

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SCI, SPI, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 6x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08mm32clh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1.1 Pin Assignments. .6 1.1.1 64-Pin LQFP .6 1.1.2 80-Pin LQFP .8 1.1.3 81-Pin MAPBGA .9 1.2 Pin Assignments by Packages .10 2 Electrical Characteristics .13 2.1 Parameter Classification .13 2.2 Absolute Maximum Ratings .14 2.3 Thermal Characteristics .15 2.4 ESD Protection Characteristics .16 2.5 DC Characteristics .17 2.6 Supply Current Characteristics .20 2.7 PRACMP Electricals .23 2.8 12-Bit DAC Electricals .24 2.9 ADC Characteristics .26	1 Devices	s in the MC9S08MM128 series					
1.1.164-Pin LQFP	1.1	Pin Assignments					
1.1.280-Pin LQFP81.1.381-Pin MAPBGA91.2Pin Assignments by Packages102Electrical Characteristics132.1Parameter Classification132.2Absolute Maximum Ratings142.3Thermal Characteristics152.4ESD Protection Characteristics162.5DC Characteristics172.6Supply Current Characteristics202.7PRACMP Electricals232.812-Bit DAC Electricals242.9ADC Characteristics26		1.1.1 64-Pin LQFP6					
1.1.381-Pin MAPBGA91.2Pin Assignments by Packages102Electrical Characteristics132.1Parameter Classification132.2Absolute Maximum Ratings142.3Thermal Characteristics152.4ESD Protection Characteristics162.5DC Characteristics172.6Supply Current Characteristics202.7PRACMP Electricals232.812-Bit DAC Electricals242.9ADC Characteristics26		1.1.2 80-Pin LQFP					
1.2Pin Assignments by Packages102Electrical Characteristics132.1Parameter Classification132.2Absolute Maximum Ratings142.3Thermal Characteristics152.4ESD Protection Characteristics162.5DC Characteristics172.6Supply Current Characteristics202.7PRACMP Electricals232.812-Bit DAC Electricals242.9ADC Characteristics26		1.1.3 81-Pin MAPBGA					
2 Electrical Characteristics132.1 Parameter Classification132.2 Absolute Maximum Ratings142.3 Thermal Characteristics152.4 ESD Protection Characteristics162.5 DC Characteristics172.6 Supply Current Characteristics202.7 PRACMP Electricals232.8 12-Bit DAC Electricals242.9 ADC Characteristics26	1.2	Pin Assignments by Packages10					
2.1Parameter Classification132.2Absolute Maximum Ratings142.3Thermal Characteristics152.4ESD Protection Characteristics162.5DC Characteristics172.6Supply Current Characteristics202.7PRACMP Electricals232.812-Bit DAC Electricals242.9ADC Characteristics26	2 Electric	al Characteristics					
2.2Absolute Maximum Ratings142.3Thermal Characteristics152.4ESD Protection Characteristics162.5DC Characteristics172.6Supply Current Characteristics202.7PRACMP Electricals232.812-Bit DAC Electricals242.9ADC Characteristics26	2.1	Parameter Classification					
2.3Thermal Characteristics152.4ESD Protection Characteristics162.5DC Characteristics172.6Supply Current Characteristics202.7PRACMP Electricals232.812-Bit DAC Electricals242.9ADC Characteristics26	2.2	Absolute Maximum Ratings14					
2.4ESD Protection Characteristics.162.5DC Characteristics.172.6Supply Current Characteristics.202.7PRACMP Electricals.232.812-Bit DAC Electricals.242.9ADC Characteristics.26	2.3	Thermal Characteristics15					
2.5DC Characteristics172.6Supply Current Characteristics202.7PRACMP Electricals232.812-Bit DAC Electricals242.9ADC Characteristics26	2.4	ESD Protection Characteristics					
2.6Supply Current Characteristics202.7PRACMP Electricals232.812-Bit DAC Electricals242.9ADC Characteristics26	2.5	DC Characteristics					
2.7PRACMP Electricals232.812-Bit DAC Electricals242.9ADC Characteristics26	2.6	Supply Current Characteristics					
2.8 12-Bit DAC Electricals	2.7	PRACMP Electricals					
2.9 ADC Characteristics	2.8	12-Bit DAC Electricals					
	2.9	ADC Characteristics					

2.10 2.11	MCG and External Oscillator (XOSC) Characteristics .33 AC Characteristics
2.12	SPI Characteristics
2.13	Flash Specifications
2.14	USB Electricals
2.15	VREF Electrical Specifications
2.16	TRIAMP Electrical Parameters
2.17	OPAMP Electrical Parameters
3 Orderin	g Information
3.1	Device Numbering System
3.2	Package Information
3.3	Mechanical Drawings
4 Revisio	n History

Related Documentation

Find the most current versions of all documents at: http://www.freescale.com.

Reference Manual —MC9S08MM128RM

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

1.1 Pin Assignments

This section shows the pin assignments for the MC9S08MM128 series devices.

1.1.1 64-Pin LQFP

The following two figures show the 64-pin LQFP pinout configuration. The first illustrates the pinout configuration for MC9S08MM128, MC9S08MM64, and MC9S08MM32 devices.

Figure 2. 64-Pin LQFP for MC9S08MM128, MC9S08MM64, and MC9S08MM32 devices

For MC9S08MM32A devices, pins 56, 57, 58, and 59 are no connects (NC) as illustrated in the following figure.

Figure 3. 64-Pin LQFP for MC9S08MM32A devices

Freescale Semiconductor

1.1.2 80-Pin LQFP

The following figure shows the 80-pin LQFP pinout configuration.

Figure 4. 80-Pin LQFP

1.2 Pin Assignments by Packages

Package							
81 MAPBGA	80 LQFP	64 LQFP	Default Function	ALT1	ALT2	ALT3	Composite Pin Name
B2	1	1	PTA0	SS1	—	—	PTA0/SS1
A1	2	2	IRO	—	_	_	IRO
C4	3		PTA1	KBI1P0	TX1	_	PTA1/KBI1P0/TX1
D5	4	—	PTA2	KBI1P1	RX1	ADP4	PTA2/KBI1P1/RX1/ADP4
D6	5		PTA3	KBI1P2	ADP5	_	PTA3/KBI1P2/ADP5
C1	6	3	PTA4	INP1+	—	—	PTA4/INP1+
C2	7	4	PTA5	—	—	—	PTA5
C3	8	5	PTA6	—	_	—	PTA6
D2	9	6	PTA7	INP2+	—	—	PTA7/INP2+
D3	10	7	PTB0	—	—	—	PTB0
D4	11	8	PTB1	BLMS	_		PTB1/BLMS
J1	12	9	VSSA	—	—	—	VSSA
J2	13	10	VREFL	—	—	—	VREFL
D1	14	11	INP1-		—		INP1-
E1	15	12	OUT1	—	—	—	OUT1
F2	16	13	DADP2	TRIOUT1	—	—	DADP2/TRIOUT1
F1	17	14	VINP1	—		—	VINP1
E2	18	15	DADM2	VINN1			DADM2/VINN1
F3	19	16	INP2-	—	—	—	INP2-
E3	20	17	OUT2	—		—	OUT2
G2	21	18	DACO	—	—	—	DACO
G3	22	19	DADP3	TRIOUT2	_	_	DADP3/TRIOUT2
H4	23	20	VINP2	—	—	—	VINP2
G4	24	21	DADM3	VINN2	—	_	DADM3/VINN2
G1	25	22	DADP0	—	_	_	DADP0
H1	26	23	DADM0	—	—	_	DADM0
G5	27	24	VREFO	_	_	_	VREFO
H3	28	—	DADP1	—	_	_	DADP1
H2	29	—	DADM1	—	—	—	DADM1

Table 3. Package Pin Assignments

Freescale Semiconductor

Package							
81 MAPBGA	80 LQFP	64 LQFP	Default Function	ALT1	ALT2	ALT3	Composite Pin Name
J3	30	25	VREFH	—	—	_	VREFH
J4	31	26	VDDA	_	—		VDDA
F4	32	27	VSS2	_	—	_	VSS2
J5	33	28	PTB2	EXTAL1	—	_	PTB2/EXTAL1
J6	34	29	PTB3	XTAL1	—	_	PTB3/XTAL1
E4	35	30	VDD2	_	—	_	VDD2
J8	36	31	PTB4	EXTAL2	—	_	PTB4/EXTAL2
J9	37	32	PTB5	XTAL2	—		PTB5/XTAL2
G6	38		PTB6	KBI1P3	—	_	PTB6/KBI1P3
F7	39		PTB7	KBI1P4	—	_	PTB7/KBI1P4
G7	40	33	PTC0	MOSI2	—	_	PTC0/MOSI2
G8	41	34	PTC1	MISO2	—		PTC1/MISO2
G9	42	35	PTC2	KBI1P5	SPSCK2	ADP6	PTC2/KBI1P5/SPSCK2/ADP6
H5	43	36	PTC3	KBI1P6	SS2	ADP7	PTC3/KBI1P6/SS2/ADP7
H6	44	37	PTC4	KBI1P7	CMPP0	ADP8	PTC4/KBI1P7/CMPP0/ADP8
H8	45	38	PTC5	KBI2P0	CMPP1	ADP9	PTC5/KBI2P0/CMPP1/ADP9
H9	46	39	PTC6	KBI2P1	PRACMPO	ADP10	PTC6/KBI2P1/PRACMPO/ADP10
F8	47	40	PTC7	KBI2P2	CLKOUT	ADP11	PTC7/KBI2P2/CLKOUT/ADP11
H7	48	41	PTD0	BKGD	MS	_	PTD0/BKGD/MS
J7	49	42	PTD1	CMPP2	RESET	_	PTD1/CMPP2/RESET
E7	50	43	PTD2	TPM1CH0	—	_	PTD2TPM1CH0
E8	51	44	PTD3	TPM1CH1	—	_	PTD3/TPM1CH1
F9	52	45	PTD4	SDA	TPM1CH2	_	PTD4/SDA/TPM1CH2
D7	53	46	PTD5	SCL	TPM1CH3		PTD5/SCL/TPM1CH3
E9	54	47	PTD6	TX1	—		PTD6/TX1
D8	55	48	PTD7	RX1	—	_	PTD7/RX1
D9	56		PTE0	KBI2P3	—	_	PTE0/KBI2P3
C9	57	—	PTE1	KBI2P4	—		PTE1/KBI2P4
C8	58	—	PTE2	KBI2P5	—		PTE2/KBI2P5
B9	59	—	PTE3	KBI2P6	—	—	PTE3/KBI2P6
A9	60	49	PTE4	CMPP3	TPMCLK	IRQ	PTE4/CMPP3/TPMCLK/IRQ

Table 3. Package Pin Assignments	(Continued)
----------------------------------	-------------

Freescale Semiconductor

Package							
81 MAPBGA	80 LQFP	64 LQFP	Default Function	ALT1	ALT2	ALT3	Composite Pin Name
F5	61	50	VSS3	—	—	—	VSS3
E5	62	51	VDD3	—	—	—	VDD3
C7	63	52	PTE5	TX2	—		PTE5/TX2
C6	64	53	PTE6	RX2	—		PTE6/RX2
B6	65	—	PTE7	TPM2CH3	_		PTE7/TPM2CH3
B8	66	—	PTF0	TPM2CH2	—		PTF0/TPM2CH2
B7	67	54	PTF1	RX2	TPM2CH1		PTF1/RX2/TPM2CH1
C5	68	55	PTF2	TX2	TPM2CH0		PTF2/TX2/TPM2CH0
A8	69	—	PTF3	SCL	—		PTF3/SCL
A7	70	—	PTF4	SDA	—		PTF4/SDA
B5	71	—	PTF5	KBI2P7	_		PTF5/KBI2P7
A6	72	56	VUSB33 ¹	_	—		VUSB33
B4	73	57	USB_DM ²	_	—		USB_DM
A4	74	58	USB_DP ³	_	_		USB_DP
A5	75	59	VBUS ⁴	_	—		VBUS
F6	76	60	VSS1	_	—		VSS1
E6	77	61	VDD1	_	_		VDD1
A3	78	62	PTF6	MOSI1	—	_	PTF6/MOSI1
B1	79	63	PTF7	MISO1	—		PTF7/MISO1
A2	80	64	PTG0	SPSCK1	—		PTG0/SPSCK1
B3	—	—	PTG1	_	—		PTG1

Table 3. Package Pin Assignments (Continued)

¹ NC on MC9S08MM32A devices.

² NC on MC9S08MM32A devices.

³ NC on MC9S08MM32A devices.

⁴ NC on MC9S08MM32A devices.

This section contains electrical specification tables and reference timing diagrams for the MC9S08MM128/64/32/32A microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 4. Parameter Classifications

Ρ	Those parameters are guaranteed during production testing on each individual device.
C	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

#	Symbol	Rating		Value	Unit
1	T _A	Operating temperature range (packaged):			°C
			MC9S08MM128	-40 to 105	
			MC9S08MM64	-40 to 105	
			MC9S08MM32	-40 to 105	
			MC9S08MM32A	-40 to 105	
2	T _{JMAX}	Maximum junction temp	erature	135	°C
3	θ_{JA}	Thermal resistance 1,2,3,4 Single-layer board — 1s			°C/W
			81-pin MBGA	77	
			80-pin LQFP	55	
			64-pin LQFP	68	
4	θ_{JA}	Thermal resistance ^{1, 2, 3, 4} Four-layer board — 2s2p		°C/W	
			81-pin MBGA	47	
			80-pin LQFP	40	
			64-pin LQFP	49	

0		55	00	
Table	6.	Therma	I Chara	cteristics

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer
- ⁴ 2s2p Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_I) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 T_A = Ambient temperature, °C

 θ_{IA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

Freescale Semiconductor

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 ESD Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human Body	Series Resistance	R1	1500	Ω
	Storage Capacitance	С	100	pF
	Number of Pulse per pin	—	3	—
Machine	Series Resistance	R1	0	Ω
	Storage Capacitance	С	200	pF
	Number of Pulse per pin	—	3	—
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	—	7.5	V

Table 7. ESD and Latch-up Test Conditions

Table 8. ESD and Latch-	Up Protection (Characteristics
-------------------------	-----------------	-----------------

#	Rating	Symbol	Min	Max	Unit	С
1	Human Body Model (HBM)	V _{HBM}	±2000		V	Т
2	Machine Model (MM)	V _{MM}	±200		V	Т
3	Charge Device Model (CDM)	V _{CDM}	±500		V	Т
4	Latch-up Current at T _A = 125°C	I _{LAT}	±100		mA	Т

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	Symbol	Charac	teristic	Condition	Min	Typ ¹	Мах	Unit	С
1	V _{DD}	Operating Voltage		_	1.8 ²	_	3.6	V	_
2	V _{OH}	Output high voltage	All I/O pins, low-	drive strength					
				$V_{DD} \ge 1.8 \text{ V},$ $I_{Load} = -600 \mu\text{A}$	V _{DD} – 0.5	—	_	V	С
			All I/O pins, high	-drive strength					
				$V_{DD} \ge 2.7 \text{ V},$ $I_{Load} = -10 \text{ mA}$	V _{DD} – 0.5	—		V	Ρ
				$V_{DD} \ge 1.8V,$ $I_{Load} = -3 \text{ mA}$	V _{DD} – 0.5	_	_	V	С
3	I _{OHT}	Output high current	Max total I _{OH} for	all ports					
				_	_	_	100	mA	D
4	V _{OL}	Output low voltage	All I/O pins, low-	drive strength				•	
				$\label{eq:VDD} \begin{split} V_{DD} &\geq 1.8 \text{ V}, \\ I_{Load} &= 600 \mu\text{A} \end{split}$	_	_	0.5	V	С
			All I/O pins, high	-drive strength				J	
				$V_{DD} \ge 2.7 \text{ V},$ $I_{Load} = 10 \text{ mA}$	_	—	0.5	V	Ρ
				$V_{DD} \ge 1.8 \text{ V},$ $I_{Load} = 3 \text{ mA}$	—	_	0.5	V	С
5	I _{OLT}	Output low current	Max total I _{OL} for all ports	_	_	_	100	mA	D
6	V _{IH}	Input high voltage	e all digital inputs						
				all digital inputs, $V_{DD} > 2.7 V$	0.70 x V _{DD}	—	_	V	Ρ
				all digital inputs, $\begin{array}{l} 2.7 \text{ V} > \text{V}_{DD} \geq \\ 1.8 \text{ V} \end{array}$	0.85 x V _{DD}	_	_	V	Ρ

Table 9. DC Characteristics

Num	Symbol	Charac	teristic	Condition	Min	Typ ¹	Max	Unit	С
20	V _{LVWH}	Low-voltage warning threshold — high range ⁹	V _{DD} falling						
				_	2.36	2.46	2.56	V	Р
			V_{DD} rising						
					2.36	2.46	2.56	V	Р
21	V _{LVWL}	Low-voltage warning threshold — low range ⁹	V _{DD} falling						
					2.11	2.16	2.22	V	Ρ
			V_{DD} rising						
				—	2.16	2.23	2.27	V	Р
22	V _{hys}	Low-voltage inhib hysteresis ¹⁰	it reset/recover	—	_	50	_	mV	С
23	V_{BG}	Bandgap Voltage	Reference ¹¹	_	1.15	1.17	1.18	V	Р

Table 9. DC Characteristics (Continued)

¹ Typical values are measured at 25°C. Characterized, not tested

 2 As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above V_{LVDL}.

- 3 Does not include analog module pins. Dedicated analog pins should not be pulled to V_{DD} or V_{SS} and should be left floating when not used to reduce current leakage.
- ⁴ Measured with $V_{In} = V_{DD}$.
- ⁵ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} except PTD1.
- ⁶ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁷ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).
- ⁸ Maximum is highest voltage that POR is guaranteed.
- ⁹ Run at 1 MHz bus frequency
- ¹⁰ Low voltage detection and warning limits measured at 1 MHz bus frequency.
- ¹¹ Factory trimmed at $V_{DD} = 3.0$ V, Temp = 25°C

#	Symbol	Parameter	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Тетр (°С)	С
5	WI _{DD}	Wait mode FEI mode, supply current	all modules	OFF ³					
			24 MHz	3	6.7	_	mA	-40 to 105	С
			20 MHz	3	5.6	_	mA	-40 to 105	Т
			8 MHz	3	2.4	_	mA	-40 to 105	Т
			1 MHz	3	1	_	mA	-40 to 105	Т
6	LPWI _{DD}	Low-Power Wait mode supply current							
			16 KHz	3	10	40	μA	-40 to 105	Т
7	S2I _{DD}	Stop2 mode supply cur- rent ⁴							
			N/A	3	0.39	0.8	μΑ	-40 to 25	Р
			N/A	3	2.4	4.5	μA	70	С
			N/A	3	7	11	μA	85	С
			N/A	3	16	22	μA	105	Р
			N/A	2	0.2	0.45	μΑ	-40 to 25	С
			N/A	2	2	3.8	μA	70	С
			N/A	2	8	12	μA	85	С
			N/A	2	10	20	μA	105	С

Table 10. Supply Current Characteristics (Continued)

#	Parameter	Condition		Unite	C				
#	Farameter		-40	25	70	85	105		C
7	DAC ¹	High-Power mode; no load on DACO	369	377	377	390	410	μA	Т
		Low-Power mode	50	51	51	52	60	μΑ	Т
Q	OPAMP ¹	High-Power mode	453	538	538	540	540	μA	Т
0		Low-Power mode	56	67	67	68	70	μA	Т
٩	TRIAMP ¹	High-Power mode	430	432	433	438	478	μA	Т
3		Low-Power mode	52	52	52	55	60	μA	Т

Table 11. Typical Stop Mode Adders (Continued)

 $\overline{1}$ Not available in stop2 mode.

2.7 PRACMP Electricals

#	Characteristic	Symbol	Min	Typical	Max	Unit	С
1	Supply voltage	V _{PWR}	1.8		3.6	V	Р
2	Supply current (active) (PRG enabled)	I _{DDACT1}	—		80	μA	D
3	Supply current (active) (PRG disabled)	I _{DDACT2}	—	_	40	μΑ	D
4	Supply current (ACMP and PRG all disabled)	I _{DDDIS}	_	_	2	nA	D
5	Analog input voltage	VAIN	$V_{SS} - 0.3$	_	V _{DD}	V	D
6	Analog input offset voltage	VAIO	—	5	40	mV	D
7	Analog comparator hysteresis	V _H	3.0	_	20.0	mV	D
8	Analog input leakage current	I _{ALKG}	—	_	1	nA	D
9	Analog comparator initialization delay	tAINIT	—	_	1.0	μS	D
10	Programmable reference generator inputs	V _{In2} (V _{DD25})	1.8	_	2.75	V	D
11	Programmable reference generator setup delay	t _{PRGST}	_	1	_	μs	D
12	Programmable reference generator step size	Vstep	0.75	1	1.25	LSB	D
13	Programmable reference generator voltage range	Vprgout	V _{In} /32	_	V _{in}	V	Р

Table 12. PRACMP Electrical Specifications

Table 16. 16-Bit SAR ADC Characteristics full operating ra	nge
(V _{REFH} = V _{DDA} , > 1.8, V _{REFL} = V _{SSA} \leq 8 MHz, –40 to 85 °C)

#	Characteristic	Conditions ¹	Symb	Min	Typ ²	Мах	Unit	С	Comment
	Supply Current	ADLPC=1, ADHSC=0			215	_			
1		ADLPC=0, ADHSC=0	I _{DDAD}	_	470	_	μA	т	ADLSMP =0
		ADLPC=0, ADHSC=1			610	_			ADCO=1
2	Supply Current	Stop, Reset, Module Off	I _{DDAD}		0.01	_	μA	Т	
	ADC	ADLPC=1, ADHSC=0		—	2.4	_			
3	Asynchronous Clock Source	ADLPC=0, ADHSC=0	f _{ADACK}	_	5.2	_	MHz	С	t _{ADACK} =
		ADLPC=0, ADHSC=1		_	6.2	_			1/f _{ADACK}
4	Sample Time	See Reference Manual for	sample tim	nes					
5	Conversion Time	See Reference Manual for	conversior	i times					
6	Total Unadjusted Error	16-bit differential mode 16-bit single-ended mode	TUE	_	±16 ±20	+48/ -40 +56/ -28	LSB ³	Т	32x Hardware Averaging (AVGE = %1 AVGS = %11)
		13-bit differential mode 12-bit single-ended mode		_	±1.5 ±1.75	±3.0 ±3.5		Т	
		11-bit differential mode 10-bit single-ended mode		_	±0.7 ±0.8	±1.5 ±1.5		Т	
		9-bit differential mode 8-bit single-ended mode		_	±0.5 ±0.5	±1.0 ±1.0		Т	
7	Differential Non-Linearity	16-bit differential mode 16-bit single-ended mode	DNL	_	±2.5 ±2.5	+5/-3 +5/-3	LSB ²	Т	
		13-bit differential mode 12-bit single-ended mode		_	±0.7 ±0.7	±1 ±1		Т	
		11-bit differential mode 10-bit single-ended mode		_	±0.5 ±0.5	±0.75 ±0.75		Т	
		9-bit differential mode 8-bit single-ended mode		_	±0.2 ±0.2	±0.5 ±0.5		Т	

Table 17. 16-bit SAR ADC Characteristics full operating range	
(V_{REFH} = V_{DDA}, \geq 2.7 V, V_{REFL} = V_{SSA}, f_{ADACK} \leq 4 MHz, ADHSC = 1)	

#	Characteristic	Conditions ¹	Symb	Min	Typ ²	Max	Unit	С	Comment
1	Total Unadjusted Error	16-bit differential mode 16-bit single-ended mode	TUE		±16 ±20	+24/ -24 +32/-20	LSB ³	Т	32x Hardware Averaging (AVGE = %1 AVGS = %11)
		13-bit differential mode 12-bit single-ended mode		_	±1.5 ±1.75	±2.0 ±2.5		Т	
		11-bit differential mode 10-bit single-ended mode			±0.7 ±0.8	±1.0 ±1.25		Т	
		9-bit differential mode 8-bit single-ended mode			±0.5 ±0.5	±1.0 ±1.0		Т	
2	Differential Non-Linearity	16-bit differential mode 16-bit single-ended mode	DNL		±2.5 ±2.5	±3 ±3	LSB ²	Т	
		13-bit differential mode 12-bit single-ended mode		_	±0.7 ±0.7	±1 ±1		Т	
		11-bit differential mode 10-bit single-ended mode			±0.5 ±0.5	±0.75 ±0.75		Т	
		9-bit differential mode 8-bit single-ended mode			±0.2 ±0.2	±0.5 ±0.5		Т	
3	Integral Non-Linearity	16-bit differential mode 16-bit single-ended mode	INL		±6.0 ±10.0	±12.0 ±16.0	LSB ²	Т	
		13-bit differential mode 12-bit single-ended mode			±1.0 ±1.0	±2.0 ±2.0		Т	
		11-bit differential mode 10-bit single-ended mode			±0.5 ±0.5	±1.0 ±1.0		Т	
		9-bit differential mode 8-bit single-ended mode		_	±0.3 ±0.3	±0.5 ±0.5		Т	
4	Zero-Scale Error	16-bit differential mode 16-bit single-ended mode	E _{ZS}		±4.0 ±4.0	+16/0 +16/-8	LSB ²	Т	V _{ADIN} = V _{SSA}
		13-bit differential mode 12-bit single-ended mode		_	±0.7 ±0.7	±2.0 ±2.0		Т	
		11-bit differential mode 10-bit single-ended mode		_	±0.4 ±0.4	±1.0 ±1.0		Т	
		9-bit differential mode 8-bit single-ended mode			±0.2 ±0.2	±0.5 ±0.5		Т	

2.11 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

2.11.1 Control Timing

Table 20. Control Timing

#	Symbol	Parameter		Min	Typical ¹	Max	С	Unit
1	f _{Bus}	Bus frequency $(t_{cyc} = 1/f_{Bus})$						MHz
			$V_{DD} \ge 1.8 \text{ V}$	dc	—	10	D	
			V _{DD} > 2.1 V	dc	—	20	D	
			V _{DD} > 2.4 V	dc	—	24	D	
2	t _{LPO}	Internal low-power oscillator period		700	1000	1300	Р	μS
3	t _{extrst}	External reset pulse width ² ($t_{cyc} = 1/f_{Self_reset}$)		100	—	—	D	ns
4	t _{rstdrv}	Reset low drive		66 x t _{cyc}	—	_	D	ns
5	t _{MSSU}	Active background debug mode latch setup time		500	_	—	D	ns
6	t _{MSH}	Active background debug mode latch hold time		100	—	—	D	ns
7	t _{ILIH,} t _{IHIL}	 IRQ pulse width Asynchronous path² Synchronous path³ 		100 1.5 x t _{cyc}	_	_	D	ns
8	t _{ILIH,} t _{IHIL}	 KBIPx pulse width Asynchronous path² Synchronous path³ 		100 1.5 x t _{cyc}	—	—	D	ns

NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 13. SPI Master Timing (CPHA = 1)

3.2 Package Information

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
64	Low Quad Flat Package	LQFP	LH	840F-02	98ASS23234W
80	Low Quad Flat Package	LQFP	LK	917-01	98ASS23174W
81	MAPBGA Package	Map PBGA	MB	1662-01	98ASA10670D

Table 30. Package Descriptions

3.3 Mechanical Drawings

Table 30 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08MM128 series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 30, or
- Open a browser to the Freescale[®] website (http://www.freescale.com), and enter the appropriate document number (from Table 30) in the "Enter Keyword" search box at the top of the page.

4 Revision History

Table 31. Revision History

Rev	Date	Description of Changes
0	06/2009	Initial release of the Data Sheet.
1	07/2009	Updated MCG and XOSC Average internal reference frequency.
2	01/2010	Revised to include MC9S08MM32 and MC9S08MM32A devices.Updated electrical characteristic data.
3	10/2010	Updated with the latest characteristic data. Added several figures. Added the ADCTypical Operation table.