AV _{CC}		Tcck ≥ 50 ns

*1: The conversion time is the value of sampling time (Ts) + compare time (Tc).

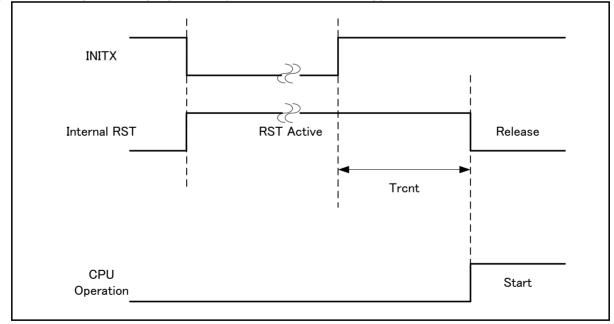
The condition of the minimum conversion time is when the value of sampling time: 150 ns, the value of compare time: 350 ns $(AV_{CC} \ge 4.5 \text{ V})$. Ensure that it satisfies the value of sampling time (Ts) and compare clock cycle (Tcck). For setting^{*4} of sampling time and compare clock cycle, see CHAPTER 1-1: A/D Converter in FM4 Family Peripheral Manual Analog macro part (002-04860). The register setting of the A/D Converter is reflected by the peripheral clock timing. The sampling and compare clock are set at Base clock (HCLK).

*2: A necessary sampling time changes by external impedance. Ensure that it set the sampling time to satisfy (Equation 1).

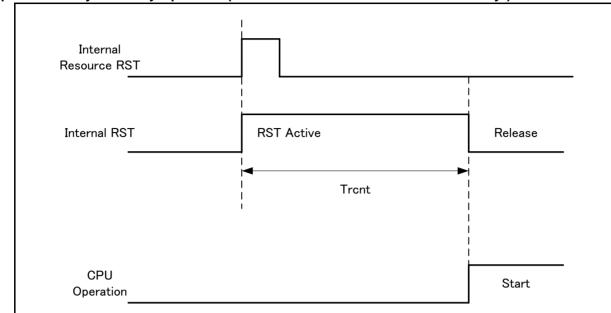
*3: The compare time (Tc) is the value of (Equation 2).

*4: The register setting of the A/D Converter is reflected by the timing of the APB bus clock. The sampling clock and compare clock are set in base clock (HCLK). About the APB bus number which the A/D Converter is connected to, see 8. Block Diagram in this data sheet.

12.10.2 *Recovery Cause: Reset* The time from reset release to the program operation start is shown.

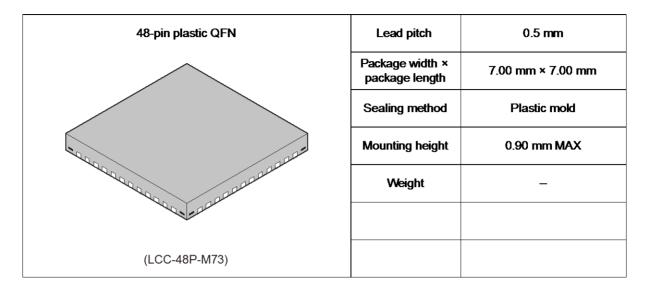

Recovery Count Time

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$


Parameter	Symbol	Value		Unit	Remarks
Falameter		Тур	Max*	Unit	Remarks
Sleep mode		116	266	μs	
High-speed CR timer mode Main timer mode PLL timer mode	Trcnt	116	266	μs	
Low-speed CR timer mode		258	567	μs	
Sub timer mode		258	567	μs	
RTC mode Stop mode		308	567	μs	
Deep standby RTC mode with RAM retention		308	668	μs	without RAM retention
Deep standby stop mode with RAM retention				μs	with RAM retention

*: The maximum value depends on the built-in CR accuracy.

Example of Standby Recovery Operation (when in INITX Recovery)



Example of Standby Recovery Operation (when in Internal Resource Reset Recovery*)

*: Depending on the standby mode, the reset issue from the internal resource is not included in the recovery cause.

- The return factor is different in each Low-Power consumption modes.
 See CHAPTER 6: Low Power Consumption Mode and Operations of Standby Modes in FM4 Family Peripheral Manual Main part (002-04856).
- The time during the power-on reset/low-voltage detection reset is excluded to the recovery source. See (6) Power-on Reset Timing in 12.4 AC Characteristics in 12. Electrical Characteristics for the detail on the time during the power-on reset/low-voltage detection reset.
- When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is
 necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time.
- The internal resource reset means the watchdog reset and the CSV reset.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training | Components

Technical Support

cypress.com/go/support

ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.

© Cypress Semiconductor Corporation, 2013-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document, to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.