

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/w79e2051rasg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

nuvoTon

- Lead Free (RoHS) PDIP 20: W79E2051RAKG
- Lead Free (RoHS) SOP 20: W79E2051RASG
- Lead Free (RoHS) SSOP 20: W79E2051RARG

3 PARTS INFORMATION LIST

3.1 Lead Free (RoHS) Parts information list

Table 3-1: Lead Free (RoHS) Parts information list

PART NO.	PROGRAM FLASH EPROM	RAM	DATA FLASH EPROM	INTERNAL RC OSCILLATOR ACCURACY ¹	PACKAGE
W79E4051AKG	4KB	256B	128B	22MHz ± 25%	PDIP-20 Pin
W79E4051ASG	4KB	256B	128B	22MHz ± 25%	SOP-20 Pin
W79E4051ARG	4KB	256B	128B	22MHz ± 25%	SSOP-20 Pin
W79E2051AKG	2KB	256B	128B	22MHz ± 25%	PDIP-20 Pin
W79E2051ASG	2KB	256B	128B	22MHz ± 25%	SOP-20 Pin
W79E2051ARG	2KB	256B	128B	22MHz ± 25%	SSOP-20 Pin
W79E4051RAKG	4KB	256B	128B	22.1184MHz ± 2%	PDIP-20 Pin
W79E4051RASG	4KB	256B	128B	22.1184MHz ± 2%	SOP-20 Pin
W79E4051RARG	4KB	256B	128B	22.1184MHz ± 2%	SSOP-20 Pin
W79E2051RAKG	2KB	256B	128B	22.1184MHz ± 2%	PDIP-20 Pin
W79E2051RASG	2KB	256B	128B	22.1184MHz ± 2%	SOP-20 Pin
W79E2051RARG	2KB	256B	128B	22.1184MHz ± 2%	SSOP-20 Pin

Note:

1. Factory calibration condition: $V_{DD}=5.0V$, TA = 25°C

4 PIN CONFIGURATION

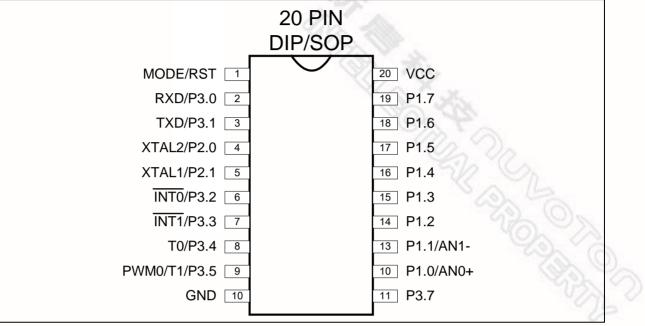
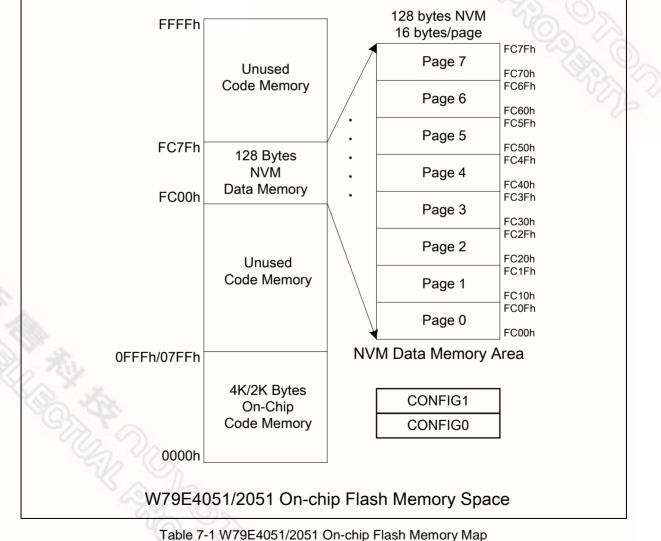


Table 4-1: Pin Configuration

7 MEMORY ORGANIZATION


The W79E4051/2051 series separate the memory into two separate sections, the Program Memory and the Data Memory. The Program Memory is used to store the instruction op-codes, while the Data Memory is used to store data or for memory mapped devices.

7.1 Program Memory (on-chip Flash)

The Program Memory on the W79E4051/2051 series can be up to **4K/2K** bytes long. All instructions are fetched for execution from this memory area. The MOVC instruction can also access this memory region.

7.2 Data Flash Memory

The Data Flash EPROM on the W79E4051/2051 series is **128** bytes long with page size of **16** bytes. The W79E4051/2051 series read the content of data memory by using "MOVC A, @A+DPTR". To write data is by NVMADDRL, NVMDATA and NVMCON SFR's registers.

8 SPECIAL FUNCTION REGISTERS

The W79E4051/2051 series uses Special Function Registers (SFRs) to control and monitor peripherals and their Modes. The SFRs reside in the register locations 80-FFh and are accessed by direct addressing only. Some of the SFRs are bit addressable. This is very useful in cases where users wish to modify a particular bit without changing the others. The SFRs that are bit addressable are those whose addresses end in 0 or 8. The W79E4051/2051 series contain all the SFRs present in the standard 8052. However some additional SFRs are added. In some cases the unused bits in the original 8052, have been given new functions. The list of the SFRs is as follows.

	<u> </u>	-	9					
F8	IP1					Carl M	1. Contraction 1. Con	
F0	В					"(D)"	PCMPIDS	IP1H
E8	EIE						OB	
E0	ACC					51	2 05	
D8	WDCON	PWMPL	PWM0L		PWMCON1		s a The	() () () () () () () () () ()
D0	PSW	PWMPH	PWM0H				62 7	PWMCON3
C8							NVMCON	NVMDATA
C0							NVMADDRL	ТА
B8	IP0	SADEN					100	0
B0	P3			P1M1			5	IP0H
A8	IE	SADDR						Six S
A0	P2		AUXR1	AUXR2				"mo
98	SCON	SBUF						6
90	P1						ACCK	ACSR
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	CLKREG
80		SP	DPL	DPH				PCON

Table 8-1: Special Function Register Location Table

Note:

- 1. The SFRs in the column with dark borders are bit-addressable
- 2. The table is condensed with eight locations per row. Empty locations indicate that these are no registers at these addresses.

0	IDL	1: The CPU goes into the IDLE mode. In this mode, the clocks CPU clock stopped,
		so program execution is frozen. But the clock to the serial, timer and interrupt
		blocks is not stopped, and these blocks continue operating.

TIMER CONTROL

		-											
Bit:	7	6	5	4	3	2	1	0					
	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0					
N	Inemonic:	TCON			4	Ya.	22	Address: 88h					
BIT	NAME	FUNCTION	FUNCTION										
7	TF1	automaticall	ner 1 Overflow Flag. This bit is set when Timer 1 overflows. It is cleared tomatically when the program does a timer 1 interrupt service routine. Software n also set or clear this bit.										
6	TR1	Timer 1 Run or off.	Control. T	his bit is se	et or cleared	by software	e to turn time	er/counter on					
5	TF0		y when the	program c	set when Tin loes a timer (eared ne. Software					
4	TR0	Timer 0 Rur or off.	Control. T	his bit is se	et or cleared	by softwar	e to turn time	er/counter on					
3	IE1	INT1. This b	oit is cleare	d by hardw	by hardware are when the Otherwise it f	e service ro	outine is vec	tored to only if					
2	IT1	Interrupt 1 T triggered ex			red by softwa	are to spec	ify falling ed	ge/ low level					
1	IEO	on INT0 . Th	Interrupt 0 Edge Detect Flag. Set by hardware when an edge/level is detected on $\overline{INT0}$. This bit is cleared by hardware when the service routine is vectored to only if the interrupt was edge triggered. Otherwise it follows the inverse of the pin.										
0	IT0	Interrupt 0 T triggered ex			red by softwa	are to spec	ify falling ed	ge/ low level					

TIME	R MODE C	ONTROL						
Bit:	7	6	5	4	3	2	1	0
	GATE	C/T	M1	MO	GATE	C/T	M1	MO
	TIMER1	1			TIMER0		•	

N	Inemonic:	TMOD Address: 89h
BIT	NAME	FUNCTION
7	GATE	Gating control: When this bit is set, Timer/counter 1 is enabled only while the $\overline{INT1}$ pin is high and the TR1 control bit is set. When cleared, the $\overline{INT1}$ pin has no effect, and Timer 1 is enabled whenever TR1 control bit is set.
6	C/T	Timer or Counter Select: When clear, Timer 1 is incremented by the internal clock. When set, the timer counts falling edges on the T1 pin.
5	M1	Timer 1 mode select bit 1. See table below.

nuvoTon

4	4	Drownout voltogo is 4 EV	
1	I	Brownout voltage is 4.5V	

All the bits in this SFR have unrestricted read access. SRST require Timed Access procedure to write. The remaining bits have unrestricted write accesses. Please refer TA register description.

AUX FUNCTION REGISTER 2

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-		35	DPS
N	Inemonic: AL	JXR2			Yah	22	Address: A3h	
BIT	NAME	FUNCTIO	N		-47	20		
7-1	-	Reserved				6	27.4	2 ~
		Dual Data	Pointer			W. S	2h	
0	DPS	0: To sele	ct DPTF	R of standard	8051.			LES .
		1: To sele	ct DPTF	R1			2	200

INTERRUPT ENABLE

Bit:	7	6	5	4	3	2	1	0
	EA	EC	-	ES	ET1	EX1	ET0	EX0

Μ	Inemonic: IE	Address: A8
BIT	NAME	FUNCTION
7	EA	Global enable. Enable/Disable all interrupts.
6	EC	Enable analog comparator interrupt.
5	-	Reserved.
4	ES	Enable Serial Port 0 interrupt.
3	ET1	Enable Timer 1 interrupt.
2	EX1	Enable external interrupt 1.
1	ET0	Enable Timer 0 interrupt.
0	EX0	Enable external interrupt 0.

SLAVE ADDRESS

Bit:	7	6	5	4	3	2	1	0					
	SADDR.7	SADDR.6	SADDR.5	SADDR.4	SADDR.3	SADDR.2	SADDR.1	SADDR.0					
N	Mnemonic: SADDR Address: A9h												
BIT	BIT NAME FUNCTION												
7~0	7~0 SADDR The SADDR should be programmed to the given or broadcast address for serial port to which the slave processor is designated.												
PORT	PORT 3												

6 Bit: 7 4 3 2 1 0 5

1	_		_	L _	_	-	_	_	
	P3.7	CMP_O	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	

Mnemonic: P3

Address: B0h

P3.7-0: General purpose Input/Output port. Most instructions will read the port pins in case of a port read access, however in case of read-modify-write instructions, the port latch is read. These alternate functions are described below:

BIT	NAME	FUNCTION
7	P3.7	
6	CMP_O	Read only. This bit stores the hardware comparator result.
5	P3.5	T1 or PWM output
4	P3.4	ТО
3	P3.3	INT1
2	P3.2	INTO
1	P3.1	TX
0	P3.0	RX

Port1 Output Mode 1

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	P1M1.1	P1M1.0

M	nemonic: P1	M1 Address: B3h
BIT	NAME	FUNCTION
7-2	Reserved	
1	P1M1.1	0: P1.1 is in open drain mode. (Default)
		1: P1.1 is in Quasi-bidirection mode
0	P1M1.0	0: P1.0 is in open drain mode. (Default)
		1: P1.0 is in Quasi-bidirection mode

Interrupt High Priority 0

Bit:	7	6	5	4	3	2	1	0
S.	-	PCH	-	PSH	PT1H	PX1H	PT0H	PX0H

Mnemonic: IP0H Address: B7h BIT FUNCTION NAME 7 Reserved _ 6 PCH 1: To set interrupt high priority of analog comparator is highest priority level. 5 4 Reserved. PSH 4 1: To set interrupt high priority of Serial port 0 is highest priority level. 3 PT1H 1: To set interrupt high priority of Timer 1 is highest priority level. 2 PX1H 1: To set interrupt high priority of External interrupt 1 is highest priority level. PT0H 1: To set interrupt high priority of Timer 0 is highest priority level. 1 PX0H 1: To set interrupt high priority of External interrupt 0 is highest priority level. 0

Ν	Inemonic:	PSW Address: D0h
BIT	NAME	FUNCTION
7	CY	Carry flag:
		Set for an arithmetic operation which results in a carry being generated from the ALU. It is also used as the accumulator for the bit operations.
6	AC	Auxiliary carry:
		Set when the previous operation resulted in a carry from the high order nibble.
5	F0	User flag 0:
		The General purpose flag that can be set or cleared by the user.
4	RS1	Register bank select bits:
3	RS0	Register bank select bits:
2	OV	Overflow flag:
		Set when a carry was generated from the seventh bit but not from the 8 th bit as a result of the previous operation, or vice-versa.
1	F1	User Flag 1:
		The General purpose flag that can be set or cleared by the user by software.
0	Р	Parity flag:
		Set/cleared by hardware to indicate odd/even number of 1's in the accumulator.

RS1	RS0	Register bank	Address
0	0	0	00-07h
0	1	1	08-0Fh
1	0	2	10-17h
1	1	3	18-1Fh

DS 1 0. Desister bank calestion bits

PWM COUNTER HIGH BITS REGISTER

Bit:	7	6	5	4	3	2	1	0			
		-	-	-	-	-	PWMP.9	PWMP.8			
M	Mnemonic: PWMPH Address: D1h										
BIT	NAME	FUNCT	UNCTION								
7-2	¥	Reserve	leserved.								
1-0	PWMP.[9:8]	The PW	The PWM Counter Register bits 9~8.								

PWM 0 HIGH BITS REGISTER

Bit:	750	6	5	4	3	2	1	0
	- 35	~11	0	-	-	-	PWM0.9	PWM0.8
М	nemonic: P	₩МОН	0				/	Address: D2h
BIT	NAME	FUNC	CTION					

nuvoTon

0	PCMPIDS.0	P1.0 digital input disable bit.
		0: Default (With digital/analog input).
		1: Disable Digital Input of Comparator Input 1(Positive end)

INTERRUPT HIGH PRIORITY 1

Bit:	7	6	5	4	3	2	1	0
	-	PBOVH	PPWMH	PWDIH		No. S	-	-
Μ	nemonic: IP	1H				Yak		Address: F7h

BIT	NAME	FUNCTION
7	-	Reserved.
6	PBOVH	1: To set interrupt priority of Brownout interrupt is highest priority level.
5	PPWMH	1: To set interrupt priority of PWM underflow is highest priority level.
4	PWDIH	1: To set interrupt high priority of Watchdog is highest priority level.
3-0	-	Reserved.

EXTENDED INTERRUPT PRIORITY

Bit:	7	6	5	4	3	2	1	0
	-	PBOV	PPWM	PWDI	-	-	-	- 9

Μ	nemonic: IP1	Address: F8h
BIT	NAME	FUNCTION
7	-	Reserved.
6	PBOV	1: To set interrupt priority of Brownout interrupt is higher priority level.
5	PPWM	1: To set interrupt priority of PWM underflow is higher priority level.
4	PWDI	1: To set interrupt priority of Watchdog is higher priority level.
3-0	-	Reserved.

nuvoTon

Op-code	HEX Code	Bytes	W79E4051 /2051 series Machine Cycle	W79E4051 /2051 series Clock cycles	8032 Clock cycles	W79E4051/205 1 series vs. 8032 Speed Ratio
CJNE A, direct, rel	B5	3	4	16	24	1.5
CJNE A, #data, rel	B4	3	4	16	24	1.5
CJNE @R0, #data, rel	B6	3	4	16	24	1.5
CJNE @R1, #data, rel	B7	3	4	16	24	1.5
CJNE R0, #data, rel	B8	3	4	16	24	1.5
CJNE R1, #data, rel	B9	3	4	16	24	1.5
CJNE R2, #data, rel	BA	3	4	16	24	1.5
CJNE R3, #data, rel	BB	3	4	16	24	1.5
CJNE R4, #data, rel	BC	3	4	16	24	1.5
CJNE R5, #data, rel	BD	3	4	16	24	1.5
CJNE R6, #data, rel	BE	3	4	16	24	1.5
CJNE R7, #data, rel	BF	3	4	16	24	1.5
DJNZ R0, rel	D8	2	3	12	24	2
DJNZ R1, rel	D9	2	3	12	24	2
DJNZ R5, rel	DD	2	3	12	24	2
DJNZ R2, rel	DA	2	3	12	24	2
DJNZ R3, rel	DB	2	3	12	24	2
DJNZ R4, rel	DC	2	3	12	24	2
DJNZ R6, rel	DE	2	3	12	24	2
DJNZ R7, rel	DF	2	3	12	24	2
DJNZ direct, rel	D5	3	4	16	24	1.5

Table 9-1: Instruction Set for W79E4051/2051

- 44 -

The interrupt flags are sampled every machine cycle. In the same machine cycle, the sampled interrupts are polled and their priority is resolved. If certain conditions are met then the hardware will execute an internally generated LCALL instruction which will vector the process to the appropriate interrupt vector address. The conditions for generating the LCALL are;

- 1. An interrupt of equal or higher priority is not currently being serviced.
- 2. The current polling cycle is the last machine cycle of the instruction currently being execute.
- 3. The current instruction does not involve a write to IE, IP and IPH, registers and is not a RETI.

If any of these conditions are not met, then the LCALL will not be generated. The polling cycle is repeated every machine cycle, with the interrupts sampled in the same machine cycle. If an interrupt flag is active in one cycle but not responded to, and is not active when the above conditions are met, the denied interrupt will not be serviced. This means that active interrupts are not remembered; every polling cycle is new.

The processor responds to a valid interrupt by executing an LCALL instruction to the appropriate service routine. This may or may not clear the flag which caused the interrupt. In case of Timer interrupts, the TF0 or TF1 flags are cleared by hardware whenever the processor vectors to the appropriate timer service routine. In case of external interrupt, INT0 and INT1, the flags are cleared only if they are edge triggered. In case of Serial interrupts, the flags are not cleared by hardware. The hardware LCALL behaves exactly like the software LCALL instruction. This instruction saves the Program Counter contents onto the Stack, but does not save the Program Status Word PSW. The PC is reloaded with the vector address of that interrupt which caused the LCALL. These address of vector for the different sources are as follows:

SOURCE	VECTOR ADDRESS	SOURCE	VECTOR ADDRESS
External Interrupt 0	0003h	Timer 0 Overflow	000Bh
External Interrupt 1	0013h	Timer 1 Overflow	001Bh
Serial Port	0023h	Brownout Interrupt	002Bh
Analog Comparator	0033h	-	003Bh
-	0043h	-	004Bh
Watchdog Timer	0053h	-	005Bh
-	0063h	PWM Period Interrupt	006Bh

VECTOR LOCATIONS FOR INTERRUPT SOURCES

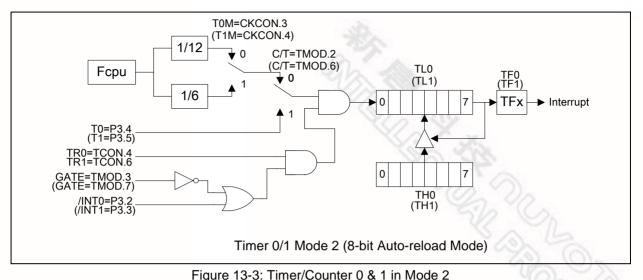
Table 12-1: Vector locations for interrupt sources

Execution continues from the vectored address till an RETI instruction is executed. On execution of the RETI instruction the processor pops the Stack and loads the PC with the contents at the top of the stack. The user must take care that the status of the stack is restored to what it was after the hardware LCALL, if the execution is return to the interrupted program. The processor does not notice anything if the stack contents are modified and will proceed with execution from the address put back into PC. Note that a RET instruction would perform exactly the same process as a RETI instruction, but it would not inform the Interrupt Controller that the interrupt service routine is completed, and would leave the controller still thinking that the service routine is underway.

12.2 Priority Level Structure

The W79E4051/2051 series uses a four priority level interrupt structure (highest, high, low and lowest) and supports up to 9 interrupt sources. The interrupt sources can be individually set to either high or low levels. Naturally, a higher priority interrupt cannot be interrupted by a lower priority interrupt. However there exists a pre-defined hierarchy amongst the interrupts themselves. This hierarchy comes into play when the interrupt controller has to resolve simultaneous requests having the same priority level. This hierarchy is defined as table below. This allows great flexibility in controlling and handling many interrupt sources.

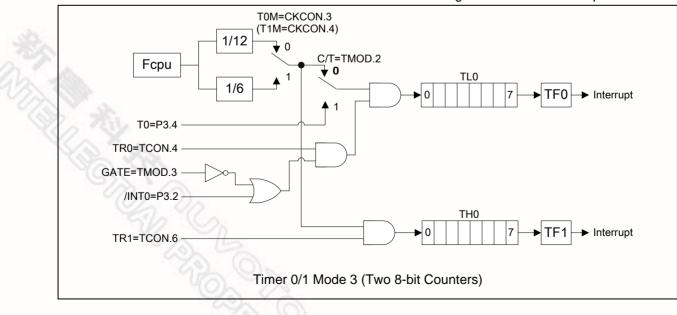
Priority Bits		Interrupt Drievity Lavel
IPxH	IPx	Interrupt Priority Level
0	0	Level 0 (lowest priority)
0	1	Level 1
1	0	Level 2
1	1	Level 3 (highest priority)


Table 12-2: Four-level interrupt priority

Each interrupt source can be individually programmed to one of four priority levels by setting or clearing bits in the IPx and IPxH registers. An interrupt service routine in progress can be interrupted by a higher priority interrupt, but not by another interrupt of the same or lower priority. The highest priority interrupt service cannot be interrupted by any other interrupt source. So, if two requests of different priority levels are received simultaneously, the request of higher priority level is serviced.

If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. This is called the arbitration ranking. Note that the arbitration ranking is only used to resolve simultaneous requests of the same priority level.

As below Table summarizes the interrupt sources, flag bits, vector addresses, enable bits, priority bits, arbitration ranking, and whether each interrupt may wake up the CPU from Power Down mode.


Source	Flag	Vector address	Interrupt Enable Bits	Interrupt Priority	Flag cleared by	Arbitration Ranking	Power Down Wakeup
External Interrupt 0	IEO	0003Н	EX0 (IE0.0)	IP0H.0, IP0.0	Edge: Hardware, Software; Level: Follow the inverse of pin	1(highest)	Yes
Brownout Detect	BOF	002BH	EBOV (EIE.6)	IP1H.6, IP1.6	Software	2	Yes
Watchdog Timer	WDIF	0053H	EWDI (EIE.4)	IP1H.4, IP1.4	Software	3	Yes ⁽¹⁾
Timer 0 Interrupt	TF0	000BH	ET0 (IE.1)	IP0H.1, IP0.1	Hardware, Software	4	No
External Interrupt 1	IE1	0013H	EX1 (IE.2)	IP0H.2, IP0.2	Edge: Hardware, Software; Level:	5	Yes

13.2.4 Mode 3

Mode 3 has different operating methods for the two timer/counters. For timer/counter 1, mode 3 simply freezes the counter. Timer/Counter 0, however, configures TL0 and TH0 as two separate 8 bit count registers in this mode. The logic for this mode is shown in the figure. TL0 uses the Timer/Counter 0

control bits C/T, GATE, TR0, INT0 and TF0. The TL0 can be used to count clock cycles (clock/12) or 1-to-0 transitions on pin T0 as determined by C/T (TMOD.2). TH0 is forced as a clock cycle counter (clock/12) and takes over the use of TR1 and TF1 from Timer/Counter 1. Mode 3 is used in cases where an extra 8 bit timer is needed. With Timer 0 in Mode 3, Timer 1 can still be used in Modes 0, 1 and 2, but its flexibility is somewhat limited. While its basic functionality is maintained, it no longer has control over its overflow flag TF1 and the enable bit TR1. Timer 1 can still be used as a timer/counter and retains the use of GATE and INT1 pin. In this condition it can be turned on and off by switching it out of and into its own Mode 3. It can also be used as a baud rate generator for the serial port.

Publication Release Date: April 16, 2009 Revision A06

Figure 13-4: Timer/Counter Mode 3

14 NVM MEMORY

The W79E4051/2051 series have NVM data memory of **128** bytes for customer's data store used. The NVM data memory has **8** pages area and each page has **16** bytes. The page addresses are shown on Figure 14-1

The NVM memory can be read/write by customer program to access. Read NVM data is by MOVC A,@A+DPTR instruction, and write data is by SFR of NVMADDRL, NVMDATA and NVMCON. Before write data to NVM memory, the page must be erased by providing page address on NVMADDRL, which high and low byte address of On-Chip Code Memory space will decode, then set EER of NVMCON.7. This will automatically hold fetch program code and PC Counter, and execute page erase. After finished, this bit will be cleared by hardware. The erase time is ~ 5ms.

For writing data to NVM memory, user must set address and data to NVMADDRL and NVMDATA, then set EWR of NVMCON.6 to initiate NVM data write. The uC will hold program code and PC Counter, and then write data to mapping address. Upon write completion, the EWR bit will be cleared by hardware, the uC will continue execute next instruction. The program time is ~50us.

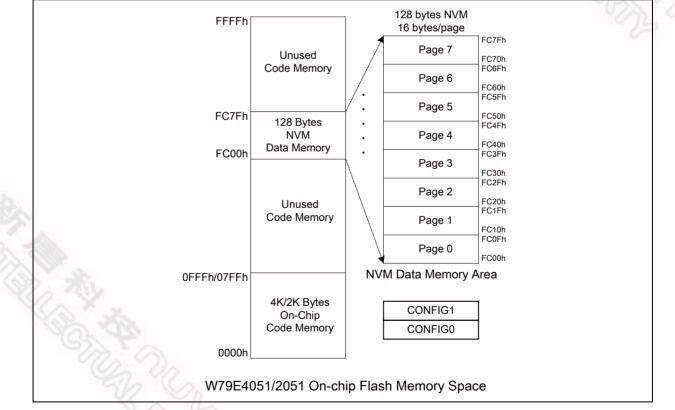


Figure 14-1: W79E4051/2051 Memory Map

nuvoton

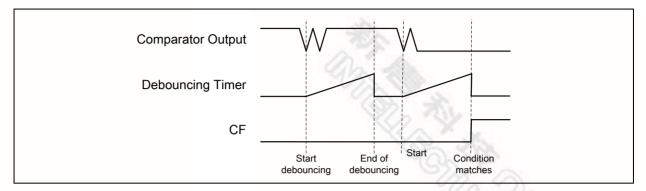


Figure 18-2: Example of Negative Edge Comparator Interrupt with Debouncing

18.2 Application circuit

It is recommended to add a decoupled capacitor as close as port pin for reducing the variation of offset voltage as show in Figure 18-3.

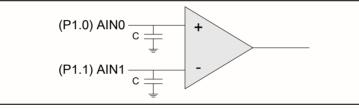


Figure 18-3: Application Circuit of Comparator

23 ICP (IN-CIRCUIT PROGRAM) FLASH MODE

The ICP(In-Circuit-Program) mode is another approach to access the Flash EPROM. There are only 3 pins needed to perform the ICP function. One is mode input, shared with RST pin, which must be kept in Vdd voltage in the entire ICP working period. One is clock input, shared with P1.7, which accepts serial clock from external device. Another is data I/O pin, shared with P1.6, that an external ICP program tool shifts in/out data via P1.6 synchronized with clock(P1.7) to access the Flash EPROM of W79E4051/2051. User may refer to http://www.manley.com.cn/english/index.asp for ICP Program Tool.

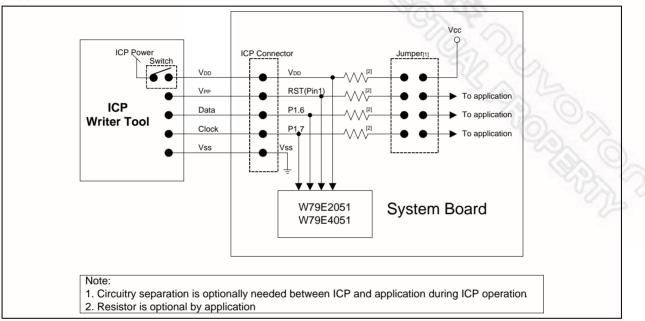


Figure 23-1: ICP Writer Tool connector pin assign

- Note: 1. When using ICP to upgrade code, the RST, P1.6 and P1.7 must be taken within design system board.
 - 2. After program finished by ICP, to suggest system power must power off and remove ICP connector then power on.
 - 3. It is recommended that user performs erase function and programming configure bits continuously without any interruption.

Publication Release Date: April 16, 2009 Revision A06

25 ELECTRICAL CHARACTERISTICS

25.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	CONDITION	MINIMUM	MAXIMUM	UNIT
DC Power Supply	V _{DD}	V _{DD} -V _{SS}	-0.3	+7.0	V
Input Voltage	V _{IN}		V _{SS} -0.3	V _{DD} +0.3	V
Operating Temperature	TA		-40	+85	°C
Storage Temperature	Tst		-55	+150	°C
Sink current	ISK		- 9	95	mA
RAM Keep Alive Voltage	V _{RAM}		1.4	+7.0	V
Maximum Current into V _{DD}		-		120	mA
$\begin{array}{c} \text{Maximum Current out of} \\ V_{\text{SS}} \end{array}$				120	mA
Maximum Current suck by a I/O pin				25	mA
Maximum Current sourced by a I/O pin				25	mA
Maximum Current suck by total I/O pins				80	mA
Maximum Current sourced by total I/O pins				80	mA

Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability

- 84 -

nuvoTon

27.2 20-pin DIP

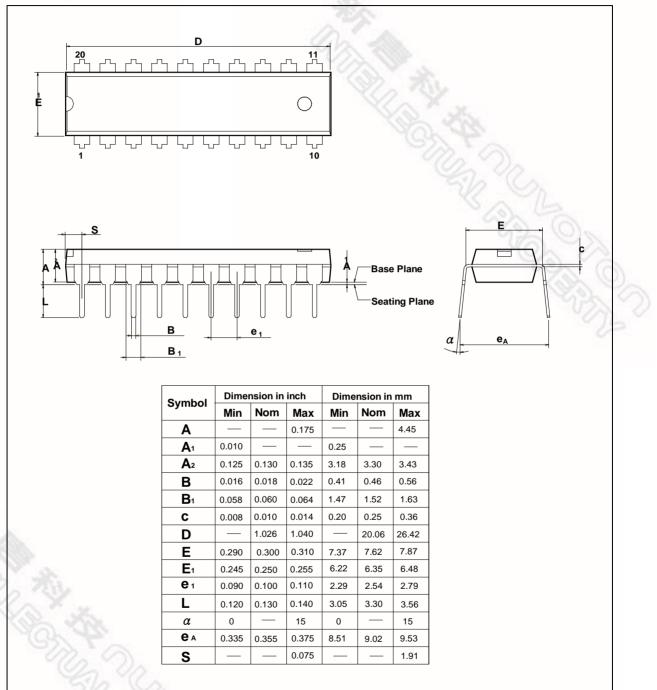


Figure 27-2: 20L DIP-300mil

nuvoTon

27.3 20-pin SSOP

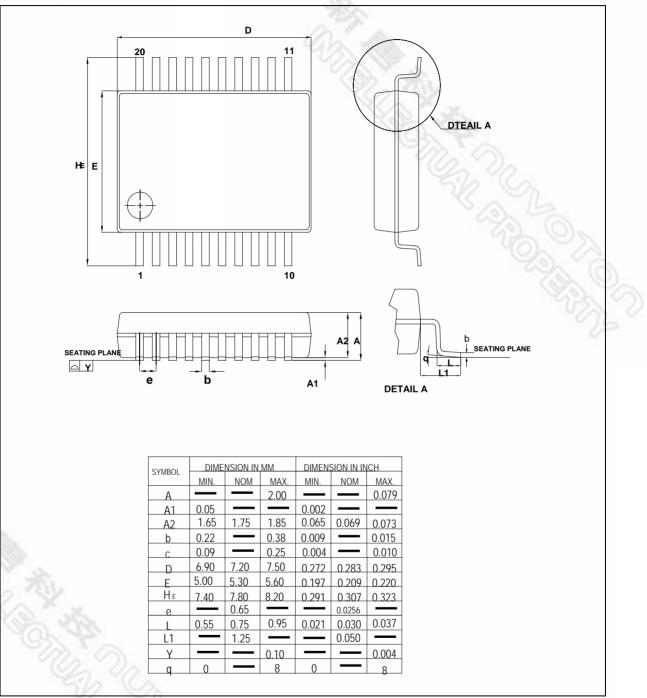


Figure 27-3: 20-Pin SSOP