

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HCS08
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SCI, SPI, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 6x16b SAR; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08mm128clh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Devices in the MC9S08MM128 series

The following table summarizes the feature set available in the MC9S08MM128 series of MCUs.

Feature	MC9S08MM128			MC9S08MM64	MC9S08MM32	MC9S08MM32A
Pin quantity	81	80	64	64	64	64
FLASH size (bytes)		131072		65535	32768	32768
RAM size (bytes)		12K		12K	4K	2K
Programmable Analog Comparator (PRACMP)		yes		yes	yes	yes
Debug Module (DBG)		yes		yes	yes	yes
Multipurpose Clock Generator (MCG)		yes		yes	yes	yes
Inter-Integrated Communication (IIC)		yes		yes	yes	yes
Interrupt Request Pin (IRQ)		yes		yes	yes	yes
Keyboard Interrupt (KBI)	16	16	6	6	6	6
Port I/O ¹	47	46	33	33	33	33
Dedicated Analog Input Pins		12		12	12	12
Power and Ground Pins		8		8	8	8
Time Of Day (TOD)		yes		yes	yes	yes
Serial Communications (SCI1)		yes		yes	yes	yes
Serial Communications (SCI2)		yes		yes	yes	yes
Serial Peripheral Interface 1 (SPI1 (FIFO))		yes		yes	yes	yes
Serial Peripheral Interface 2 (SPI2)		yes		yes	yes	yes
Carrier Modulator Timer pin (IRO)	yes			yes	yes	yes
TPM input clock pin (TPMCLK)	yes			yes	yes	yes
TPM1 channels		4		4	4	4
TPM2 channels	4	4	2	2	2	2
XOSC1		yes		yes	yes	yes
XOSC2		yes		yes	yes	yes
USB		yes		yes	yes	no
Programmable Delay Block (PDB)		yes		yes	yes	yes
SAR ADC differential channels ²	4	4	3	3	3	3
SAR ADC single-ended channels	8	8	6	6	6	6
DAC ouput pin (DACO)		yes		yes	yes	yes
Voltage reference output pin (VREFO)		yes		yes	yes	yes
General Purpose OPAMP (OPAMP)		yes		yes	yes	yes
Trans-Impedance Amplifier (TRIAMP)		yes		yes	yes	yes

¹ Port I/O count does not include two (2) output-only and one (1) input-only pins.

² Each differential channel is comprised of 2 pin inputs.

Devices in the MC9S08MM128 series

A complete description of the modules included on each device is provided in the following table.

Module	Version
Analog-to-Digital Converter (ADC16)	1
General Purpose Operational Amplifier (OPAMP)	1
Trans-Impedance Operational Amplifier (TRIAMP)	1
Digital to Analog Converter (DAC)	1
Programmable Delay Block	1
Inter-Integrated Circuit (IIC)	3
Central Processing Unit (CPU)	5
On-Chip In-Circuit Debug/Emulator (DBG)	3
Multi-Purpose Clock Generator (MCG)	3
Low Power Oscillator (XOSCVLP)	1
Carrier Modulator Timer (CMT)	1
Programable Analog Comparator (PRACMP)	1
Serial Communications Interface (SCI)	4
Serial Peripheral Interface (SPI)	5
Time of Day (TOD)	1
Universal Serial Bus (USB) ¹	1
Timer Pulse-Width Modulator (TPM)	3
System Integration Module (SIM)	1
Cyclic Redundancy Check (CRC)	3
Keyboard Interrupt (KBI)	2
Voltage Reference (VREF)	1
Voltage Regulator (VREG)	1
Interrupt Request (IRQ)	3
Flash Wrapper	1
GPIO	2
Port Control	1

Table 2. Versions of On-Chip Module

¹ USB Module not available on MC9S08MM32A devices.

The block diagram in Figure 1 shows the structure of the MC9S08MM128 series MCU.

Devices in the MC9S08MM128 series

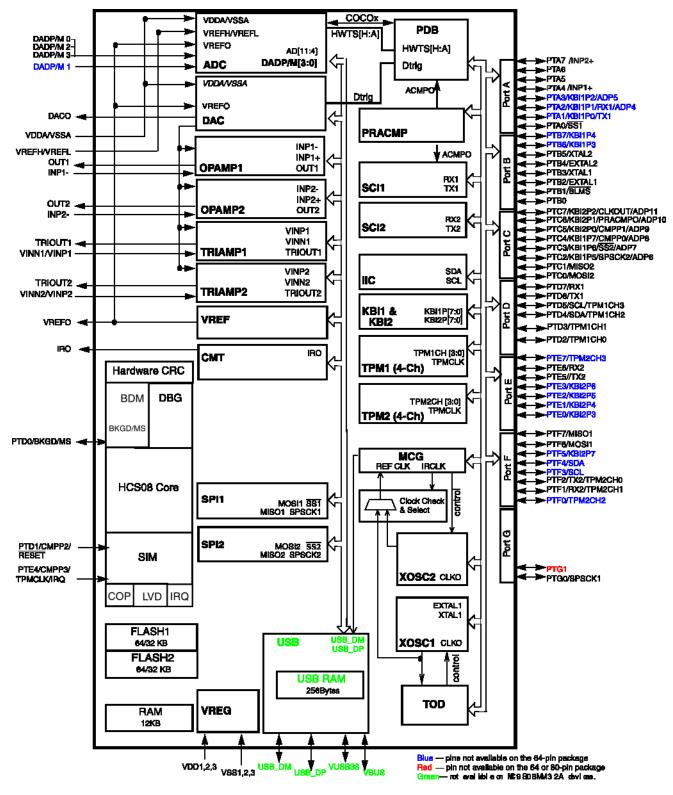


Figure 1. MC9S08MM128 series Block Diagram

Freescale Semiconductor

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

#	Symbol		Rating	Value	Unit
1	T _A	Operating temperature	range (packaged):	1	°C
			MC9S08MM128	-40 to 105	
			MC9S08MM64	-40 to 105	
			MC9S08MM32	-40 to 105	
			MC9S08MM32A	-40 to 105	-
2	T _{JMAX}	Maximum junction tem	Maximum junction temperature		°C
3	θ_{JA}	Thermal resistance ^{1,2,3}	^{3,4} Single-layer board — 1s	4	°C/W
			81-pin MBGA	77	
			80-pin LQFP	55	
			64-pin LQFP	68	
4	θ_{JA}	Thermal resistance ^{1, 2,}	^{3, 4} Four-layer board — 2s2p	1	°C/W
			81-pin MBGA	47	
			80-pin LQFP	40	
			64-pin LQFP	49	

0		55	עע	-
Table	^	The	I Charas	104 00
Table	n.	inerma	i Unarac	teristics
	•••			

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer
- ⁴ 2s2p Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 T_A = Ambient temperature, °C

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

Freescale Semiconductor

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 ESD Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human Body	Series Resistance	R1	1500	Ω
	Storage Capacitance	С	100	pF
	Number of Pulse per pin	—	3	
Machine	Series Resistance	R1	0	Ω
	Storage Capacitance	С	200	pF
	Number of Pulse per pin	—	3	_
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	—	7.5	V

Table 7. ESD and Latch-up Test Conditions

Table 8	. ESD	and	Latch-Up	Protection	Characteristics
---------	-------	-----	----------	------------	-----------------

#	Rating	Symbol	Min	Max	Unit	С
1	Human Body Model (HBM)	V _{HBM}	±2000		V	Т
2	Machine Model (MM)	V _{MM}	±200		V	Т
3	Charge Device Model (CDM)	V _{CDM}	±500		V	Т
4	Latch-up Current at T _A = 125°C	I _{LAT}	±100		mA	Т

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	Symbol	Char	acteristic	Condition	Min	Typ ¹	Мах	Unit	С
1	V _{DD}	Operating Voltage			1.8 ²	—	3.6	V	
2	V _{OH}	Output high voltage	All I/O pins, low-o	drive strength					
				$V_{DD} \ge 1.8 \text{ V},$ $I_{Load} = -600 \mu\text{A}$	V _{DD} – 0.5	—		V	С
			All I/O pins, high	-drive strength					
				$V_{DD} \ge 2.7 \text{ V},$ $I_{Load} = -10 \text{ mA}$	V _{DD} – 0.5	_		V	Ρ
				$V_{DD} \ge 1.8V,$ $I_{Load} = -3 \text{ mA}$	V _{DD} – 0.5	—	_	V	С
3	I _{OHT}	Output high current	Max total I _{OH} for	all ports					
				—	—	—	100	mA	D
4	V _{OL}	Output low voltage	All I/O pins, low-drive strength						
				$\label{eq:VDD} \begin{split} V_{DD} &\geq 1.8 \text{ V}, \\ I_{Load} &= 600 \mu\text{A} \end{split}$	_	_	0.5	V	С
			All I/O pins, high-drive strength						
				$V_{DD} \ge 2.7$ V, I _{Load} = 10 mA	—	_	0.5	V	Ρ
				$V_{DD} \ge 1.8 \text{ V},$ $I_{Load} = 3 \text{ mA}$	_	—	0.5	V	С
5	I _{OLT}	Output low current	Max total I _{OL} for all ports	_	_	—	100	mA	D
6	V _{IH}	Input high volta	ge all digital inputs						
				all digital inputs, $V_{DD} > 2.7 \ V$	0.70 x V _{DD}	_	_	V	Ρ
				all digital inputs, 2.7 V > V_{DD} \ge 1.8 V	0.85 x V _{DD}	—		V	Ρ

Table 9. DC Characteristics

Supply Current Characteristics Table 10. Supply Current Characteristics 2.6

#	Symbol	Parar	neter	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)	с
1	RI _{DD}	Run supply current	FEI mode;	all modules	ON ²		·			
				24 MHz	3	20	24	mA	-40 to 25	Р
				24 MHz	3	20	24	mA	105	Р
				20 MHz	3	18	_	mA	-40 to 105	Т
				8 MHz	3	8	_	mA	-40 to 105	Т
				1 MHz	3	1.8	_	mA	-40 to 105	Т
2	RI _{DD}	Run supply current	FEI mode;	all modules	OFF ³		-			
				24 MHz	3	12.3	14.1	mA	-40 to 105	С
				20 MHz	3	10.5	—	mA	-40 to 105	т
				8 MHz	3	4.8	_	mA	-40 to 105	т
				1 MHz	3	1.3	_	mA	-40 to 105	Т
3	RI _{DD}	Run supply current	LPS=0; all	modules OF	F ³				<u> </u>	
				16 kHz FBILP	3	153	222	μΑ	-40 to 105	Т
				16 kHz FBELP	3	143	200	μΑ	-40 to 105	Т
4	RI _{DD}	Run supply current	LPS=1, all	modules OF			1			
				16 kHz FBELP	3	20	26	μA	0 to 70	т
				16 kHz FBELP	3	20	70	μA	-40 to 105	Т

#	Symbol	Parameter	Bus	V _{DD} (V)	Typ ¹	Max	Unit	Temp	С
	-		Freq					(°C)	
5	WI _{DD}	Wait mode FEI mode, supply current	all modules	OFF ³					
			24 MHz	3	6.7	_	mA	-40 to 105	С
			20 MHz	3	5.6	_	mA	-40 to 105	Т
			8 MHz	3	2.4	_	mA	-40 to 105	Т
			1 MHz	3	1	_	mA	-40 to 105	Т
6	LPWI _{DD}	Low-Power Wait mode supply current							
			16 KHz	3	10	40	μA	-40 to 105	Т
7	S2I _{DD}	Stop2 mode supply cur- rent ⁴							
			N/A	3	0.39	0.8	μΑ	-40 to 25	Ρ
			N/A	3	2.4	4.5	μA	70	С
			N/A	3	7	11	μA	85	С
			N/A	3	16	22	μA	105	Р
			N/A	2	0.2	0.45	μA	-40 to 25	С
			N/A	2	2	3.8	μA	70	С
			N/A	2	8	12	μA	85	С
			N/A	2	10	20	μA	105	С

Table 10. Supply Current Characteristics (Continued)

2.8 12-Bit DAC Electricals

Table 13. DAC 12LV Operating Requirements

#	Characteristic	Symbol	Min	Max	Unit	С	Notes
1	Supply voltage	V _{DDA}	1.8	3.6	V	Р	
2	Reference voltage	V _{DACR}	1.15	3.6	V	С	
3	Temperature	T _A	-40	105	°C	С	
4	Output load capacitance	CL	_	100	pF	с	A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
5	Output load current	١	—	1	mA	С	

Table 14. DAC 12-Bit Operating Behaviors

#	Characteristic	Symbol	Min	Тур	Max	Unit	С	Notes
1	Resolution	Ν	12	—	12	bit	Т	
2	Supply current low-power mode	I _{DDA_DACLP}	_	50	100	μA	т	
3	Supply current high-power mode	I _{DDA_DACHP}	—	345	500	μA	Т	
4	Full-scale Settling time (±1 LSB) (0x080 to 0xF7F or 0xF7F to 0x080) low-power mode	Ts _{FS} LP	_	_	200	ha	т	• $V_{DDA} = 3 V$ or 2.2 V • $V_{REFSEL} = 1$ • Temperature = 25°C
5	Full-scale Settling time (±1 LSB) (0x080 to 0xF7F or 0xF7F to 0x080) high-power mode	Ts _{FS} HP	_	_	30	ha	т	 V_{DDA} = 3 V or 2.2 V V_{REFSEL} = 1 Temperature = 25°C
6	Code-to-code Settling time (±1 LSB) (0xBF8 to 0xC08 or 0xC08 to 0xBF8) low-power mode	Ts _{C-C} LP	_	_	5	ha	т	 V_{DDA} = 3 V or 2.2 V V_{REFSEL} = 1 Temperature = 25°C
7	Code-to-code Settling time (±1 LSB) (0xBF8 to 0xC08 or 0xC08 to 0xBF8) high-power mode (3 V at Room Temperature)	Ts _{C-C} HP	_	1	_	μs	Т	 V_{DDA} = 3 V or 2.2 V V_{REFSEL} = 1 Temperature = 25°C
8	DAC output voltage range low (high-power mode, no load, DAC set to 0) (3 V at Room Temperature)	V _{dacoutl}	_	_	100	mV	т	

#	Symb	Characteristic	Conditions	Min	Typ ¹	Max	Unit	С	Comment
10	f _{ADCK}	ADC Conversion (Frequency	Clock		1	L			
		ADLPC=0, ADHS	C=1	1.0		8.0	MHz	D	
		ADLPC=0, ADHS	C=0	1.0	_	5.0	MHz	D	
		ADLPC=1, ADHS	C=0	1.0	_	2.5	MHz	D	

¹ Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

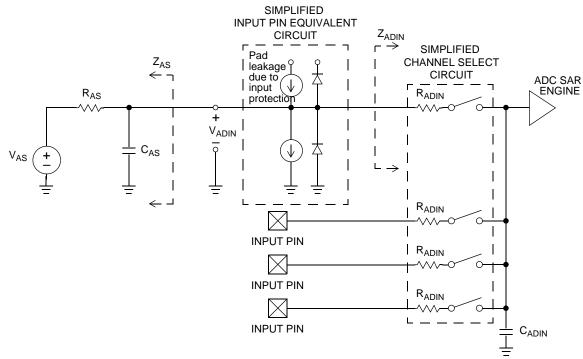


Figure 7. ADC Input Impedance Equivalency Diagram

Table 16. 16-Bit SAR ADC Characteristics full operating range
(V _{REFH} = V _{DDA} , > 1.8, V _{REFL} = V _{SSA} \leq 8 MHz, –40 to 85 °C)

#	Characteristic	Conditions ¹	Symb	Min	Typ ²	Max	Unit	с	Comment	
	Supply Current	ADLPC=1, ADHSC=0		_	215	_				
1		ADLPC=0, ADHSC=0	I _{DDAD}		470		μA	т	ADLSMP =0	
		ADLPC=0, ADHSC=1		_	610	—			ADCO=1	
2	Supply Current	Stop, Reset, Module Off	I _{DDAD}	—	0.01	—	μΑ	Т		
	ADC	ADLPC=1, ADHSC=0		_	2.4	—				
3	Asynchronous Clock Source	ADLPC=0, ADHSC=0	f _{ADACK}		5.2	—	MHz	С	t _{ADACK} =	
		ADLPC=0, ADHSC=1		_	6.2	—			1/f _{ADACK}	
4	Sample Time	See Reference Manual for	sample tim	nes						
5	Conversion Time	See Reference Manual for	ee Reference Manual for conversion times							
6	Total Unadjusted Error	16-bit differential mode 16-bit single-ended mode	TUE	—	±16 ±20	+48/ -40 +56/ -28	LSB ³	Т	32x Hardware Averaging (AVGE = %1 AVGS = %11)	
		13-bit differential mode 12-bit single-ended mode		_	±1.5 ±1.75	±3.0 ±3.5		Т		
		11-bit differential mode 10-bit single-ended mode		_	±0.7 ±0.8	±1.5 ±1.5		Т		
		9-bit differential mode 8-bit single-ended mode		_	±0.5 ±0.5	±1.0 ±1.0		Т		
7	Differential Non-Linearity	16-bit differential mode 16-bit single-ended mode	DNL	_	±2.5 ±2.5	+5/-3 +5/-3	LSB ²	Т		
		13-bit differential mode 12-bit single-ended mode		_	±0.7 ±0.7	±1 ±1		Т		
		11-bit differential mode 10-bit single-ended mode		_	±0.5 ±0.5	±0.75 ±0.75		Т		
		9-bit differential mode 8-bit single-ended mode			±0.2 ±0.2	±0.5 ±0.5		Т		

Table 16. 16-Bit SAR ADC Characteristics full operating range (V_{REFH} = V_{DDA}, > 1.8, V_{REFL} = V_{SSA} \leq 8 MHz, –40 to 85 °C) (Continued)

#	Characteristic	Conditions ¹	Symb	Min	Typ ²	Max	Unit	С	Comment
14	Total Harmonic Distortion	16-bit differential mode Avg=32	THD	_	-91.5	-74.3	dB	С	F _{in} = F _{sample} /10
		16-bit single-ended mode Avg=32		_	-85.5	_		D	0
15	Spurious Free Dynamic	16-bit differential mode Avg=32	SFDR	75.0	92.2	_	dB	С	F _{in} = F _{sample} /10
	Range	16-bit single-ended mode Avg=32		_	86.2	_		D	0
16	Input Leakage Error	all modes	EIL	I _{In} * R _{AS}			mV	D	I _{In} = leakage current (refer to DC characteri stics)
17	Temp Sensor Slope	–40°C − 25°C	m	_	1.646	_	mV/× C	С	
		25°C – 125°C		_	1.769	_			
18	Temp Sensor Voltage	25°C	V _{TEMP2} 5		718.2	_	mV	С	

 $^1\,$ All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}

² Typical values assume $V_{DDA} = 3.0V$, Temp = 25°C, $f_{ADCK}=2.0MHz$ unless otherwise stated. Typical values are for reference only and are not tested in production.

³ 1 LSB = $(V_{REFH} - V_{REFL})/2^N$

#	Symbol	Parameter		Min	Typical ¹	Max	С	Unit
9	t _{Rise} , t _{Fall}	Port rise and fall time (load = 50) pF) ⁴ , Low Drive)				ns
			Slew rate control disabled (PTxSE = 0)	_	11	—	D	
			Slew rate control enabled (PTxSE = 1)	_	35	_	D	
			Slew rate control disabled (PTxSE = 0)	_	40	_	D	
			Slew rate control enabled (PTxSE = 1)	_	75		D	

Table 20. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 105 °C.

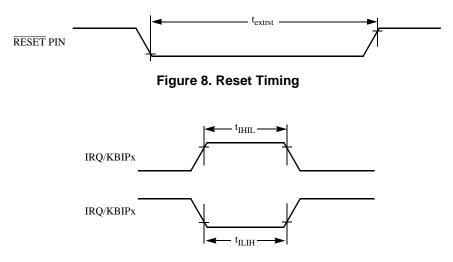
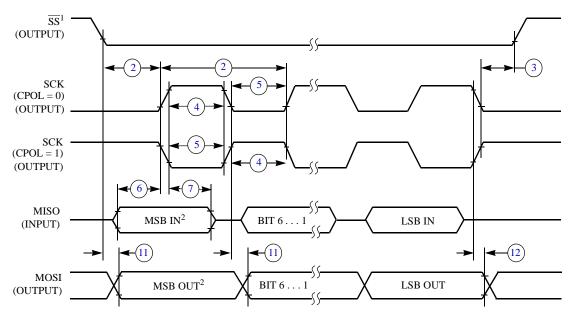
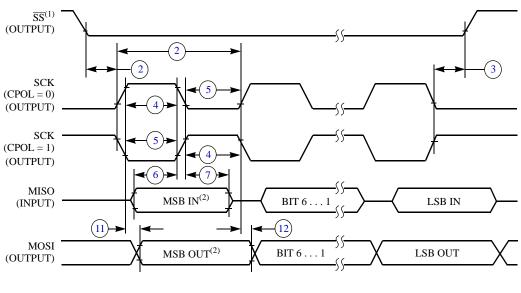



Figure 9. IRQ/KBIPx Timing

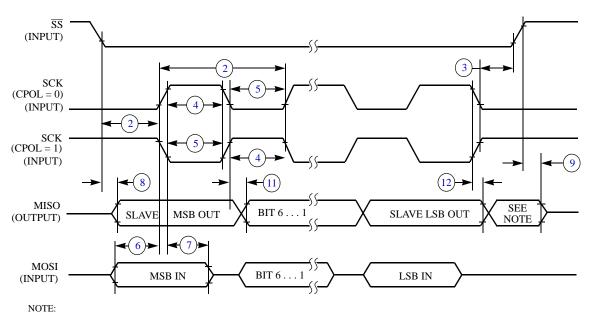
Freescale Semiconductor



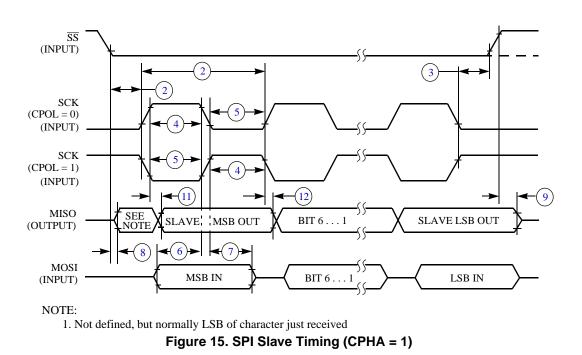
NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.



NOTES:


1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 13. SPI Master Timing (CPHA = 1)

1. Not defined, but normally MSB of character just received **Figure 14. SPI Slave Timing (CPHA = 0)**

2.14 USB Electricals

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.

If the Freescale USB On-the-Go implementation has electrical characteristics that deviate from the standard or require additional information, this space would be used to communicate that information.

#	Characteristic	Symbol	Min	Тур	Мах	Unit	С
1	Regulator operating voltage	V _{regin}	3.9	_	5.5	V	С
2	VREG output	V _{regout}	3	3.3	3.75	V	Р
3	V _{USB33} input with internal VREG disabled	V _{usb33in}	3	3.3	3.6	V	С
4	VREG Quiescent Current	I _{VRQ}	_	0.5	_	mA	С

Table 24. Internal USB 3.3 V Voltage Regulator Characteristics

2.17 **OPAMP Electrical Parameters**

#	Characteristics ¹	Symbol	Min	Typ ²	Max	Unit	С
		_		тур			
1	Operating Voltage	V _{DD}	1.8	-	3.6	V	C
2	Supply Current (I _{OUT} =0mA, CL=0 Low-Power mode)	I _{SUPPLY}		67	80	μΑ	Т
3	Supply Current (I _{OUT} =0mA, CL=0 High-Speed mode)	I _{SUPPLY}	—	538	550	μΑ	Т
4	Input Offset Voltage	V _{OS}	—	±2	±6	mV	Т
5	Input Offset Voltage Temperature Coefficient	α_{VOS}	—	10	—	μV/C	Т
6	Input Offset Current (-40°C to 105°C)	I _{OS}	—	±2.5	±250	nA	Т
7	Input Offset Current (-40°C to 50°C)	I _{OS}	_	—	45	nA	Т
8	Positive Input Bias Current (-40°C to 105°C)	I _{BIAS}	_	0.8	3.5	nA	Т
9	Positive Input Bias Current (-40°C to 50°C)	I _{BIAS}	—	—	±2	nA	Т
10	Negative Input Bias Current (-40°C to 105°C)	I _{BIAS}	_	2.5	250	nA	Т
11	Negative Input Bias Current (-40°C to 50°C)	I _{BIAS}	_	—	45	nA	Т
12	Input Common Mode Voltage Low	V _{CML}	0.1	—	—	V	Т
13	Input Common Mode Voltage High	V _{CMH}	_	—	V _{DD}	V	Т
14	Input Resistance	R _{IN}	_	500	—	MΩ	Т
15	Input Capacitances	C _{IN}	—	—	10	pF	D
16	AC Input Impedance (f _{IN} =100kHz Negative Channel)	X _{IN}	_	52	—	kΩ	D
17	AC Input Impedance (f _{IN} =100kHz Positive Channel)	X _{IN}	_	132	—	kΩ	D
18	Input Common Mode Rejection Ratio	CMRR	55	65	—	dB	Т
19	Power Supply Rejection Ratio	PSRR	60	65	—	dB	Т
20	Slew Rate (ΔV_{IN} =100mV Low-Power mode)	SR	0.1	—	—	V/µs	Т
21	Slew Rate (△V _{IN} =100mV High-Speed mode)	SR	1	—	—	V/µs	Т
22	Unity Gain Bandwidth (Low-Power mode)	GBW	0.2	—	—	MHz	Т
23	Unity Gain Bandwidth (High-Speed mode)	GBW	1	—	—	MHz	Т
24	DC Open Loop Voltage Gain	A _V	80	90	—	dB	Т
25	Load Capacitance Driving Capability	CL(max)	_	—	100	pF	Т
26	Output Impedance AC Open Loop (@100 kHz Low-Power mode)	R _{OUT}	_	4k	—	Ω	D
27	Output Impedance AC Open Loop (@100 kHz High-Speed mode)	R _{OUT}	_	220	—	Ω	D
28	Output Voltage Range	V _{OUT}	0.15	—	V _{DD} -0.1 5	V	Т
29	Output Drive Capability	I _{OUT}	±0.5	±1.0	—	mA	Т
- 00	Gain Margin	GM	20			dB	D
30	Gain Margin	0.01	20			uр	

Table 28. OPAMP Characteristics 1.8–3.6 V

Freescale Semiconductor

3.2 Package Information

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
64	Low Quad Flat Package	LQFP	LH	840F-02	98ASS23234W
80	Low Quad Flat Package	LQFP	LK	917-01	98ASS23174W
81	MAPBGA Package	Map PBGA	MB	1662-01	98ASA10670D

Table 30. Package Descriptions

3.3 Mechanical Drawings

Table 30 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08MM128 series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 30, or
- Open a browser to the Freescale[®] website (http://www.freescale.com), and enter the appropriate document number (from Table 30) in the "Enter Keyword" search box at the top of the page.

4 Revision History

Table 31. Revision History

Rev	Date	Description of Changes
0	06/2009	Initial release of the Data Sheet.
1	07/2009	Updated MCG and XOSC Average internal reference frequency.
2	01/2010	Revised to include MC9S08MM32 and MC9S08MM32A devices.Updated electrical characteristic data.
3	10/2010	Updated with the latest characteristic data. Added several figures. Added the ADCTypical Operation table.

Revision History

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed: Freescale Semiconductor

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center http://compass.freescale.net/go/168063291 1-800-441-2447 or 1-303-675-2140 Fax: 1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009-2010. All rights reserved.

MC9S08MM128 Rev. 3, 10/2010

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.