

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	48MHz
Connectivity	I²C, SCI, SPI, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 6x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08mm64vlh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1 Devices	s in the MC9S08MM128 series
1.1	Pin Assignments6
	1.1.1 64-Pin LQFP
	1.1.2 80-Pin LQFP
	1.1.3 81-Pin MAPBGA
1.2	Pin Assignments by Packages10
2 Electric	al Characteristics
2.1	Parameter Classification
2.2	Absolute Maximum Ratings14
2.3	Thermal Characteristics15
2.4	ESD Protection Characteristics
2.5	DC Characteristics
2.6	Supply Current Characteristics
2.7	PRACMP Electricals
2.8	12-Bit DAC Electricals
2.9	ADC Characteristics

2.10 2.11	MCG and External Oscillator (XOSC) Characteristics .33 AC Characteristics
2.12	SPI Characteristics
2.13	Flash Specifications
2.14	USB Electricals
2.15	VREF Electrical Specifications
2.16	TRIAMP Electrical Parameters
2.17	OPAMP Electrical Parameters
3 Orderin	g Information
3.1	Device Numbering System
3.2	Package Information
3.3	Mechanical Drawings
4 Revisio	n History

Related Documentation

Find the most current versions of all documents at: http://www.freescale.com.

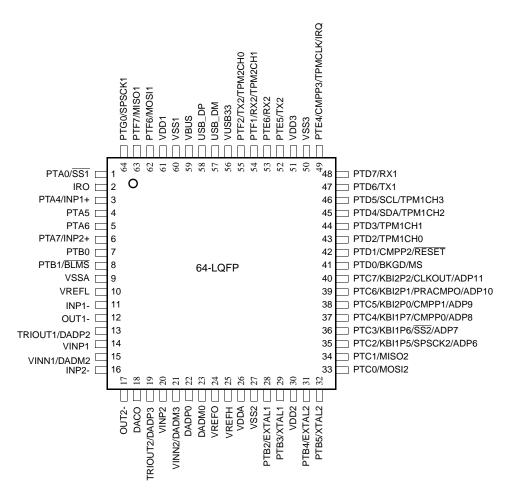
Reference Manual —MC9S08MM128RM

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

The following table summarizes the feature set available in the MC9S08MM128 series of MCUs.

Feature	МС	9S08MN	128	MC9S08MM64	MC9S08MM32	MC9S08MM32A
Pin quantity	81	80	64	64	64	64
FLASH size (bytes)		131072		65535	32768	32768
RAM size (bytes)		12K		12K	4K	2K
Programmable Analog Comparator (PRACMP)		yes		yes	yes	yes
Debug Module (DBG)		yes		yes	yes	yes
Multipurpose Clock Generator (MCG)		yes		yes	yes	yes
Inter-Integrated Communication (IIC)		yes		yes	yes	yes
Interrupt Request Pin (IRQ)		yes		yes	yes	yes
Keyboard Interrupt (KBI)	16	16	6	6	6	6
Port I/O ¹	47	46	33	33	33	33
Dedicated Analog Input Pins		12		12	12	12
Power and Ground Pins		8		8	8	8
Time Of Day (TOD)		yes		yes	yes	yes
Serial Communications (SCI1)		yes		yes	yes	yes
Serial Communications (SCI2)	yes		yes	yes	yes	
Serial Peripheral Interface 1 (SPI1 (FIFO))		yes		yes	yes	yes
Serial Peripheral Interface 2 (SPI2)		yes		yes	yes	yes
Carrier Modulator Timer pin (IRO)		yes		yes	yes	yes
TPM input clock pin (TPMCLK)		yes		yes	yes	yes
TPM1 channels		4		4	4	4
TPM2 channels	4	4	2	2	2	2
XOSC1		yes		yes	yes	yes
XOSC2		yes		yes	yes	yes
USB		yes		yes	yes	no
Programmable Delay Block (PDB)		yes		yes	yes	yes
SAR ADC differential channels ²	4	4	3	3	3	3
SAR ADC single-ended channels	8	8	6	6	6	6
DAC ouput pin (DACO)		yes		yes	yes	yes
Voltage reference output pin (VREFO)		yes		yes	yes	yes
General Purpose OPAMP (OPAMP)		yes		yes	yes	yes
Trans-Impedance Amplifier (TRIAMP)		yes		yes	yes	yes

¹ Port I/O count does not include two (2) output-only and one (1) input-only pins.


² Each differential channel is comprised of 2 pin inputs.

1.1 Pin Assignments

This section shows the pin assignments for the MC9S08MM128 series devices.

1.1.1 64-Pin LQFP

The following two figures show the 64-pin LQFP pinout configuration. The first illustrates the pinout configuration for MC9S08MM128, MC9S08MM64, and MC9S08MM32 devices.

Figure 2. 64-Pin LQFP for MC9S08MM128, MC9S08MM64, and MC9S08MM32 devices

For MC9S08MM32A devices, pins 56, 57, 58, and 59 are no connects (NC) as illustrated in the following figure.

1.1.2 80-Pin LQFP

The following figure shows the 80-pin LQFP pinout configuration.

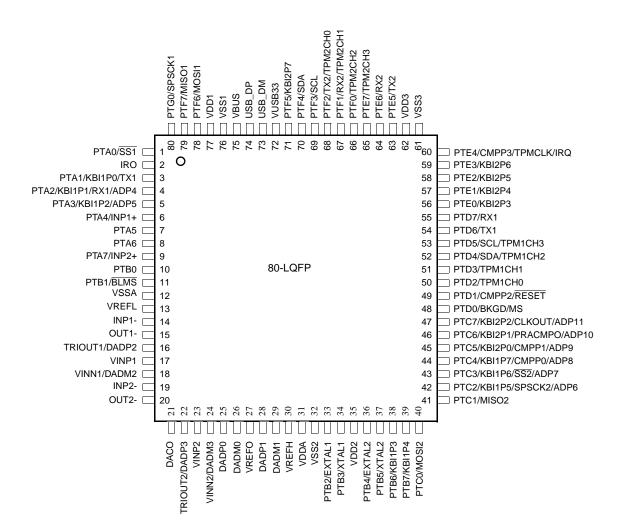


Figure 4. 80-Pin LQFP

Pa	ackag	е					
81 MAPBGA	80 LQFP	64 LQFP	Default Function	ALT1	ALT2	ALT3	Composite Pin Name
F5	61	50	VSS3	—	—		VSS3
E5	62	51	VDD3	—	—	—	VDD3
C7	63	52	PTE5	TX2	—	_	PTE5/TX2
C6	64	53	PTE6	RX2	—		PTE6/RX2
B6	65	—	PTE7	TPM2CH3	—		PTE7/TPM2CH3
B8	66	—	PTF0	TPM2CH2	—		PTF0/TPM2CH2
B7	67	54	PTF1	RX2	TPM2CH1		PTF1/RX2/TPM2CH1
C5	68	55	PTF2	TX2	TPM2CH0		PTF2/TX2/TPM2CH0
A8	69	—	PTF3	SCL	—	—	PTF3/SCL
A7	70	—	PTF4	SDA	—		PTF4/SDA
B5	71	—	PTF5	KBI2P7	—		PTF5/KBI2P7
A6	72	56	VUSB33 ¹	_	—		VUSB33
B4	73	57	USB_DM ²	_	—		USB_DM
A4	74	58	USB_DP ³	—	—		USB_DP
A5	75	59	VBUS ⁴	—	—	—	VBUS
F6	76	60	VSS1	—	—	—	VSS1
E6	77	61	VDD1	_	—	_	VDD1
A3	78	62	PTF6	MOSI1	—	_	PTF6/MOSI1
B1	79	63	PTF7	MISO1	—	_	PTF7/MISO1
A2	80	64	PTG0	SPSCK1		_	PTG0/SPSCK1
B3	—	—	PTG1	_		_	PTG1

Table 3. Package Pin Assignments (Continued)

¹ NC on MC9S08MM32A devices.

² NC on MC9S08MM32A devices.

³ NC on MC9S08MM32A devices.

⁴ NC on MC9S08MM32A devices.

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 ESD Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human Body	Series Resistance	R1	1500	Ω
	Storage Capacitance	R1 1500 ce C 100 er pin 3 R1 0 ce C 200 er pin 3 age limit -2.5	pF	
	Number of Pulse per pin	—	R1 1500 \mathcal{G} C 100 p 3 R1 0 \mathcal{G} C 200 p 3 3 3 -2.5 N	
Machine	Series Resistance	R1	0	Ω
	Storage Capacitance	С	200	pF
	Number of Pulse per pin	—	3	_
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	—	7.5	V

Table 7. ESD and Latch-up Test Conditions

Table 8	. ESD	and	Latch-Up	Protection	Characteristics
---------	-------	-----	----------	------------	-----------------

#	Rating	Symbol	Min	Max	Unit	С
1	Human Body Model (HBM)	V _{HBM}	±2000		V	Т
2	Machine Model (MM)	V _{MM}	±200		V	Т
3	Charge Device Model (CDM)	V _{CDM}	±500		V	Т
4	Latch-up Current at T _A = 125°C	I _{LAT}	±100		mA	Т

#	Symbol	Parameter	Bus	V _{DD} (V)	Typ ¹	Max	Unit	Temp	С
	-		Freq					(°C)	
5	WI _{DD}	Wait mode FEI mode, supply current	all modules	OFF ³					
			24 MHz	3	6.7	_	mA	-40 to 105	С
			20 MHz	3	5.6	_	mA	-40 to 105	Т
			8 MHz	3	2.4	_	mA	-40 to 105	Т
			1 MHz	3	1	_	mA	-40 to 105	Т
6	LPWI _{DD}	Low-Power Wait mode supply current							
			16 KHz	3	10	40	μA	-40 to 105	Т
7	S2I _{DD}	Stop2 mode supply cur- rent ⁴							
			N/A	3	0.39	0.8	μΑ	-40 to 25	Ρ
			N/A	3	2.4	4.5	μA	70	С
			N/A	3	7	11	μA	85	С
			N/A	3	16	22	μA	105	Р
			N/A	2	0.2	0.45	μA	-40 to 25	С
			N/A	2	2	3.8	μA	70	С
			N/A	2	8	12	μA	85	С
			N/A	2	10	20	μA	105	С

Table 10. Supply Current Characteristics (Continued)

#	Parameter	Condition		Units	с				
# Parameter		Condition	-40	25	70	85	105	Units	
7	DAC ¹	High-Power mode; no load on DACO	369	377	377	390	410	μA	Т
		Low-Power mode	50	51	51	52	60	μΑ	Т
8	OPAMP ¹	High-Power mode	453	538	538	540	540	μA	Т
0		Low-Power mode	56	67	67	68	70	μA	Т
9	TRIAMP ¹	High-Power mode	430	432	433	438	478	μA	Т
9		Low-Power mode	52	52	52	55	60	μA	Т

Table 11. Typical Stop Mode Adders (Continued)

 $\overline{1}$ Not available in stop2 mode.

2.7 PRACMP Electricals

					1	1	
#	Characteristic	Symbol	Min	Typical	Max	Unit	С
1	Supply voltage	V _{PWR}	1.8		3.6	V	Р
2	Supply current (active) (PRG enabled)	I _{DDACT1}	—		80	μA	D
3	Supply current (active) (PRG disabled)	I _{DDACT2}	—	_	40	μA	D
4	Supply current (ACMP and PRG all disabled)	I _{DDDIS}	—	_	2	nA	D
5	Analog input voltage	VAIN	$V_{SS} - 0.3$	_	V _{DD}	V	D
6	Analog input offset voltage	VAIO	—	5	40	mV	D
7	Analog comparator hysteresis	V _H	3.0	_	20.0	mV	D
8	Analog input leakage current	I _{ALKG}	—	_	1	nA	D
9	Analog comparator initialization delay	tAINIT	—	_	1.0	μS	D
10	Programmable reference generator inputs	V _{In2} (V _{DD25})	1.8	_	2.75	V	D
11	Programmable reference generator setup delay	t _{PRGST}	—	1	_	μs	D
12	Programmable reference generator step size	Vstep	0.75	1	1.25	LSB	D
13	Programmable reference generator voltage range	Vprgout	V _{In} /32	_	V _{in}	V	Ρ

Table 12. PRACMP Electrical Specifications

2.8 12-Bit DAC Electricals

Table 13. DAC 12LV Operating Requirements

#	Characteristic	Symbol	Min	Max	Unit	С	Notes
1	Supply voltage	V _{DDA}	1.8	3.6	V	Р	
2	Reference voltage	V _{DACR}	1.15	3.6	V	С	
3	Temperature	T _A	-40	105	°C	С	
4	Output load capacitance	CL	_	100	pF	с	A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
5	Output load current	١	_	1	mA	С	

Table 14. DAC 12-Bit Operating Behaviors

#	Characteristic	Symbol	Min	Тур	Max	Unit	С	Notes
1	Resolution	Ν	12	—	12	bit	Т	
2	Supply current low-power mode	I _{DDA_DACLP}	_	50	100	μA	т	
3	Supply current high-power mode	I _{DDA_DACHP}	—	345	500	μA	Т	
4	Full-scale Settling time (±1 LSB) (0x080 to 0xF7F or 0xF7F to 0x080) low-power mode	Ts _{FS} LP	_	_	200	ha	т	• $V_{DDA} = 3 V$ or 2.2 V • $V_{REFSEL} = 1$ • Temperature = 25°C
5	Full-scale Settling time (±1 LSB) (0x080 to 0xF7F or 0xF7F to 0x080) high-power mode	Ts _{FS} HP	_	_	30	ha	т	 V_{DDA} = 3 V or 2.2 V V_{REFSEL} = 1 Temperature = 25°C
6	Code-to-code Settling time (±1 LSB) (0xBF8 to 0xC08 or 0xC08 to 0xBF8) low-power mode	Ts _{C-C} LP	_	_	5	ha	Т	• $V_{DDA} = 3 V$ or 2.2 V • $V_{REFSEL} = 1$ • Temperature = 25°C
7	Code-to-code Settling time (±1 LSB) (0xBF8 to 0xC08 or 0xC08 to 0xBF8) high-power mode (3 V at Room Temperature)	Ts _{C-C} HP	_	1	_	μs	Т	 V_{DDA} = 3 V or 2.2 V V_{REFSEL} = 1 Temperature = 25°C
8	DAC output voltage range low (high-power mode, no load, DAC set to 0) (3 V at Room Temperature)	V _{dacoutl}	_	_	100	mV	т	

Table 16. 16-Bit SAR ADC Characteristics full operating range
(V _{REFH} = V _{DDA} , > 1.8, V _{REFL} = V _{SSA} \leq 8 MHz, –40 to 85 °C)

#	Characteristic	Conditions ¹	Symb	Min	Typ ²	Max	Unit	с	Comment
	Supply Current	ADLPC=1, ADHSC=0		_	215	_			
1		ADLPC=0, ADHSC=0	I _{DDAD}		470	—	μA	т	ADLSMP =0
		ADLPC=0, ADHSC=1		_	610	—			ADCO=1
2	Supply Current	Stop, Reset, Module Off	I _{DDAD}	—	0.01	—	μΑ	Т	
	ADC	ADLPC=1, ADHSC=0		_	2.4	—			
3	Asynchronous Clock Source	ADLPC=0, ADHSC=0	f _{ADACK}		5.2	—	MHz	С	t _{ADACK} =
		ADLPC=0, ADHSC=1		_	6.2	—			1/f _{ADACK}
4	Sample Time	See Reference Manual for	sample tim	nes					
5	Conversion Time	See Reference Manual for	conversion	i times					
6	Total Unadjusted Error	16-bit differential mode 16-bit single-ended mode	TUE		±16 ±20	+48/ -40 +56/ -28	LSB ³	Т	32x Hardware Averaging (AVGE = %1 AVGS = %11)
		13-bit differential mode 12-bit single-ended mode		_	±1.5 ±1.75	±3.0 ±3.5		Т	
		11-bit differential mode 10-bit single-ended mode		_	±0.7 ±0.8	±1.5 ±1.5		Т	
		9-bit differential mode 8-bit single-ended mode		_	±0.5 ±0.5	±1.0 ±1.0		Т	
7	Differential Non-Linearity	16-bit differential mode 16-bit single-ended mode	DNL	_	±2.5 ±2.5	+5/-3 +5/-3	LSB ²	Т	
		13-bit differential mode 12-bit single-ended mode		_	±0.7 ±0.7	±1 ±1		Т	
		11-bit differential mode 10-bit single-ended mode		_	±0.5 ±0.5	±0.75 ±0.75		Т	
		9-bit differential mode 8-bit single-ended mode			±0.2 ±0.2	±0.5 ±0.5		Т	

2.11 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

2.11.1 Control Timing

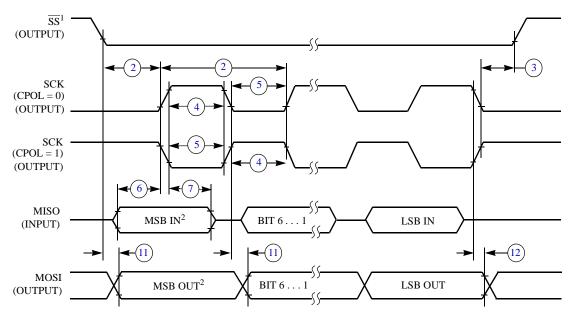
Table 20. Control Timing

#	Symbol	Parameter		Min	Typical ¹	Max	С	Unit
1	f _{Bus}	Bus frequency $(t_{cyc} = 1/f_{Bus})$					•	MHz
			$V_{DD} \ge 1.8 \text{ V}$	dc	—	10	D	
			V _{DD} > 2.1 V	dc	_	20	D	
			V _{DD} > 2.4 V	dc	_	24	D	
2	t _{LPO}	Internal low-power oscillator period		700	1000	1300	Ρ	μS
3	t _{extrst}	External reset pulse width ² ($t_{cyc} = 1/f_{Self_reset}$)		100	—	_	D	ns
4	t _{rstdrv}	Reset low drive		66 x t _{cyc}		_	D	ns
5	t _{MSSU}	Active background debug mode latch setup time		500	-	_	D	ns
6	t _{MSH}	Active background debug mode latch hold time		100	_	_	D	ns
7	t _{ILIH,} t _{IHIL}	 IRQ pulse width Asynchronous path² Synchronous path³ 		100 1.5 x t _{cyc}	_	_	D	ns
8	t _{ILIH,} t _{IHIL}	 KBIPx pulse width Asynchronous path² Synchronous path³ 		100 1.5 x t _{cyc}	_	_	D	ns

2.12 SPI Characteristics

Table 22 and Figure 12 through Figure 15 describe the timing requirements for the SPI system.

No. ¹	Characteristic ²		Symbol	Min	Мах	Unit	С
1	Operating frequency	Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz Hz	D
2	SPSCK period	Master Slave	t _{SPSCK}	2 4	2048 —	t _{cyc} t _{cyc}	D
3	Enable lead time	Master Slave	t _{Lead}	1/2 1		^t spscк t _{cyc}	D
4	Enable lag time	Master Slave	t _{Lag}	1/2 1	—	^t spscк t _{cyc}	D
5	Clock (SPSCK) high or low time	Master Slave	t _{WSPSCK}	t _{cyc} – 30 t _{cyc} – 30	1024 t _{cyc}	ns ns	D
6	Data setup time (inputs)	Master Slave	t _{SU} t _{SU}	15 15		ns ns	D
7	Data hold time (inputs)	Master Slave	t _{HI} t _{HI}	0 25		ns ns	D
8	Slave access time ³		t _a	—	1	t _{cyc}	D
9	Slave MISO disable time ⁴		t _{dis}	—	1	t _{cyc}	D
10	Data valid (after SPSCK edge)	Master Slave	t _v		25 25	ns ns	D
11	Data hold time (outputs)	Master Slave	t _{HO}	0 0		ns ns	D
12	Rise time	Input Output	t _{RI} t _{RO}		t _{cyc} – 25 25	ns ns	D
13	Fall time	Input Output	t _{FI} t _{FO}		t _{cyc} – 25 25	ns ns	D

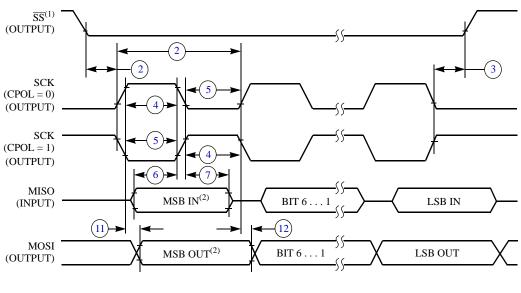

Table 22. SPI Timing

¹ Numbers in this column identify elements in Figure 12 through Figure 15.

 2 All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted; 100 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins.

 $^{3}\,$ Time to data active from high-impedance state.

⁴ Hold time to high-impedance state.



NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

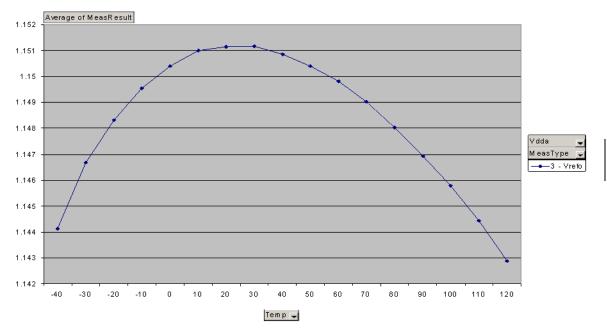
Figure 13. SPI Master Timing (CPHA = 1)

2.13 Flash Specifications

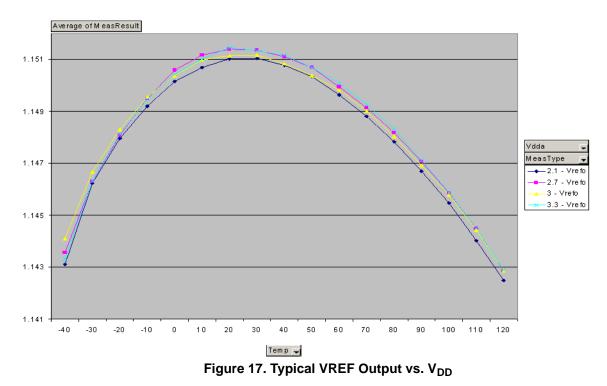
This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory chapter in the Reference Manual for this device (MC9S08MM128RM).

#	Characteristic	Symbol	Min	Typical	Мах	Unit	С
1	Supply voltage for program/erase –40°C to 105°C	V _{prog/erase}	1.8	_	3.6	V	D
2	Supply voltage for read operation	V _{Read}	1.8	—	3.6	V	D
3	Internal FCLK frequency ¹	f _{FCLK}	150	_	200	kHz	D
4	Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μS	D
5	Byte program time (random location) ²	t _{prog}		9		t _{Fcyc}	Р
6	Byte program time (burst mode) ²	t _{Burst}		4		t _{Fcyc}	Р
7	Page erase time ²	t _{Page}		4000		t _{Fcyc}	Р
8	Mass erase time ²	t _{Mass}		20,000		t _{Fcyc}	Р
9	Program/erase endurance ³ T _L to T _H = -40° C to + 105° C T = 25° C		10,000	 100,000	_	cycles	С
10	Data retention ⁴	t _{D_ret}	15	100		years	С


Table 23. Flash Characteristics

¹ The frequency of this clock is controlled by a software setting.


² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ **Typical endurance for flash** was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory*.

⁴ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory.*

2.17 **OPAMP Electrical Parameters**

#	Characteristics ¹	Symbol	Min	Typ ²	Max	Unit	С
		_		тур			
1	Operating Voltage	V _{DD}	1.8	-	3.6	V	C
2	Supply Current (I _{OUT} =0mA, CL=0 Low-Power mode)	I _{SUPPLY}		67	80	μΑ	Т
3	Supply Current (I _{OUT} =0mA, CL=0 High-Speed mode)	I _{SUPPLY}	—	538	550	μΑ	Т
4	Input Offset Voltage	V _{OS}	—	±2	±6	mV	Т
5	Input Offset Voltage Temperature Coefficient	α_{VOS}	—	10	—	μV/C	Т
6	Input Offset Current (-40°C to 105°C)	I _{OS}	—	±2.5	±250	nA	Т
7	Input Offset Current (-40°C to 50°C)	I _{OS}	—	—	45	nA	Т
8	Positive Input Bias Current (-40°C to 105°C)	I _{BIAS}	_	0.8	3.5	nA	Т
9	Positive Input Bias Current (-40°C to 50°C)	I _{BIAS}	—	—	±2	nA	Т
10	Negative Input Bias Current (-40°C to 105°C)	I _{BIAS}	—	2.5	250	nA	Т
11	Negative Input Bias Current (-40°C to 50°C)	I _{BIAS}	—	—	45	nA	Т
12	Input Common Mode Voltage Low	V _{CML}	0.1	—	—	V	Т
13	Input Common Mode Voltage High	V _{CMH}	—	—	V _{DD}	V	Т
14	Input Resistance	R _{IN}	—	500	—	MΩ	Т
15	Input Capacitances	C _{IN}	—	—	10	pF	D
16	AC Input Impedance (f _{IN} =100kHz Negative Channel)	X _{IN}	—	52	—	kΩ	D
17	AC Input Impedance (f _{IN} =100kHz Positive Channel)	X _{IN}	_	132	—	kΩ	D
18	Input Common Mode Rejection Ratio	CMRR	55	65	—	dB	Т
19	Power Supply Rejection Ratio	PSRR	60	65	—	dB	Т
20	Slew Rate (ΔV_{IN} =100mV Low-Power mode)	SR	0.1	—	—	V/µs	Т
21	Slew Rate (△V _{IN} =100mV High-Speed mode)	SR	1	—	—	V/µs	Т
22	Unity Gain Bandwidth (Low-Power mode)	GBW	0.2	—	—	MHz	Т
23	Unity Gain Bandwidth (High-Speed mode)	GBW	1	—	—	MHz	Т
24	DC Open Loop Voltage Gain	A _V	80	90	—	dB	Т
25	Load Capacitance Driving Capability	CL(max)	_	—	100	pF	Т
26	Output Impedance AC Open Loop (@100 kHz Low-Power mode)	R _{OUT}	_	4k	—	Ω	D
27	Output Impedance AC Open Loop (@100 kHz High-Speed mode)	R _{OUT}	—	220	—	Ω	D
28	Output Voltage Range	V _{OUT}	0.15	—	V _{DD} -0.1 5	V	Т
29	Output Drive Capability	I _{OUT}	±0.5	±1.0	—	mA	Т
- 00	Gain Margin	GM	20		_	dB	D
30	Gain Margin	0.01	20			uр	

Table 28. OPAMP Characteristics 1.8–3.6 V

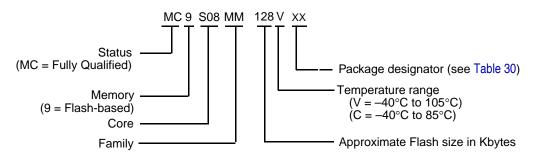
Freescale Semiconductor

Ordering Information

#	Characteristics ¹	Symbol	Min	Typ ²	Max	Unit	С
32	GPAMP startup time (Low-Power mode) (Tolerance < 1%, Vin = 0.5 Vp–p, CL = 25 pF, RL = 100k)	T _{startup}	_	4		uS	Т
33	GPAMP startup time (Low-Power mode) (Tolerance < 1%, Vin = 0.5 Vp–p, CL = 25 pF, RL = 100k)	T _{startup}	—	1	_	uS	Т
34	Input Voltage Noise Density	f=1 kHz	—	250		nV/√Hz	Т

Table 28. OPAMP Characteristics 1.8–3.6 V (Continued)

All parameters are measured at 3.3 V, CL =4 7 pF across temperature -40 to + 105°C unless specified. 2


Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

3 **Ordering Information**

This appendix contains ordering information for the device numbering system. MC9S08MM128 and MC9S08MM64 devices.

3.1 **Device Numbering System**

Example of the device numbering system:

Table 29. Device Numbering System

Device Number ¹	Men	nory	Available Packages ²
Device Number	Flash	RAM	Available Fackages
	131,072	12,288	64 LQFP
MC9S08MM128	131,072	12,288	80 LQFP
	131,072	12,288	81 MAPBGA
MC9S08MM64	65,536	12,288	64 LQFP
MC9S08MM32	32768	4096	64 LQFP
MC9S08MM32A	32768	2048	64 LQFP

¹ See Table 2 for a complete description of modules included on each device.

² See Table 30 for package information.

Revision History

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed: Freescale Semiconductor

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center http://compass.freescale.net/go/168063291 1-800-441-2447 or 1-303-675-2140 Fax: 1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009-2010. All rights reserved.

MC9S08MM128 Rev. 3, 10/2010

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.