

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	· ·
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	· · · · · · · · · · · · · · · · · · ·
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/w79e4051asg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

nuvoTon

- Lead Free (RoHS) PDIP 20: W79E2051RAKG
- Lead Free (RoHS) SOP 20: W79E2051RASG
- Lead Free (RoHS) SSOP 20: W79E2051RARG

3 PARTS INFORMATION LIST

3.1 Lead Free (RoHS) Parts information list

Table 3-1: Lead Free (RoHS) Parts information list

PART NO.	PROGRAM FLASH EPROM	RAM	DATA FLASH EPROM	INTERNAL RC OSCILLATOR ACCURACY ¹	PACKAGE
W79E4051AKG	4KB	256B	128B	22MHz ± 25%	PDIP-20 Pin
W79E4051ASG	4KB	256B	128B	22MHz ± 25%	SOP-20 Pin
W79E4051ARG	4KB	256B	128B	22MHz ± 25%	SSOP-20 Pin
W79E2051AKG	2KB	256B	128B	22MHz ± 25%	PDIP-20 Pin
W79E2051ASG	2KB	256B	128B	22MHz ± 25%	SOP-20 Pin
W79E2051ARG	2KB	256B	128B	22MHz ± 25%	SSOP-20 Pin
W79E4051RAKG	4KB	256B	128B	$22.1184 \text{MHz} \pm 2\%$	PDIP-20 Pin
W79E4051RASG	4KB	256B	128B	22.1184MHz ± 2%	SOP-20 Pin
W79E4051RARG	4KB	256B	128B	$22.1184 \text{MHz} \pm 2\%$	SSOP-20 Pin
W79E2051RAKG	2KB	256B	128B	$22.1184 \text{MHz} \pm 2\%$	PDIP-20 Pin
W79E2051RASG	2KB	256B	128B	$22.1184 \text{MHz} \pm 2\%$	SOP-20 Pin
W79E2051RARG	2KB	256B	128B	$22.1184 MHz \pm 2\%$	SSOP-20 Pin

Note:

1. Factory calibration condition: V_{DD} =5.0V, TA = 25°C

Table 6-1: Data Pointer

6.7 Architecture

The W79E4051/2051 is based on the standard MCS-51 device. It is built around an 8-bit ALU that uses internal registers for temporary storage and control of the peripheral devices. It can execute the standard MCS-51 instruction set.

6.7.1 ALU

The ALU is the heart of the W79E4051/2051. It is responsible for the arithmetic and logical functions. It is also used in decision making, in case of jump instructions, and is also used in calculating jump address. The user cannot directly use the ALU, but the Instruction Decoder reads the op-code, decodes it, and sequences the data through the ALU and its associated registers to generate the required result. The ALU mainly uses the ACC which is a special function register (SFR) on the chip. Another SFR, namely B register is also used in Multiply and Divide instructions. The ALU generates several status signals which are stored in the Program Status Word register (PSW).

6.7.2 Accumulator

The Accumulator (ACC) is the primary register used in arithmetic, logical and data transfer operations in the W79E4051/2051. Since the Accumulator is directly accessible by the CPU, most of the high speed instructions make use of the ACC as one argument.

6.7.3 B Register

This is an 8-bit register that is used as the second argument in the MUL and DIV instructions. For all other instructions it can be used simply as a general purpose register.

6.7.4 Program Status Word:

This is an 8-bit SFR that is used to store the status bits of the ALU. It holds the Carry flag, the Auxiliary Carry flag, General purpose flags, the Register Bank Select, the Overflow flag, and the Parity flag.

6.7.5 Scratch-pad RAM

The W79E4051/2051 has a 256 byte on-chip scratch-pad RAM. This can be used by the user for temporary storage during program execution. A certain section of this RAM is bit addressable, and can be directly addressed for this purpose.

6.7.6 Stack Pointer

The W79E4051/2051 has an 8-bit Stack Pointer which points to the top of the Stack. This stack resides in the Scratch Pad RAM in the W79E4051/2051. Hence the size of the stack is limited by the size of this RAM.

- 11 -

FFH			In	direc	t RA	M			
80H 7FH							5	X	y
			D	Direct	t RAI	M		5	365
30H							1	0	ates
2FH	7F	7E	7D	7C	7B	7A	79	78	2.0
2EH	77	76	75	74	73	72	71	70	La Ca
2DH	6F	6E	6D	6C	6B	6A	69	68	
2CH	67	66 50	65 6D	64 50	63 5 D	62	61 50	60 50	
200	57	5E	5D	50	5B	5A	59	58	42 ON
2AH 29H	37 4F	45	35 4D	40	4B	- <u></u> Δ	۵۱ ۵۷	48	
28H	47	46	45	40	43	42	41	40	~~~~ (O
27H	3F	3E	3D	3C	3B	3A	39	38	No.
26H	37	36	35	34	33	32	31	30	672
25H	2F	2E	2D	2C	2B	2A	29	28	G
24H	27	26	25	24	23	22	21	20	
23H	1F	1E	1D	1C	1B	1A	19	18	
22H	17	16	15	14	13	12	11	10	
21H	0F	0E	0D	0C	0B	0A	09	08	
20H	07	06	05	04	03	02	01	00	
1FH 18H				Bar	nk 3				
10H 0FH				Bar	nk 2				
08H 07H				Bar	nk 1				
00H				Bar	nk 0				

Table 7-3 Scratch-pad RAM

7.4 Working Registers

There are four sets of working registers, each consisting of eight 8-bit registers. These are termed as Banks 0, 1, 2, and 3. Individual registers within these banks can be directly accessed by separate instructions. These individual registers are named as R0, R1, R2, R3, R4, R5, R6 and R7. However, at one time the W79E4051/2051 series can work with only one particular bank. The bank selection is done by setting RS1-RS0 bits in the PSW. The R0 and R1 registers are used to store the address for indirect accessing.

0	IDL	1: The CPU goes into the IDLE mode. In this mode, the clocks CPU clock stopped,
		so program execution is frozen. But the clock to the serial, timer and interrupt
		blocks is not stopped, and these blocks continue operating.

TIMER CONTROL

IV	inemonic:	TCON				Mah	12	Address			
BIT	NAME	FUNCTIO	N			-07	0				
7	TF1	Timer 1 C automatic can also s	Timer 1 Overflow Flag. This bit is set when Timer 1 overflows. It is cleared automatically when the program does a timer 1 interrupt service routine. Software can also set or clear this bit.								
6	TR1	Timer 1 R or off.	Timer 1 Run Control. This bit is set or cleared by software to turn timer/counter on or off.								
5	TF0	Timer 0 C automatic can also s	Timer 0 Overflow Flag. This bit is set when Timer 0 overflows. It is cleared automatically when the program does a timer 0 interrupt service routine. Software can also set or clear this bit.								
4	TR0	Timer 0 R or off.	Timer 0 Run Control. This bit is set or cleared by software to turn timer/counter on or off.								
3	IE1	Interrupt 7 INT1. Thi the interru	Interrupt 1 Edge Detect Flag: Set by hardware when an edge/level is detected on INT1. This bit is cleared by hardware when the service routine is vectored to only if the interrupt was edge triggered. Otherwise it follows the inverse of the pin								
2	IT1	Interrupt ' triggered	Interrupt 1 Type Control. Set/cleared by software to specify falling edge/ low level triggered external inputs.								
1	IE0	Interrupt (on INT0 . only if the	Interrupt 0 Edge Detect Flag. Set by hardware when an edge/level is detected on INT0. This bit is cleared by hardware when the service routine is vectored to only if the interrupt was edge triggered. Otherwise it follows the inverse of the pin.								
0	IT0	Interrupt 0 Type Control: Set/cleared by software to specify falling edge/ low level triggered external inputs.									
TIME		CONTROL									
Bit:	7	6	5	4	3	2	1	0			
	GATE	C/T	M1	MO	GATE	C/T	M1	MO			

TIMER MODE CONTROL

Bit:	7	6	5	4	3	2	1	0
	GATE	C/T	M1	MO	GATE	C/T	M1	MO
	TIMER1		1	1	TIMER0		I	
N	Inemonic: T	MOD					ŀ	Address: 89h

Mnemonic: TMOD

BIT	NAME	FUNCTION
7	GATE	Gating control: When this bit is set, Timer/counter 1 is enabled only while the $\overline{INT1}$ pin is high and the TR1 control bit is set. When cleared, the $\overline{INT1}$ pin has no effect, and Timer 1 is enabled whenever TR1 control bit is set.
6	C/T	Timer or Counter Select: When clear, Timer 1 is incremented by the internal clock. When set, the timer counts falling edges on the T1 pin.
5	M1	Timer 1 mode select bit 1. See table below.

		divide by 4 of the oscillator clock. This results in faster synchronous serial communication.
4	REN	Receive enable:
		0: Disable serial reception.
		1: Enable serial reception.
3	TB8	This is the 9th bit to be transmitted in modes 2 and 3. This bit is set and cleared by software as desired.
2	RB8	In modes 2 and 3 this is the received 9th data bit. In mode 1, if SM2 = 0, RB8 is the stop bit that was received. In mode 0 it has no function.
1	TI	Transmit interrupt flag: This flag is set by hardware at the end of the 8th bit time in mode 0, or at the beginning of the stop bit in all other modes during serial transmission. This bit must be cleared by software.

Mode	SM0	SM1	Description	Length	Baud Rate					
0	0	0	Synchronous	8	Tclk divided by 4 or 12					
1	0	1	Asynchronous	10	Variable					
2	1	0	Asynchronous	11	Tclk divided by 32 or 64					
3	1	1	Asynchronous	11	Variable					

SM1. SM0: Mode Select bits:

SERIAL DATA BUFFER

Bit:	7	6	5	4	3	2	1	0
	SBUF.7	SBUF.6	SBUF.5	SBUF.4	SBUF.3	SBUF.2	SBUF.1	SBUF.0
Mnemonic: SBUF							A	ddress: 99h

BIT	NAME	FUNCTION
7~0	SBUF	Serial data on the serial port is read from or written to this location. It actually consists of two separate internal 8-bit registers. One is the receive resister, and the other is the transmit buffer. Any read access gets data from the receive data buffer, while write access is to the transmit data buffer.

PORT 2

Bit:	7	6	5	4	3	2	1	0		
	1.36	-	-	-	-	-	P2.1	P2.0		
Mnemonic: P2 Address: /										

Mnemonic: P2

BIT	NAME	ALTERNATE FUNCTION
7-2	- 50	Reserved
1	P2.1	XTAL1 clock input pin.
0	P2.0	XTAL2 or CLKOUT pin by alternative.

AUX FUNCTION REGISTER 1

nuvoTon

Interrupt Priority 0

Bit:	7	6	5	4	3	2	1	0				
	-	PC	-	PS	PT1	PX1	PT0	PX0				
М	Mnemonic: IP0 Address: B8h											
BIT	NAME FUNCTION											
7	-	This bit is	This bit is un-implemented and will read high.									
6	PC	1: To set i	nterrupt pric	ority of analo	g comparate	or is higher p	priority level.					
5	-	This bit is	un-impleme	ented and w	ll read high.	Chr.	2.					
4	PS	1: To set i	nterrupt pric	ority of Seria	l port 0 is hi	gher priority	level.					
3	PT1	1: To set i	nterrupt pric	ority of Time	r 1 is higher	priority level	2.40.					
2	PX1	1: To set i	nterrupt pric	ority of Exter	nal interrupt	1 is higher p	priority level.	1				
1	PT0	1: To set i	nterrupt pric	ority of Time	r 0 is higher	priority level	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2				
0	PX0	1: To set	nterrupt pric	ority of Exter	nal interrupt	0 is higher	priority level.	00				

SLAVE ADDRESS MASK ENABLE

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	- 47

Μ	Mnemonic: SADEN	
BIT	NAME	FUNCTION
7~0	SADEN	This register enables the Automatic Address Recognition feature of the Serial port 0. When a bit in the SADEN is set to 1, the same bit location in SADDR will be compared with the incoming serial data. When SADEN is 0, then the bit becomes a "don't care" in the comparison. This register enables the Automatic Address Recognition feature of the Serial port 0. When all the bits of SADEN are 0, interrupt will occur for any incoming address.

NVM BYTE ADDRESS

Bit:	7	6	5	4	3	2	1	0
	NVMADD							
	R.7	R.6	R.5	R.4	R.3	R.2	R.1	R.0

M	nemonic: NVMADD	ORL Address: C6h
BIT	NAME	FUNCTION
7	NVMADDR.7	Must be 0.
6~0	NVMADDR.[6:0]	The NVM low byte address:
	OD.	The register indicates NVM data memory address on On-Chip code memory space.

N	Inemonic:	PSW Address: D0h
BIT	NAME	FUNCTION
7	CY	Carry flag:
		Set for an arithmetic operation which results in a carry being generated from the ALU. It is also used as the accumulator for the bit operations.
6	AC	Auxiliary carry:
		Set when the previous operation resulted in a carry from the high order nibble.
5	F0	User flag 0:
		The General purpose flag that can be set or cleared by the user.
4	RS1	Register bank select bits:
3	RS0	Register bank select bits:
2	OV	Overflow flag:
		Set when a carry was generated from the seventh bit but not from the 8 th bit as a result of the previous operation, or vice-versa.
1	F1	User Flag 1:
		The General purpose flag that can be set or cleared by the user by software.
0	Р	Parity flag:
		Set/cleared by hardware to indicate odd/even number of 1's in the accumulator.

кэ	NO. 1-0. REGISTER DATIK SELECTION DITS.								
RS1	RS0	Register bank	Address						
0	0	0	00-07h						
0	1	1	08-0Fh						
1	0	2	10-17h						
1	1	3	18-1Fh						

DS 1 0. Desister bank calestion bits

PWM COUNTER HIGH BITS REGISTER

Bit:	7	6	5	4	3	2	1	0		
			-	-	-	-	PWMP.9	PWMP.8		
Mnemonic: PWMPH Address: D1h										
BIT	NAME	FUNCT	UNCTION							
7-2	¥	Reserve	Reserved.							
1-0	PWMP.[9:8]	The PW	The PWM Counter Register bits 9~8.							

PWM 0 HIGH BITS REGISTER

Bit:	7	6	5	4	3	2	1	0
	- 33	12 IL		-	-	-	PWM0.9	PWM0.8
Mnemonic: PWM0H Address: D2								
BIT	NAME	FUNC	TION					

		Watchdog Timer Time-out Select bits. These bits determine the time-out period of the watchdog timer. The reset time-out period is 512 clocks longer than the watchdog time-out.							
5~4			WD1	WD0	Interrupt time- out	Reset time-out			
	VU1~VUD0		0	0	2 ¹⁷	2 ¹⁷ + 512			
			0	1	2 ²⁰	2 ²⁰ + 512			
			1	0	2 ²³	2 ²³ + 512			
			1	1	2 ²⁶	2 ²⁶ + 512			
3	WDIF	0: If the elap 1: If the wate	 If the interrupt is not enabled, then this bit indicates that the time-out period has elapsed. This bit must be cleared by software. If the watchdog interrupt is enabled, hardware will set this bit to indicate that the watchdog interrupt has occurred. 						
2	WTRF	Watch 1: Hard read bit h wate	Vatchdog Timer Reset flag: : Hardware will set this bit when the watchdog timer causes a reset. Software can read it but must clear it manually. A power-fail reset will also clear the bit. This bit helps software in determining the cause of a reset. If EWRST = 0, the watchdog timer will have no affect on this bit.						
1	EWRST	0: Disa 1: Ena	able Watch ble Watcho	dog Timer Re log Timer Re	eset. eset.		8		
0	WDCLR	Reset This bi resettir before after th self-cle	Watchdog it helps in p ng the watc time-out w nat a watch earing by h	Timer: outting the wa chdog timer b ill cause an i dog timer res ardware.	atchdog timer into a k before a time-out occu nterrupt (if EWDI (EIE set will be generated	now state. It also helps in urs. Failing to set the EWRST E.4) is set), and 512 clocks (if EWRST is set). This bit is			

The WDCON SFR is set to a 0x000000B on a power-on-reset. WTRF (WDCON.2) is set to a 1 on a Watchdog timer reset, but to a 0 on power on/down resets. WTRF (WDCON.2) is not altered by an external reset. EWRST (WDCON.1) is set to 0 on all resets.

All the bits in this SFR have unrestricted read access. WDRUN, EWRST, WDIF and WDCLR require Timed Access procedure to write. The remaining bits have unrestricted write accesses. Please refer TA register description.

2.5	ТА	REG	C7H	
	WDCON	REG	D8H	
	MOV	TA, #AAH		; To access protected bits
	MOV	TA, #55H		
	SETB	WDCON.0		; Reset watchdog timer
	ORL	WDCON, #0	00110000B	; Select 26 bits watchdog timer
	MOV	TA, #AAH		
	MOV	TA, #55H		
	ORL	WDCON, #0	00000010B	; Enable watchdog

PWM	COUNTERI		REGISTER					
Bit:	7	6	5	4	3	2	1	0
	PWMP.7	PWMP.6	PWMP.5	PWP.4	PWMP.3	PWMP.2	PWMP.1	PWMP.1
ľ	Inemonic: PV	WMPL			NO.	Sec.		Address: D
Bit	Name	Function			XV/	XX.		
7~0	PWMP	PWM Cou	PWM Counter Low Bits Register.			N 2	34	
					C 100 C	YCY'	P.	
PWM	0 LOW BITS	S REGISTEI	R					
Bit:	7	6	5	4	3	2	13 0	0
	PWM0.7	PWM0.6	PWM0.5	PWM0.4	PWM0.3	PWM0.2	PWM0.1	PWM0.1
ľ	Inemonic: PV	VMOL					~20	Address: D/
Bit	Name	Function					100	
7~0	PWM0	PWM 0 Lo	ow Bits Regi	ster.				why (
	PWMRUN	Load	PWMF	CLRPWM	-	-	-	PWM0I
	•							and the
	PWMRUN	Load	PWMF	CLRPWM	-	-	-	PWM0I
ľ	Inemonic: PV	VMCON1	1				l	Address: D
Bit	Namo	Eunction						
	Name	i unction						
	INAILIE	Enable PV	VM running	bit				
7	PWMRUN	Enable PV 0: The PW	VM running 'M is not rur	bit nning.				
7	PWMRUN	Enable PV 0: The PW 1: The PW	VM running /M is not rur /M counter i	bit nning. s running.				
7	PWMRUN	Enable PW 0: The PW 1: The PW Enable PV	VM running /M is not rur /M counter is VM counter	bit ining. s running. and register	re-load			
7	PWMRUN	Enable PV 0: The PW 1: The PW Enable PV 0: The reg	VM running VM is not run VM counter is VM counter isters value	bit nning. s running. and register of PWMP ar	re-load nd Compara	ators are nev	ver loaded to	o counter
7	PWMRUN	Enable PV 0: The PW 1: The PW Enable PV 0: The reg and Cor 1: The PW	VM running /M is not rur /M counter is VM counter isters value mparator reg /MP register	bit nning. s running. and register of PWMP ar gisters.	re-load nd Compara value to col	ators are nev	ver loaded to	o counter ter
7	PWMRUN	Enable PV 0: The PW 1: The PW Enable PV 0: The reg and Cor 1: The PW underflo	VM running /M is not rur /M counter is VM counter isters value mparator reg /MP register ow and hard	bit nning. s running. and register of PWMP ar gisters. will be load ware will clea	re-load nd Compara value to cou ar by next c	ators are nev unter registe lock cycle.	ver loaded to er after coun	o counter ter
6	PWMRUN	Enable PW 0: The PW 1: The PW Enable PV 0: The reg and Cor 1: The PW underfic	VM running /M is not run /M counter is vM counter isters value mparator reg /MP register ow and hard erflow flag.	bit nning. s running. and register of PWMP ar gisters. will be load ware will clea	re-load nd Compara value to cou ar by next c	ators are nev unter registe lock cycle.	ver loaded to	o counter ter
7 6 5	PWMRUN Load PWMF	Enable PV 0: The PW 1: The PW Enable PV 0: The reg and Cor 1: The PW underflo PWM under 0: No under	VM running VM is not run VM counter is ters value mparator reg VMP register ow and hard erflow flag.	bit nning. s running. and register of PWMP ar gisters. will be load ware will clea	re-load nd Compara value to cor ar by next c	ators are nev unter registe lock cycle.	ver loaded to	o counter ter
7 6 5	PWMRUN Load PWMF	Enable PW 0: The PW 1: The PW Enable PV 0: The reg and Cor 1: The PW underfic PWM unde 0: No unde 1: PWM 10 interrup	VM running VM is not run VM counter is vM counter isters value mparator reg VMP register ow and hard erflow flag. erflow. D-bit down c t is enabled	bit nning. s running. and register of PWMP ar gisters. will be load ware will clear ounter under).	re-load nd Compara value to cou ar by next c rflows (PWN	ators are nev unter registe lock cycle. M interrupt is	ver loaded to er after coun	o counter ter if PWM
7 6 5	PWMRUN Load PWMF	Enable PW 0: The PW 1: The PW Enable PW 0: The reg and Cor 1: The PW underflo PWM under 0: No under 1: PWM 10 interrup Clear PWM	VM running VM is not run VM counter isters value mparator reg VMP register ow and hard erflow flag. erflow. D-bit down c t is enabled M counter	bit s running. and register of PWMP ar gisters. will be load ware will clea ounter under).	re-load nd Compara value to cor ar by next c rflows (PWN	ators are nev unter registe lock cycle. M interrupt is	ver loaded to er after coun	o counter ter if PWM
7 6 5 4	PWMRUN Load PWMF CLRPWM	Enable PW 0: The PW 1: The PW Enable PV 0: The reg and Cor 1: The PW underflo PWM unde 0: No unde 1: PWM 10 interrup Clear PWM 1: Clear 10	VM running VM is not run VM counter isters value mparator reg VMP register ow and hard erflow flag. erflow. D-bit down c t is enabled M counter D-bit PWM c	bit s running. and register of PWMP ar gisters. will be load ware will clear ounter under).	re-load nd Compara value to cou ar by next c flows (PWN	ators are nev unter registe lock cycle. M interrupt is	ver loaded to	o counter ter if PWM
7 6 5 4	PWMRUN Load PWMF CLRPWM	Enable PV 0: The PW 1: The PW Enable PV 0: The reg and Cor 1: The PW underflo PWM unde 0: No unde 1: PWM 10 interrup Clear PWM 1: Clear 10 It is autom	VM running VM is not run VM counter isters value mparator reg VMP register ow and hard erflow flag. erflow. D-bit down c t is enabled V counter D-bit PWM c atically clea	bit ning. s running. and register of PWMP ar gisters. will be load ware will clear ounter under).	re-load nd Compara value to cor ar by next c flows (PWN oH. vare.	ators are nev unter registe lock cycle. M interrupt is	ver loaded to er after coun	o counter ter if PWM
7 6 5 4 3~1	PWMRUN Load PWMF CLRPWM	Enable PW 0: The PW 1: The PW Enable PV 0: The reg and Cor 1: The PW underflo 0: No unde 0: No unde 1: PWM 10 interrup Clear PWM 1: Clear 10 It is autom Reserved	VM running (M is not run (M counter is VM counter isters value mparator reg (MP register bw and hard erflow flag. erflow flag. erflow. D-bit down c t is enabled M counter D-bit PWM c atically clea	bit nning. s running. and register of PWMP ar gisters. will be load ware will clear ounter under).	re-load nd Compara value to cou ar by next c flows (PWN OH. vare.	ators are nev unter registe lock cycle. M interrupt is	ver loaded to	o counter ter if PWM
7 6 5 4 3~1	PWMRUN Load PWMF CLRPWM -	Enable PV 0: The PW 1: The PW Enable PV 0: The reg and Cor 1: The PW underfic PWM unde 0: No unde 1: PWM 10 interrup Clear PWM 1: Clear 10 It is autom Reserved Inverse PV	VM running VM is not run VM counter isters value mparator reg VMP register ow and hard erflow flag. erflow. D-bit down c t is enabled M counter D-bit PWM c atically clea	bit nning. s running. and register of PWMP ar gisters. will be load ware will clear ounter under).	re-load nd Compara value to cor ar by next c flows (PWN OH. vare.	ators are nev unter registe lock cycle. M interrupt is	ver loaded to er after coun	o counter ter if PWM
7 6 5 4 3~1 0	PWMRUN Load PWMF CLRPWM - PWM0I	Enable PW 0: The PW 1: The PW Enable PV 0: The reg and Cor 1: The PW underfic PWM unde 0: No unde 1: PWM 10 interrup Clear PWM 1: Clear 10 It is autom Reserved Inverse PV 0: PWM0 of	VM running VM running VM counter is VM counter isters value mparator reg VMP register ow and hard erflow flag. erflow. D-bit down c t is enabled M counter D-bit PWM c atically clea	bit nning. s running. and register of PWMP ar gisters. will be load ware will clear ounter under ounter under). counter to 000 red by hardw	re-load nd Compara value to con ar by next c flows (PWN OH. vare.	ators are nev unter registe lock cycle. 1/ interrupt is	ver loaded to	o counter ter if PWM

nuvoTon

0	PCMPIDS.0	P1.0 digital input disable bit.
		0: Default (With digital/analog input).
		1: Disable Digital Input of Comparator Input 1(Positive end)

INTERRUPT HIGH PRIORITY 1

Bit:	7	6	5	4	3	2	1	0
	-	PBOVH	PPWMH	PWDIH		Ne G	-	-
М	nemonic: IP	1H				Yak		Address: F7h

BIT	NAME	FUNCTION
7	-	Reserved.
6	PBOVH	1: To set interrupt priority of Brownout interrupt is highest priority level.
5	PPWMH	1: To set interrupt priority of PWM underflow is highest priority level.
4	PWDIH	1: To set interrupt high priority of Watchdog is highest priority level.
3-0	-	Reserved.

EXTENDED INTERRUPT PRIORITY

Bit:	7	6	5	4	3	2	1	0
	-	PBOV	PPWM	PWDI	-	-	-	- 9

М	nemonic: IP1	Address: F8h
BIT	NAME	FUNCTION
7	-	Reserved.
6	PBOV	1: To set interrupt priority of Brownout interrupt is higher priority level.
5	PPWM	1: To set interrupt priority of PWM underflow is higher priority level.
4	PWDI	1: To set interrupt priority of Watchdog is higher priority level.
3-0	-	Reserved.

ηυνοτοη

Op-code	HEX Code	Bytes	W79E4051 /2051 series Machine Cycle	W79E4051 /2051 series Clock cycles	8032 Clock cycles	W79E4051/205 1 series vs. 8032 Speed Ratio
ORL A, direct	45	2	2	8	12	1.5
ORL A, #data	44	2	2	8	12	1.5
ORL direct, A	42	2	2	8	12	1.5
ORL direct, #data	43	3	3	12	24	2
XRL A, R0	68	1	1	4	12	3
XRL A, R1	69	1	1	4	12	3
XRL A, R2	6A	1	1	4	12	3
XRL A, R3	6B	1	1	4	12	3
XRL A, R4	6C	1	1	4	12	3
XRL A, R5	6D	1	1	4	12	3
XRL A, R6	6E	1	1	4	12	3
XRL A, R7	6F	1	1	4	12	3
XRL A, @R0	66	1	1	4	12	3
XRL A, @R1	67	1	1	4	12	3
XRL A, direct	65	2	2	8	12	1.5
XRL A, #data	64	2	2	8	12	1.5
XRL direct, A	62	2	2	8	12	1.5
XRL direct, #data	63	3	3	12	24	2
CLR A	E4	1	1	4	12	3
CPL A	F4	1	1	4	12	3
RL A	23	1	1	4	12	3
RLC A	33	1	1	4	12	3
RR A	03	1	1	4	12	3
RRC A	13	1	1	4	12	3
SWAP A	C4	1	1	4	12	3
MOV A, R0	E8	1	1	4	12	3
MOV A, R1	E9	1	1	4	12	3
MOV A, R2	EA	1	1	4	12	3
MOV A, R3	EB	1	1	4	12	3
MOV A, R4	EC	1	1	4	12	3
MOV A, R5	ED	1	1	4	12	3
MOV A, R6	EE(O)	1	1	4	12	3
MOV A, R7	EF.	1	1	4	12	3
MOV A, @R0	E6	1	1	4	12	3

CIPE=1). The W79E4051/2051 series can be waken up from the Power Down mode by forcing the above sources activation, provided the corresponding interrupt is enabled, while the global enable (EA) bit is set. If these conditions are met, then interrupt event will re-start the oscillator. The device will then execute the interrupt service routine for the corresponding external interrupt. After the interrupt service routine is completed, the program execution returns to the instruction after one which put the device into Power Down mode and continues from there. During Power down mode, if AUXR1.LPBOV = 1 and AUXR1.BOD = 0, the internal RC clock will be enabled and hence save power.

In W79E4051/2051 series either a low-level or a falling-edge at external interrupt pin, INT1 or $\overline{INT0}$ will re-start the oscillator. W79E4051/2051 provides 3 wake-up modes, selected by SFR bits PWDEX1 and PWDEX0, that the external interrupt pins can terminate power-down mode. Refer to the table below.

PWDEX[1:0]	TRIGGER TYPE	FUNCTION TO TERMINATE POWER-DOWN MODE
0, 0 (Mode1)	Low-level	INT0, INT1 Keep low over Oscillator re-start, Tpd Program resume
0, 1 (Mode2)	Low-level	INT0, INT1 Oscillator re-start, Program resume Keep low over CPU keep in
1, x (Mode3)	Low-level and Falling- edge	INT0, INT1 Oscillator re-start, Program resume Low-level Falling-edge

In mode1 and mode2, the external interrupt pin must keep low longer than Tpd otherwise CPU stays in power-down mode continuously. Tpd is about 2mS counted by built-in RC oscillator.

- 47 -

17 PULSE WIDTH MODULATED OUTPUTS (PWM)

The W79E4051/2051 contains one Pulse Width Modulated (PWM) channel which generate pulses of programmable length and interval. The output for PWM0 is on P3.5. After chip reset the internal output of the PWM channel is high. In this case before the pin will reflect the state of the internal PWM output, a "1" must be written to the port bit that serves as a PWM output. A block diagram is shown in Figure 17-1. The interval between successive outputs is controlled by a 10-bit down counter which uses the internal microcontroller clock as its input. The PWM counter clock has the frequency as $F_{CPWM} = P_{OSC}/Prescaler$. The two pre-scaler selectable bits FP[1:0] are located at PWMCON3[1:0]. When the counter reaches underflow it is reloaded with a user selectable value. This mechanism allows the user to set the PWM frequency at any integer sub-multiple of the microcontroller clock frequency. The repetition frequency of the PWM is given by: $f_{PWM} = F_{CPWM} / (PWMP+1)$ where PWMP is contained in PWMPH and PWMPL SFR.

A compare value greater than the counter reloaded value is in the PWM output being permanently low. In addition there are two special cases. A compare value of all zeroes, 000H, causes the output to remain permanently high. A compare value of all ones, 3FFH, results in the PWM output remaining permanently low. Again the compare value is loaded into a Compare register. The transfer from this holding register to the actual Compare register is under program control.

The PWMP register fact that writes are not into the Counter register that controls the counter; rather they are into a holding register. As described below the transfer of data from this holding register, into the register which contains the actual reload value, is controlled by the user's program.

The width of PWM output pulse is determined by the value in the appropriate Compare registers, PWM0L and PWM0H. When the counter described above reaches underflow the PWM output is forced high. It remains high until the compare value is reached at which point it goes low and keeps low until the next underflow. The number of microcontroller clock pulses that the PWM0 output is high is given by:

 $t_{HI} = (PWMP - PWM0+1)$

Note :

- 1. A compare value of all zeroes, 000H, causes the PWM output to remain permanently high. A compare value of all ones, 3FFH, results in the PWM output remain permanently low. A compare value greater than the counter reloaded value will result in the PWM output being permanently low.
- 2. When the PWMRUN is cleared, the PWM outputs take on the state prior to the bit being cleared. In general, this state is not known. In order to place the PWM output in a known state when PWMRUN is cleared;
 - Program Compare Registers to either the "always 1" or "always 0" (see note 1).
 - Set Load (and PWMRUN) bits to 1.
 - Wait for PWMF underflow flag or Load bit (=0).
 - Clear PWMRUN.

nuvoTon

18 ANALOG COMPARATORS

The W79E4051/2051 is provided an Analog Comparator shown in Figure 18-1. The comparator output is wired to SFR bit P3.6. When the positive input of AIN0(P1.0) is greater than the negative input of AIN1(P1.1), the comparator output is high. Otherwise the output is low.

The comparator may be configured to cause an interrupt under a variety of output value conditions by setting bits CM[2:0] in ACSR(97H) register and bits CPCK[2:0] in ACCK(96H) register. The CF flag is set whenever the comparator output is matched the setting condition by CM[2:0].

Setting bit CIPE(Comparator Idle Power-down Enable) in ACSR.5 to high makes the analog comparator is active in power-down and idle mode, therefore the comparator interrupt can wake up CPU from power down and idle mode.

Figure 18-1: Analog Comparator

19 TIME ACCESS PROCTECTION

The W79E4051/2051 series have a new feature, like the Watchdog Timer which is a crucial to proper operation of the system. If left unprotected, errant code may write to the Watchdog control bits resulting in incorrect operation and loss of control. In order to prevent this, the W79E4051/2051 series have a protection scheme which controls the write access to critical bits. This protection scheme is done using a timed access.

In this method, the bits which are to be protected have a timed write enable window. A write is successful only if this window is active, otherwise the write will be discarded. This write enable window is open for 3 machine cycles if certain conditions are met. After 3 machine cycles, this window automatically closes. The window is opened by writing AAh and immediately 55h to the Timed Access (TA) SFR. This SFR is located at address C7h. The suggested code for opening the timed access window is

ΤA	REG	0C7h	;Define new register TA, @0C7h
	MOV	TA, #0AAh	
	MOV	TA, #055h	

When the software writes AAh to the TA SFR, a counter is started. This counter waits for 3 machine cycles looking for a write of 55h to TA. If the second write (55h) occurs within 3 machine cycles of the first write (AAh), then the timed access window is opened. It remains open for 3 machine cycles, during which the user may write to the protected bits. Once the window closes the procedure must be repeated to access the other protected bits.

Examples of Timed Assessing are shown below.

Example 1: Valid ad	ccess			
MOV	TA, #0AAh	;3 M/C Note: M/C = Machine Cycles	;3 M/C	Cycles
MOV	TA, #055h	;3 M/C	;3 M/C	
MOV	WDCON, #00h	;3 M/C	;3 M/C	
Example 2: Valid ad	ccess			
MOV	TA, #0AAh	;3 M/C	;3 M/C	
MOV	TA, #055h	;3 M/C	;3 M/C	
NOP		;1 M/C	;1 M/C	
SETB	EWRST	;2 M/C	;2 M/C	
Example 3: Valid ad	ccess			
MOV	TA, #0AAh	;3 M/C	;3 M/C	
MOV	TA, #055h	;3 M/C	;3 M/C	
ORL	WDCON, #00000010B	;3M/C	;3M/C	
Example 4: Invalid	access			
MOV	TA, #0AAh	;3 M/C	;3 M/C	
MOV	TA, #055h	;3 M/C	;3 M/C	
NOP		;1 M/C	;1 M/C	
NOP		;1 M/C	;1 M/C	
CLR	EWT	;2 M/C	;2 M/C	
Example 5: Invalid	Access			
MOV	TA, #0AAh	;3 M/C	;3 M/C	

25.6 RC OSC AND AC CHARACTERISTICS

(VDD-VSS = 2.4~5V, TA = -40~85°C.)

Parameter	Specification (reference)				Test Conditions
	Min.	Тур.	Max.	Unit	
W79E2051/W79E4051	-25		25	%	V _{DD} =2.4V~5.5V, TA = -40°C ~85°C
Frequency accuracy of On- chip RC oscillator (Without calibration)				×&	44
W79E2051R/W79E4051R	-2		2	%	V_{DD} =5.0V, TA = 25°C
On-chip RC oscillator with calibration ^{1,2}	-5		5	%	V _{DD} =2.7V~5.5V, TA = 0~85°C
(Fosc = 22.1184MHz with	-7		7	%	V _{DD} =2.7V~5.5V, TA = -20~85°C
factory calibration)	-9		7	%	V _{DD} =2.7V~5.5V, TA = -40~85°C
Wakeup time		256		clk	93.00

Note:

- 1. These values are for design guidance only and are not tested.
- 2. RC frequency deviation vs. V_{DD} and Temperature is shown below

Publication Release Date: April 16, 2009 Revision A06

26 TYPICAL APPLICATION CIRCUITS

The table below shows the reference values for crystal applications.

CRYSTAL	C1	C2	R
4MHz ~ 24 MHz	without	without	without

nuvoTon

27.2 20-pin DIP

Figure 27-2: 20L DIP-300mil