

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

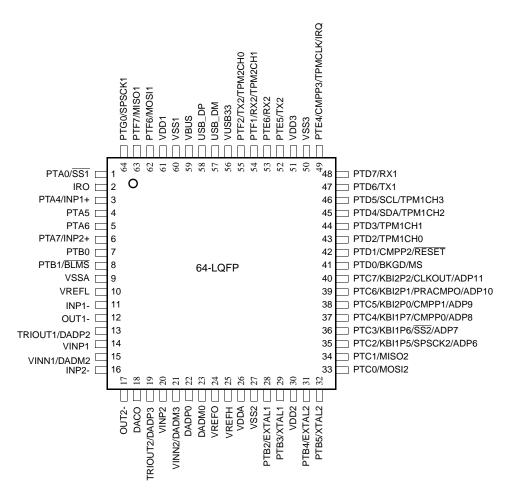
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SCI, SPI, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-FQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08mm128vlk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Devices in the MC9S08MM128 series

1.1 Pin Assignments

This section shows the pin assignments for the MC9S08MM128 series devices.

1.1.1 64-Pin LQFP

The following two figures show the 64-pin LQFP pinout configuration. The first illustrates the pinout configuration for MC9S08MM128, MC9S08MM64, and MC9S08MM32 devices.

Figure 2. 64-Pin LQFP for MC9S08MM128, MC9S08MM64, and MC9S08MM32 devices

For MC9S08MM32A devices, pins 56, 57, 58, and 59 are no connects (NC) as illustrated in the following figure.

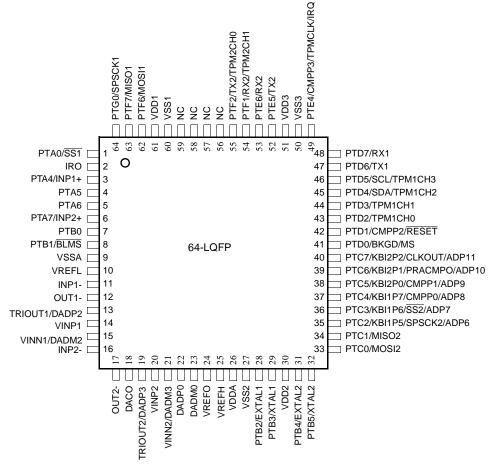


Figure 3. 64-Pin LQFP for MC9S08MM32A devices

Freescale Semiconductor

2.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

#	Rating	Symbol	Value	Unit
1	Supply voltage	V _{DD}	-0.3 to +3.8	V
2	Maximum current into V _{DD}	I _{DD}	120	mA
3	Digital input voltage	V _{In}	-0.3 to V _{DD} + 0.3	V
4	Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	۱ _D	± 25	mA
5	Storage temperature range	T _{stg}	-55 to 150	°C

Table 5.	Absolute	Maximum	Ratings
----------	----------	---------	---------

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}).

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 ESD Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human Body	Series Resistance	R1	1500	Ω
	Storage Capacitance	С	100	pF
	Number of Pulse per pin	—	3	
Machine	Series Resistance	R1	0	Ω
	Storage Capacitance	С	200	pF
	Number of Pulse per pin	—	3	_
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	—	7.5	V

Table 7. ESD and Latch-up Test Conditions

Table 8	. ESD	and	Latch-Up	Protection	Characteristics
---------	-------	-----	----------	------------	-----------------

#	Rating	Symbol	Min	Max	Unit	С
1	Human Body Model (HBM)	V _{HBM}	±2000		V	Т
2	Machine Model (MM)	V _{MM}	±200		V	Т
3	Charge Device Model (CDM)	V _{CDM}	±500		V	Т
4	Latch-up Current at T _A = 125°C	I _{LAT}	±100		mA	Т

#	Symbol	Parameter	Bus	V _{DD} (V)	Typ ¹	Max	Unit	Temp	С
	-		Freq					(°C)	
5	WI _{DD}	Wait mode FEI mode, supply current	all modules	OFF ³					
			24 MHz	3	6.7	_	mA	-40 to 105	С
			20 MHz	3	5.6	_	mA	-40 to 105	Т
			8 MHz	3	2.4	_	mA	-40 to 105	Т
			1 MHz	3	1	_	mA	-40 to 105	Т
6	LPWI _{DD}	Low-Power Wait mode supply current							
			16 KHz	3	10	40	μA	-40 to 105	Т
7	S2I _{DD}	Stop2 mode supply cur- rent ⁴							
			N/A	3	0.39	0.8	μΑ	-40 to 25	Ρ
			N/A	3	2.4	4.5	μA	70	С
			N/A	3	7	11	μA	85	С
			N/A	3	16	22	μA	105	Р
			N/A	2	0.2	0.45	μA	-40 to 25	С
			N/A	2	2	3.8	μA	70	С
			N/A	2	8	12	μA	85	С
			N/A	2	10	20	μA	105	С

Table 10. Supply Current Characteristics (Continued)

#	Parameter	Condition		Temperature (°C)					
#	Farameter		-40	25	70	85	105	- Units	С
7	DAC ¹	High-Power mode; no load on DACO	369	377	377	390	410	μA	Т
		Low-Power mode	50	51	51	52	60	μΑ	Т
8	OPAMP ¹	High-Power mode	453	538	538	540	540	μA	Т
0		Low-Power mode	56	67	67	68	70	μA	Т
9	TRIAMP ¹	High-Power mode	430	432	433	438	478	μA	Т
9		Low-Power mode	52	52	52	55	60	μA	Т

Table 11. Typical Stop Mode Adders (Continued)

 $\overline{1}$ Not available in stop2 mode.

2.7 PRACMP Electricals

					1	1	
#	Characteristic	Symbol	Min	Typical	Max	Unit	С
1	Supply voltage	V _{PWR}	1.8		3.6	V	Р
2	Supply current (active) (PRG enabled)	I _{DDACT1}	—		80	μA	D
3	Supply current (active) (PRG disabled)	I _{DDACT2}	—		40	μA	D
4	Supply current (ACMP and PRG all disabled)	I _{DDDIS}	—	_	2	nA	D
5	Analog input voltage	VAIN	$V_{SS} - 0.3$		V _{DD}	V	D
6	Analog input offset voltage	VAIO	—	5	40	mV	D
7	Analog comparator hysteresis	V _H	3.0	_	20.0	mV	D
8	Analog input leakage current	I _{ALKG}	—	_	1	nA	D
9	Analog comparator initialization delay	tAINIT	—	_	1.0	μS	D
10	Programmable reference generator inputs	V _{In2} (V _{DD25})	1.8	_	2.75	V	D
11	Programmable reference generator setup delay	t _{PRGST}	—	1	_	μs	D
12	Programmable reference generator step size	Vstep	0.75	1	1.25	LSB	D
13	Programmable reference generator voltage range	Vprgout	V _{In} /32	_	V _{in}	V	Р

Table 12. PRACMP Electrical Specifications

#	Characteristic	Symbol	Min	Тур	Max	Unit	С	Notes
9	DAC output voltage range high (high-power mode, no load, DAC set to 0x0FFF)	V _{dacouth}	V _{DACR} - 100	_	_	mV	т	
10	Integral non-linearity error	INL	—	—	± 8	LSB	Т	
11	Differential non-linearity error VDACR is > 2.4 V	DNL	_	_	± 1	LSB	т	
12	Offset error	E _O	_	±0.4	± 3	%FSR	т	Calculated by a best fit curve from V _{SS} + 100mV to V _{REFH} -100mV
13	Gain error, V _{REFH} = V _{ext} = V _{DD}	E _G	_	±0.1	± 0.5	%FSR	т	Calculated by a best fit curve from V _{SS} + 100mV to V _{REFH} –100mV
14	Power supply rejection ratio $V_{DD} \ge 2.4 \text{ V}$	PSRR	60	_	_	dB	т	
15	Temperature drift of offset voltage (DAC set to 0x0800)	T _{co}	_		2	mV	Т	See Typical Drift figure that follows.
16	Offset aging coefficient	A _c	—	—	8	μV/yr	Т	

Table 14. DAC 12-Bit Operating Behaviors (Continued)

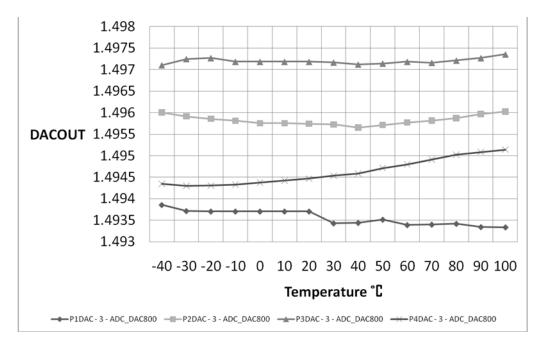


Figure 6. Offset at Half Scale vs Temperature

2.9 ADC Characteristics

#	Symb	Characteristic	Conditions	Min	Typ ¹	Max	Unit	С	Comment
1	V _{DDA}	Supply voltage	Absolute	1.8	—	3.6	V	D	
2	ΔV_{DDA}		Delta to V _{DD} (V _{DD} –V _{DDA}) ²	-100	0	+100	mV	D	
3	ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} –V _{SSA}) ²	-100	0	+100	mV	D	
4	V _{REFH}	Ref Voltage High		1.15	V _{DDA}	V _{DDA}	V	D	
5	V _{REFL}	Ref Voltage Low		V _{SSA}	V _{SSA}	V _{SSA}	V	D	
6	V _{ADIN}	Input Voltage		V _{REFL}	—	V_{REFH}	V	D	
7	C _{ADIN}	Input Capacitance	16-bit modes 8/10/12-bit modes	_	8 4	10 5	pF	Т	
8	R _{ADIN}	Input Resistance		_	2	5	kΩ	Т	
9	R _{AS}	Analog Source Resistance							External to MCU Assumes ADLSMP=0
		16-bit mode	f _{ADCK} > 8 MHz	_	_	0.5	kΩ	т	
			4 MHz < f _{ADCK} < 8 MHz	—	—	1	kΩ	т	
			f _{ADCK} < 4 MHz		_	2	kΩ	Т	
		13/12-bit mode	f _{ADCK} > 8 MHz	—	—	1	kΩ	т	
			4 MHz < f _{ADCK} < 8 MHz	_	—	2	kΩ	Т	
			f _{ADCK} < 4 MHz	_	—	5	kΩ	Т	
		11/10-bit mode	f _{ADCK} > 8 MHz	_	—	2	kΩ	Т	
			4 MHz < f _{ADCK} < 8 MHz	_	_	5	kΩ	т	
			f _{ADCK} < 4 MHz		—	10	kΩ	Т	
		9/8-bit mode	f _{ADCK} > 8 MHz	_	—	5	kΩ	т	
			f _{ADCK} < 8 MHz	_	_	10	kΩ	Т	

Table 15. 16-Bit ADC Operating Conditions

Table 16. 16-Bit SAR ADC Characteristics full operating range (V_{REFH} = V_{DDA}, > 1.8, V_{REFL} = V_{SSA} \leq 8 MHz, –40 to 85 °C) (Continued)

#	Characteristic	Conditions ¹	Symb	Min	Typ ²	Max	Unit	С	Comment
8	Integral Non-Linearity	16-bit differential mode 16-bit single-ended mode	INL		±6.0 ±10.0	±16.0 ±20.0	LSB ²	Т	
		13-bit differential mode 12-bit single-ended mode		_	±1.0 ±1.0	±2.5 ±2.5		Т	
		11-bit differential mode 10-bit single-ended mode		_	±0.5 ±0.5	±1.0 ±1.0		Т	
		9-bit differential mode 8-bit single-ended mode		_	±0.3 ±0.3	±0.5 ±0.5		Т	
9	Zero-Scale Error	16-bit differential mode 16-bit single-ended mode	E _{ZS}	_	±4.0 ±4.0	+32/ –24 +24/ –16	LSB ²	Т	V _{ADIN} = V _{SSA}
		13-bit differential mode 12-bit single-ended mode		_	±0.7 ±0.7	±2.5 ±2.0		Т	
		11-bit differential mode 10-bit single-ended mode		_	±0.4 ±0.4	±1.0 ±1.0		Т	
		9-bit differential mode 8-bit single-ended mode			±0.2 ±0.2	±0.5 ±0.5		Т	
10	Full-Scale Error	16-bit differential mode 16-bit single-ended mode	E _{FS}		+10/0 +14/0	+42/–2 +46/–2	LSB ²	Т	V _{ADIN} = V _{DDA}
		13-bit differential mode 12-bit single-ended mode			±1.0 ±1.0	±3.5 ±3.5		Т	
		11-bit differential mode 10-bit single-ended mode		_	±0.4 ±0.4	±1.5 ±1.5		Т	
		9-bit differential mode 8-bit single-ended mode		_	±0.2 ±0.2	±0.5 ±0.5		Т	
11	Quantization Error	16-bit modes	EQ	_	-1 to 0	_	LSB ²	D	
		≤13-bit modes		_	—	±0.5			
12	Effective Number of Bits	16-bit differential mode Avg=32 Avg=16 Avg=8 Avg=4 Avg=1	ENOB	12.8 12.7 12.6 12.5 11.9	14.2 13.8 13.6 13.3 12.5	 	Bits	С	F _{in} = F _{sample} /10 0
13	Signal to Noise plus Distortion	See ENOB	SINAD	SINAD	$= 6.02 \cdot E$	<i>NOB</i> + 1.76	dB		

Table 17. 16-bit SAR ADC Characteristics full operating range
(V _{REFH} = V _{DDA} , \geq 2.7 V, V _{REFL} = V _{SSA} , f _{ADACK} \leq 4 MHz, ADHSC = 1)

#	Characteristic	Conditions ¹	Symb	Min	Typ ²	Мах	Unit	С	Comment
1	Total Unadjusted Error	16-bit differential mode 16-bit single-ended mode	TUE		±16 ±20	+24/ -24 +32/-20	LSB ³	Т	32x Hardware Averaging (AVGE = %1 AVGS = %11)
		13-bit differential mode 12-bit single-ended mode		_	±1.5 ±1.75	±2.0 ±2.5		Т	
		11-bit differential mode 10-bit single-ended mode			±0.7 ±0.8	±1.0 ±1.25		Т	
		9-bit differential mode 8-bit single-ended mode			±0.5 ±0.5	±1.0 ±1.0		Т	
2	Differential Non-Linearity	16-bit differential mode 16-bit single-ended mode	DNL	_	±2.5 ±2.5	±3 ±3	LSB ²	Т	
		13-bit differential mode 12-bit single-ended mode		_	±0.7 ±0.7	±1 ±1		Т	
		11-bit differential mode 10-bit single-ended mode			±0.5 ±0.5	±0.75 ±0.75		Т	
		9-bit differential mode 8-bit single-ended mode			±0.2 ±0.2	±0.5 ±0.5		Т	
3	Integral Non-Linearity	16-bit differential mode 16-bit single-ended mode	INL		±6.0 ±10.0	±12.0 ±16.0	LSB ²	Т	
		13-bit differential mode 12-bit single-ended mode		_	±1.0 ±1.0	±2.0 ±2.0		Т	
		11-bit differential mode 10-bit single-ended mode			±0.5 ±0.5	±1.0 ±1.0		Т	
		9-bit differential mode 8-bit single-ended mode			±0.3 ±0.3	±0.5 ±0.5		Т	
4	Zero-Scale Error	16-bit differential mode 16-bit single-ended mode	E _{ZS}	_	±4.0 ±4.0	+16/0 +16/-8	LSB ²	Т	V _{ADIN} = V _{SSA}
		13-bit differential mode 12-bit single-ended mode		_	±0.7 ±0.7	±2.0 ±2.0		Т	
		11-bit differential mode 10-bit single-ended mode			±0.4 ±0.4	±1.0 ±1.0		Т	
		9-bit differential mode 8-bit single-ended mode		_	±0.2 ±0.2	±0.5 ±0.5		Т	

Table 17. 16-bit SAR ADC Characteristics full operating range ($V_{REFH} = V_{DDA}$, ≥ 2.7 V, $V_{REFL} = V_{SSA}$, $f_{ADACK} \le 4$ MHz, ADHSC = 1) (Continued)

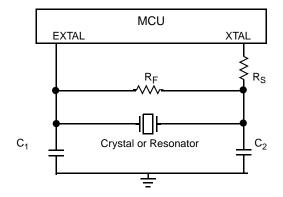
<u> </u>									1
#	Characteristic	Conditions ¹	Symb	Min	Typ ²	Max	Unit	С	Comment
5	Full-Scale Error	16-bit differential mode 16-bit single-ended mode	E _{FS}		+8/0 +12/0	+24/0 +24/0	LSB ²	Т	V _{ADIN} = V _{DDA}
		13-bit differential mode 12-bit single-ended mode			±0.7 ±0.7	±2.0 ±2.5		Т	
		11-bit differential mode 10-bit single-ended mode			±0.4 ±0.4	±1.0 ±1.0		Т	
		9-bit differential mode 8-bit single-ended mode			±0.2 ±0.2	±0.5 ±0.5		Т	
6	Quantization Error	16-bit modes	EQ		-1 to 0	_	LSB ²	D	
		≤13-bit modes				±0.5			
7	Effective Number of Bits	16-bit differential mode Avg=32 Avg=16 Avg=8 Avg=4 Avg=1	ENO B	14.3 13.8 13.4 13.1 12.4	14.5 14.0 13.7 13.4 12.6		Bits	С	F _{in} = F _{sample} /10 0
8	Signal to Noise plus Distortion	See ENOB	SINA D	SINAD	$= 6.02 \cdot ENOB + 1.76$		dB		
9	Total Harmonic Distortion	16-bit differential mode Avg=32	THD	_	-95.8	-90.4	dB	С	F _{in} = F _{sample} /10
		16-bit single-ended mode Avg=32		_	_	_		D	0
10	Dynamic	16-bit differential mode Avg=32	SFDR	91.0	96.5	_	dB	С	F _{in} = F _{sample} /10 0
	Range	16-bit single-ended mode Avg=32		_	_	_		D	U
11	Input Leakage Error	all modes	E _{IL}		I _{In} * R _{AS}	5	mV	D	I _{In} = leakage current (refer to DC characteri stics)

¹ All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$

² Typical values assume V_{DDA} = 3.0V, Temp = 25°C, f_{ADCK}=2.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
 ³ 1 LSB = (V_{REFH} - V_{REFL})/2^N

#	Characteristic		Symbol	Min	Typ ¹	Max	Unit	С
	Crystal start-up time ⁴	• Low range, low gain (RANGE = 0, HGO = 0)	t CSTL-LP	_	200	_		D
6		 Low range, high gain (RANGE = 0, HGO = 1) 	t CSTL-HG O	_	400	_		D
		 High range, low gain (RANGE = 1, HGO = 0)⁵ 	t _{CSTH-LP}	_	5	_	ms	D
		 High range, high gain (RANGE = 1, HGO = 1)⁵ 	^t CSTH-HG О	_	15	_		D

Table 19. XOSC (Temperature Range = -40 to 105°C Ambient)


¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz.

⁴ This parameter is characterized and not tested on each device. Proper PC board layout porcedures must be followed to achieve specifications.

⁵ 4 MHz crystal.

#	Symbol	Parameter		Min	Typical ¹	Max	С	Unit	
9	t _{Rise} , t _{Fall}	t_{Rise} , t_{Fall} Port rise and fall time (load = 50 pF) ⁴ , Low Drive							
			Slew rate control disabled (PTxSE = 0)	_	11	—	D		
			Slew rate control enabled (PTxSE = 1)	_	35	_	D		
			Slew rate control disabled (PTxSE = 0)	_	40	_	D		
			Slew rate control enabled (PTxSE = 1)		75		D		

Table 20. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 105 °C.

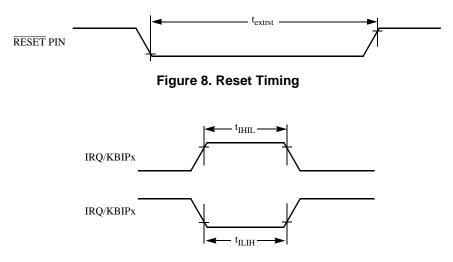


Figure 9. IRQ/KBIPx Timing

Freescale Semiconductor

2.11.2 TPM Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 21. TPM Input Timing

#	С	Function	Symbol	Min	Мах	Unit
1	—	External clock frequency	f _{TPMext}	dc	f _{Bus} /4	MHz
2	—	External clock period	t _{TPMext}	4	—	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	—	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

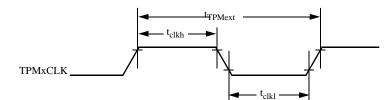


Figure 10. Timer External Clock

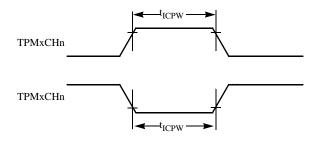
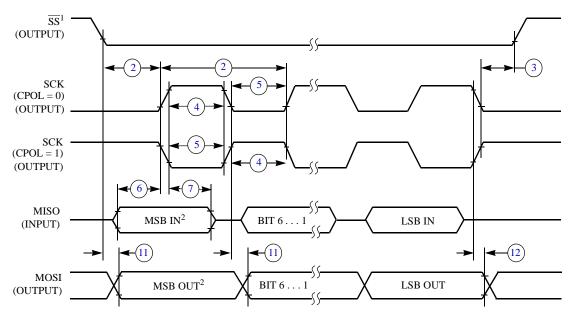
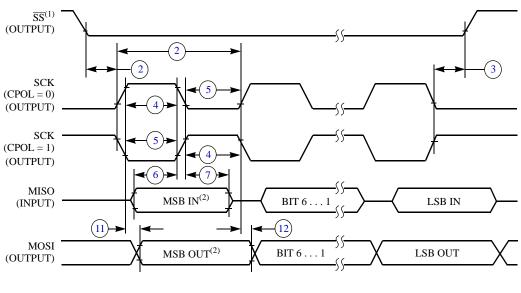



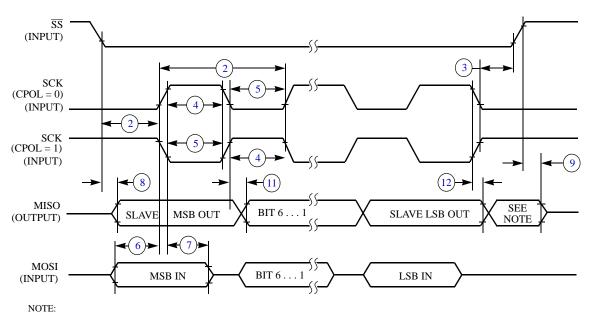
Figure 11. Timer Input Capture Pulse



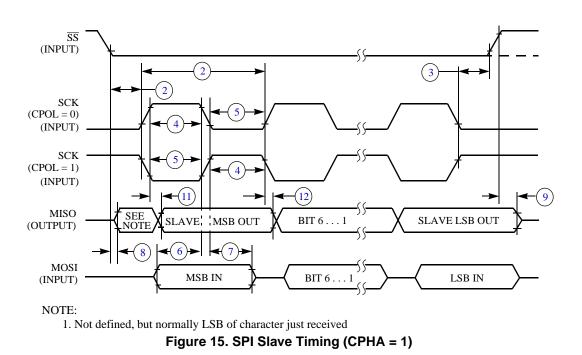
NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.



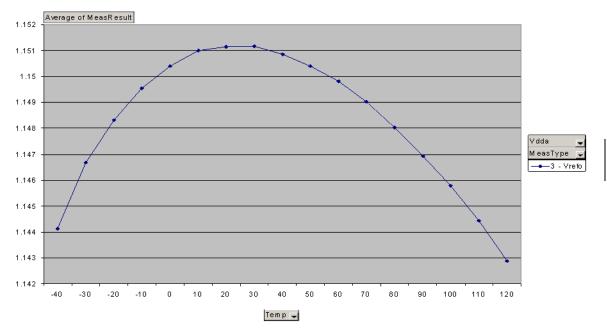
NOTES:


1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

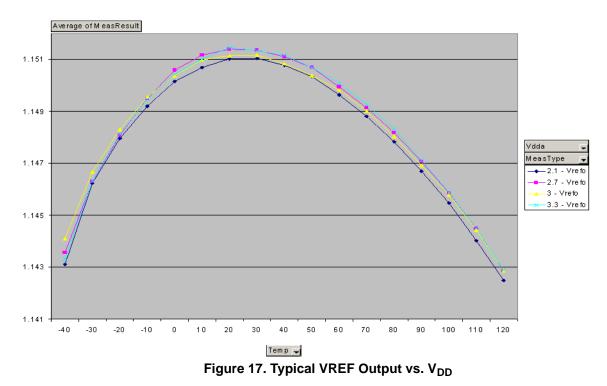
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 13. SPI Master Timing (CPHA = 1)

1. Not defined, but normally MSB of character just received **Figure 14. SPI Slave Timing (CPHA = 0)**


2.14 USB Electricals

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.


If the Freescale USB On-the-Go implementation has electrical characteristics that deviate from the standard or require additional information, this space would be used to communicate that information.

#	Characteristic	Symbol	Min	Тур	Мах	Unit	С
1	Regulator operating voltage	V _{regin}	3.9	_	5.5	V	С
2	VREG output	V _{regout}	3	3.3	3.75	V	Р
3	V _{USB33} input with internal VREG disabled	V _{usb33in}	3	3.3	3.6	V	С
4	VREG Quiescent Current	I _{VRQ}	_	0.5	_	mA	С

Table 24. Internal USB 3.3 V Voltage Regulator Characteristics

2.16 TRIAMP Electrical Parameters

Table 27. TRIAMP Characteristics 1.8–3.6 V, –40°C~105°C

#	Characteristic ¹	Symbol	Min	Typ ²	Max	Unit	С
1	Operating Voltage	V _{DD}	1.8	—	3.6	V	С
2	Supply Current (I _{OUT} =0mA, CL=0) Low-power mode	I _{SUPPLY}		52	60	μA	Т
3	Supply Current (I _{OUT} =0mA, CL=0) High-speed mode	I _{SUPPLY}	_	432	480	μΑ	Т
4	Input Offset Voltage	V _{OS}		± 1	± 5	mV	Т
5	Input Offset Voltage Temperature Drift	α _{VOS}		600	—	μV	Т
6	Input Offset Current	I _{OS}		±120	500	pА	Т
7	Input Bias Current (0 ~ 50°C)	I _{BIAS}	_	< 350	< ±500	pА	Т
8	Input Bias Current (–40 ~ 105°C)	I _{BIAS}		3	6.55	nA	Т
9	Input Common Mode Voltage Low	V _{CML}	0	—	—	V	Т
10	Input Common Mode Voltage High	V _{CMH}		—	V _{DD} -1.4	V	Т
11	Input Resistance	R _{IN}	500	—	—	MΩ	Т
12	Input Capacitances	C _{IN}		—	5	pF	D
13	AC Input Impedance (f _{IN} =100kHz)	X _{IN}	_	1	—	MΩ	D
14	Input Common Mode Rejection Ratio	CMRR	60	70	—	dB	Т
15	Power Supply Rejection Ration	PSRR	60	70	—	dB	Т
16	Slew Rate (ΔV_{IN} =100mV) Low-power mode	SR		0.1	—	V/µs	Т
17	Slew Rate (ΔV_{IN} =100mV) High-speed mode	SR	_	1	—	V/µs	Т
18	Unity Gain Bandwidth (Low-power mode) 50pF	GBW	0.15	0.25	—	MHz	Т
19	Unity Gain Bandwidth (High-speed mode) 50pF	GBW	_	1.6	—	MHz	Т
20	DC Open Loop Voltage Gain	A _V		80	—	dB	Т
21	Load Capacitance Driving Capability	CL(max)		—	100	pF	Т
22	Output Impedance AC Open Loop (@100 kHz Low-power mode)	R _{OUT}	_	1.4	—	kΩ	D
23	Output Impedance AC Open Loop (@100 kHz High-speed mode)	R _{OUT}	—	184	—	Ω	D
24	Output Voltage Range	triout	0.15	_	V _{DD} – 0.15	V	Т
25	Output Drive Capability	I _{OUT}	_	± 1.0	—	mA	Т
26	Gain Margin	GM	20		—	dB	D
27	Phase Margin	PM	45	55	_	deg	Т
28	Input Voltage Noise Density	f= 1 kHz	—	160	—	nV/√Hz	Т

¹ All parameters are measured at 3.0 V, CL= 47 pF across temperature -40 to + 105 °C unless specified.

 $^2\,$ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

2.17 **OPAMP Electrical Parameters**

#	Characteristics ¹	Symbol	Min	Typ ²	Max	Unit	С
		_		тур			
1	Operating Voltage	V _{DD}	1.8	-	3.6	V	C
2	Supply Current (I _{OUT} =0mA, CL=0 Low-Power mode)	I _{SUPPLY}		67	80	μΑ	Т
3	Supply Current (I _{OUT} =0mA, CL=0 High-Speed mode)	I _{SUPPLY}	—	538	550	μΑ	Т
4	Input Offset Voltage	V _{OS}	—	±2	±6	mV	Т
5	Input Offset Voltage Temperature Coefficient	α_{VOS}	—	10	—	μV/C	Т
6	Input Offset Current (-40°C to 105°C)	I _{OS}	—	±2.5	±250	nA	Т
7	Input Offset Current (-40°C to 50°C)	I _{OS}	—	—	45	nA	Т
8	Positive Input Bias Current (-40°C to 105°C)	I _{BIAS}	_	0.8	3.5	nA	Т
9	Positive Input Bias Current (-40°C to 50°C)	I _{BIAS}	—	—	±2	nA	Т
10	Negative Input Bias Current (-40°C to 105°C)	I _{BIAS}	—	2.5	250	nA	Т
11	Negative Input Bias Current (-40°C to 50°C)	I _{BIAS}	—	—	45	nA	Т
12	Input Common Mode Voltage Low	V _{CML}	0.1	—	—	V	Т
13	Input Common Mode Voltage High	V _{CMH}	—	—	V _{DD}	V	Т
14	Input Resistance	R _{IN}	—	500	—	MΩ	Т
15	Input Capacitances	C _{IN}	—	—	10	pF	D
16	AC Input Impedance (f _{IN} =100kHz Negative Channel)	X _{IN}	—	52	—	kΩ	D
17	AC Input Impedance (f _{IN} =100kHz Positive Channel)	X _{IN}	_	132	—	kΩ	D
18	Input Common Mode Rejection Ratio	CMRR	55	65	—	dB	Т
19	Power Supply Rejection Ratio	PSRR	60	65	—	dB	Т
20	Slew Rate (ΔV_{IN} =100mV Low-Power mode)	SR	0.1	—	—	V/µs	Т
21	Slew Rate (△V _{IN} =100mV High-Speed mode)	SR	1	—	—	V/µs	Т
22	Unity Gain Bandwidth (Low-Power mode)	GBW	0.2	—	—	MHz	Т
23	Unity Gain Bandwidth (High-Speed mode)	GBW	1	—	—	MHz	Т
24	DC Open Loop Voltage Gain	A _V	80	90	—	dB	Т
25	Load Capacitance Driving Capability	CL(max)	_	—	100	pF	Т
26	Output Impedance AC Open Loop (@100 kHz Low-Power mode)	R _{OUT}	_	4k	—	Ω	D
27	Output Impedance AC Open Loop (@100 kHz High-Speed mode)	R _{OUT}	—	220	—	Ω	D
28	Output Voltage Range	V _{OUT}	0.15	—	V _{DD} -0.1 5	V	Т
29	Output Drive Capability	I _{OUT}	±0.5	±1.0	—	mA	Т
- 00	Gain Margin	GM	20		_	dB	D
30	Gain Margin	0.01	20			uр	

Table 28. OPAMP Characteristics 1.8–3.6 V

Freescale Semiconductor