

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	H8/300H
Core Size	16-Bit
Speed	4MHz
Connectivity	I ² C, IrDA, SCI
Peripherals	LCD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	52KB (52K x 8)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	85-TFLGA
Supplier Device Package	85-TFLGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df38076rlp4v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Page	Revisio	on (S	ee Ma	anı	ual for D	Detai	ls)			
6.2 Mode Transitions	116	Note an	nend	ed							
and States of LSI		A transition between different modes cannot be made to occur simply because an interrupt request is generated. Make sure to enable interrupt requests.									le to occur
Figure 6.1 Mode Transition Diagram											ake sure to
Table 6.2 TransitionMode after SLEEPInstruction Executionand InterruptHandling	118			MSON			DTON	Exect	after P Transi Iction Mode	due to	Symbol in Figure 6.1
		Active (medium- speed) mode	0	0	0	*	1	Active (high- speed mode (direc transi	l) t		I
			0	1	0	*	1	Active (medi speec mode (direc transi	um- I) t		
Table 6.3 Internal State in Each Operating Mode	120	Note an	mend	ed			Suba		Subsleep Mode	Standby Mode	,
		Function Peripheral modules	RTC			Watch Mode Functioning/ retained* ⁹		ioning/	Functioning/ retained*9	Function retained	
		modules	Asynch event c		- !-	Functioning*		tioning	Functioning	Function	
			Timer F			Functioning/ retained*7	Funct etaine		Functioning/ retained*7	Retained	1
			TPU			Retained	Retai	ned	Retained	Retained	1
			WDT			Functioning ^{*®} / retained	Functi retaine	ioning* ⁸ / ed	Functioning* ⁸ / retained	Functionii retained	ng* [®] /
			SCI3/Irl	DA		Reset	Funct retain	tioning/ ied* ²	Functioning/ retained* ²	Reset	
		overflov 7. Fund retained 8. Fund 9. Fund	w inte tionir d othe tionir	errupts ng if ø erwise ng if th ng if th	s oj w/2 e. ne o ne i	perate. I is sele pn-chip nternal	cted oscil time	as a lator keep	n interna is select ping time	al clock ted. -base	ECL/ECH and . Halted and function is
		selecte	d and	l retai	ne	d if the i	nterv	/al tir	ner is se	lected	

Rev. 4.00 Aug 23, 2006 Page xvi of Ixxii

Page Revision (See Manual for Details)

Item	Page	Revisio	n (Se	e Ma	nua	l for	Detai	ls)					
15.3.8 Bit Rate	322	Table a	mend	ed									
Register (BRR)		4.9152MHz			5MHz				6MI	Hz		6.144	MHz
Table 15.3		Bit Rate (bit/s) n	N	Error (%)	n	N	Error (%)		N	Error (%)	n	N	Error (%)
Examples of BRR		110 2	86	0.31	2	88	-0.25	2	106	-0.44	2	108	0.08
Settings for Various		150 3	15	0.00	2	64	0.16	2	77	0.16	3	19	0.00
Bit Rates		200 3	11	0.00	2	48	-0.35	2	58	-0.69	3	14	0.00
(Asynchronous		250 2	37	1.05	2	38	0.16	2	46	-0.27	3	11	0.00
Mode) (3)		300 3	7	0.00	2	32	-1.36	2	38	0.16	3	9	0.00
		600 3	3	0.00	0	255	1.73	3	4	-2.34	3	4	0.00
		1200 3	1	0.00	0	129	0.16	0	155	0.16	2	9	0.00
Table 15.5 Maximum Bit Rate	324	Table a	mend								Sett	•	
for Each Frequency		OSC (MHz)				Bit Rat	te (bit/s)		n			N	
(Asynchronous		0.0328		512	_				0			0	
Mode)		0.0384		600					0			0	
		2		625	00				0			0	
Table 15.6 BRR Settings for Various Bit Rates (Clocked	325		Table amended • 32.8 kHz 38.4 kHz 2 Mi								2 MHz	:	
		Bit Rate		-	-								
Synchronous Mode)		(bit/s)	n	Ν	Erro	or (%)	n	N	Error (%	5) n	Ν	Err	or (%)
(1)		200	0	20	-2.3	8	0	23	0.00	2	15	5 0.1	6
(-)		250	0	15	2.50		0	18	1.05	2	12	4 0.0	0
		300	0	13	-2.3	8	0	15	0.00	2	103	3 0.1	6
		500	0	7	2.50		-		-	2	62	-0.	
		1k	0	3	2.50					2	30	0.8	1
Table 15.6 BRR	326	Table a	nd no	te am	nend	ed							
Settings for Various		ф		4	MHz			8	MHz			10 MH	z
Bit Rates (Clocked		Bit Rate						-				-	
Synchronous Mode)		(bit/s)	n	N	Erro	or (%)	n	N	Error (%	5) n	N	Err	or (%)
(2)		10k	0	99	0.00		0	199	0.00	2	15	-2.	34
		The	Active (m Active (m N = Subactive N = Bit rat BRR : C: ϕ_{osc} v: Baud	et in BRF nedium-s = $\frac{OS}{4 \times 2^2}$ e or subs = $\frac{OS}{8 \times 2^2}$ te (bit/s) setting for alue (Hz rate gen	R is give speed/f $\frac{SC}{2n \times B}$ sleep $\frac{SC}{2n \times B}$ or bauc	en by th nigh-spe - 1 - 1 d rate ge	enerator (ock numb	ng fo eep (0 ≤ I	rmula: (medium-s	r 3)		(5	

TT 1 1 10 0	
Table 19.2	Duty Cycle and Common Function Selection
Table 19.3	Segment Driver Selection
Table 19.4	Frame Frequency Selection
Table 19.5	Output Levels
Table 19.6	Power-Down Modes and Display Operation
Section 20	I ² C Bus Interface 2 (IIC2)
Table 20.1	Pin Configuration
Table 20.2	Transfer Rate
Table 20.2	Interrupt Requests
Table 20.3	Time for Monitoring SCL
1000 20.4	The for Montoning Self
Section 22	Address Break
Table 22.1	Access and Data Bus Used
Table 22.2	Operating States of Address Break
Section 24	Electrical Characteristics
Table 24.1	Absolute Maximum Ratings
Table 24.2	DC Characteristics
Table 24.3	Control Signal Timing
Table 24.4	Serial Interface Timing
Table 24.5	I ² C Bus Interface Timing
Table 24.6	A/D Converter Characteristics
Table 24.7	LCD Characteristics
Table 24.8	Power-On Reset Circuit Characteristics
Table 24.9	Watchdog Timer Characteristics
Table 24.10	Flash Memory Characteristics
Table 24.11	Absolute Maximum Ratings
Table 24.12	DC Characteristics
Table 24.13	Control Signal Timing
Table 24.14	Serial Interface Timing
Table 24.15	I ² C Bus Interface Timing
Table 24.16	A/D Converter Characteristics
Table 24.17	LCD Characteristics
Table 24.18	Power-On Reset Circuit Characteristics
Table 24.19	Watchdog Timer Characteristics
Table 24.20	Recommended Crystal Resonators
Table 24.21	Recommended Ceramic Resonators

Instructio	n Size*	Function
AND	B/W/L	$Rd \wedge Rs \rightarrow Rd$, $Rd \wedge \#IMM \rightarrow Rd$ Performs a logical AND operation on a general register and another general register or immediate data.
OR	B/W/L	$Rd \lor Rs \rightarrow Rd$, $Rd \lor \#IMM \rightarrow Rd$ Performs a logical OR operation on a general register and another general register or immediate data.
XOR	B/W/L	$Rd \oplus Rs \rightarrow Rd$, $Rd \oplus \#IMM \rightarrow Rd$ Performs a logical exclusive OR operation on a general register and another general register or immediate data.
NOT	B/W/L	\neg (Rd) \rightarrow (Rd) Takes the one's complement (logical complement) of general register contents.
Note: *	Refers to the	operand size.
	B: Byte	
	W: Word	
	L: Longword	

Table 2.4 Logic Operations Instructions

Table 2.5Shift Instructions

Instructio	n Size*	Function
SHAL	B/W/L	$Rd (shift) \rightarrow Rd$
SHAR		Performs an arithmetic shift on general register contents.
SHLL	B/W/L	$Rd (shift) \rightarrow Rd$
SHLR		Performs a logical shift on general register contents.
ROTL	B/W/L	$Rd \text{ (rotate)} \rightarrow Rd$
ROTR		Rotates general register contents.
ROTXL	B/W/L	Rd (rotate) \rightarrow Rd
ROTXR		Rotates general register contents through the carry flag.
Note: *	Refers to the	operand size.
	B: Byte	
	W: Word	

L: Longword

4.6.2 Interrupt Response Times

Table 4.4 shows interrupt response times – the interval between generation of an interrupt request and execution of the first instruction in the interrupt handling routine.

 Table 4.4
 Interrupt Response Times (States)

No.	Execution Status	Number of States
1	Interrupt mask level determination	1 or 2*1
2	Maximum number of wait states until executing instruction ends	1 to 23
3	PC, CCR stack	4
4	Vector fetch	4
5	Instruction fetch* ²	4
6	Internal processing*3	4
	Total	19 to 41

Notes: 1. One state for internal interrupts and two states for external interrupts.

2. Prefetch after interrupt acceptance and interrupt handling routine prefetch.

3. Internal processing after interrupt acceptance and internal processing after vector fetch.

(2) TCFL, OCRFL

In toggle output, TMOFL pin output is toggled when a compare match occurs. If a TCRF write by a MOV instruction and generation of the compare match signal occur simultaneously, TOLL data is output to the TMOFL pin as a result of the TCRF write.

If an OCRFL write and compare match signal generation occur simultaneously, the compare match signal is invalid. However, a compare match signal may or may not be generated when the written data and the counter value match. As the compare match signal is output in synchronization with the TCFL clock, a compare match will not result in compare match signal generation if the clock is stopped.

If a TCFL write and overflow signal output occur simultaneously, the overflow signal is not output.

11.6.3 Flag Clearing

When $\phi_w/4$ is selected as the internal clock, "Interrupt source generation signal" will be operated with ϕ_w and the signal will be outputted with ϕ_w width. And, "Overflow signal" and "Compare match signal" are controlled with 2 cycles of ϕ_w signals. Those signals are output with 2-cycle width of ϕ_w (figure 11.3)

In active (high-speed, medium-speed) mode, even if you cleared interrupt request flag during the term of validity of "Interrupt source generation signal", same interrupt request flag is set. (1 in figure 11.3) And, the timer overflow flag and compare match flag cannot be cleared during the term of validity of "Overflow signal" and "Compare match signal".

For interrupt request flag is set right after interrupt request is cleared, interrupt process to one time timer FH, timer FL interrupt might be repeated. (2 in figure 11.3) Therefore, to definitely clear interrupt request flag in active (high-speed, medium-speed) mode, clear should be processed after the time that calculated with below (1) formula. And, to definitely clear timer overflow flag and compare match flag, clear should be processed after read timer control status register F (TCSRF) after the time that calculated with below (1) formula.

For ST of (1) formula, please substitute the longest number of execution states in used instruction.

In subactive mode, there are not limitation for interrupt request flag, timer overflow flag, and compare match flag clear.

12.3 Register Descriptions

The TPU has the following registers for each channel.

Channel 1:

- Timer control register_1 (TCR_1)
- Timer mode register_1 (TMDR_1)
- Timer I/O control register_1 (TIOR_1)
- Timer interrupt enable register_1 (TIER_1)
- Timer status register_1 (TSR_1)
- Timer counter_1 (TCNT_1)
- Timer general register A_1 (TGRA_1)
- Timer general register B_1 (TGRB_1)

Channel 2:

- Timer control register_2 (TCR_2)
- Timer mode register_2 (TMDR_2)
- Timer I/O control register_2 (TIOR_2)
- Timer interrupt enable register_2 (TIER_2)
- Timer status register_2 (TSR_2)
- Timer counter_2 (TCNT_2)
- Timer general register A_2 (TGRA_2)
- Timer general register B_2 (TGRB_2)

Common:

- Timer start register (TSTR)
- Timer synchro register (TSYR)

12.8.7 Contention between TGR Read and Input Capture

If an input capture signal is generated in the T1 state of a TGR read cycle, data that is read will be data after input capture transfer.

Figure 12.34 shows the timing in this case.

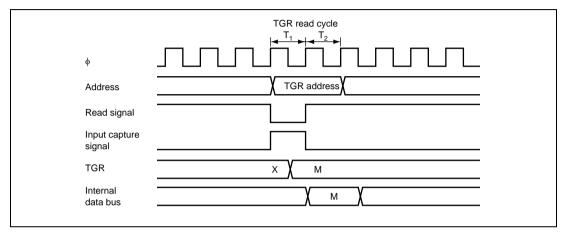


Figure 12.34 Contention between TGR Read and Input Capture

15.2 Input/Output Pins

Table 15.2 shows the SCI3 pin configuration.

Table 15.2 Pin Configuration

Pin Name	Abbreviati on	I/O	Function	
SCI3 clock	SCK31, SCK32	I/O	SCI3 clock input/output	
SCI3 receive data input	RXD31, RXD32	Input	SCI3 receive data input	
SCI3 transmit data output	TXD31, TXD32	Output	SCI3 transmit data output	

15.3 Register Descriptions

The SCI3 has the following registers for each channel.

- Receive shift register 3 (RSR3)*
- Receive data register 3 (RDR3)*
- Transmit shift register 3 (TSR3)*
- Transmit data register 3 (TDR3)*
- Serial mode register 3 (SMR3)*
- Serial control register 3 (SCR3)*
- Serial status register 3 (SSR3)*
- Bit rate register 3 (BRR3)*
- Serial port control register (SPCR)
- IrDA control register (IrCR)
- Note: * These register names are abbreviated to RSR, RDR, TSR, TDR, SMR, SCR, SSR, and BRR in the text.

15.3.6 Serial Control Register (SCR)

SCR enables or disables SCI3 transfer operations and interrupt requests, and selects the transfer clock source. For details on interrupt requests, refer to section 15.8, Interrupt Requests.

SCR is initialized to H'00 by a reset or in standby mode, watch mode, or module standby mode.

Bit	Bit Name	Initial Value	R/W	Description
7	TIE	0	R/W	Transmit Interrupt Enable
		-		When this bit is set to 1, the TXI (TXI32) interrupt request is enabled. TXI (TXI32) can be released by clearing the TDRE it or TI bit to 0.
6	RIE	0	R/W	Receive Interrupt Enable
				When this bit is set to 1, RXI and ERI interrupt requests are enabled.
				RXI (RXI32) and ERI (ERI32) can be released by clearing the RDRF bit or the FER, PER, or OER error flag to 0, or by clearing the RIE bit to 0.
5	TE	0	R/W	Transmit Enable
				When this bit is set to 1, transmission is enabled. When this bit is 0, the TDRE bit in SSR is fixed at 1. When transmit data is written to TDR while this bit is 1, Bit TDRE in SSR is cleared to 0 and serial data tansmission is started. Be sure to carry out SMR settings, and setting of bit SPC31 or SPC32 in SPCR, to decide the transmission format before setting bit TE to 1.
4	RE	0	R/W	Receive Enable
				When this bit is set to 1, reception is enabled. In this state, serial data reception is started when a start bit is detected in asynchronous mode or serial clock input is detected in clocked synchronous mode. Be sure to carry out the SMR settings to decide the reception format before setting bit RE to 1.
				Note that the RDRF, FER, PER, and OER flags in SSR are not affected when bit RE is cleared to 0, and retain their previous state

15.5.3 Serial Data Transmission

Figure 15.10 shows an example of SCI3 operation for transmission in clocked synchronous mode. In serial transmission, the SCI3 operates as described below.

- 1. The SCI3 monitors the TDRE flag in SSR, and if the flag is 0, the SCI recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- 2. The SCI3 sets the TDRE flag to 1 and starts transmission. If the TIE bit in SCR is set to 1 at this time, a TXI31 (TXI32) interrupt request is generated.
- 3. 8-bit data is sent from the TXD31 (TXD32) pin synchronized with the output clock when output clock mode has been specified, and synchronized with the input clock when use of an external clock has been specified. Serial data is transmitted sequentially from the LSB (bit 0), from the TXD31 (TXD32) pin.
- 4. The SCI checks the TDRE flag at the timing for sending the MSB (bit 7).
- 5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial transmission of the next frame is started.
- 6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TDRE flag maintains the output state of the last bit. If the TEIE bit in SCR is set to 1 at this time, a TEI31 (TEI32) is generated.
- 7. The SCK31 (SCK32) pin is fixed high.

Figure 15.11 shows a sample flowchart for serial data transmission. Even if the TDRE flag is cleared to 0, transmission will not start while a receive error flag (OER, FER, or PER) is set to 1. Make sure that the receive error flags are cleared to 0 before starting transmission.

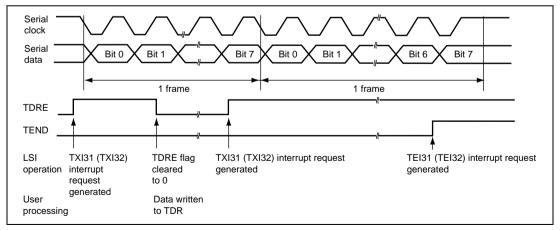


Figure 15.10 Example of SCI3 Operation in Transmission in Clocked Synchronous Mode

Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the OER, FER, PER, and RDRF bits to 0 before resuming reception. Figure 15.13 shows a sample flowchart for serial data reception.

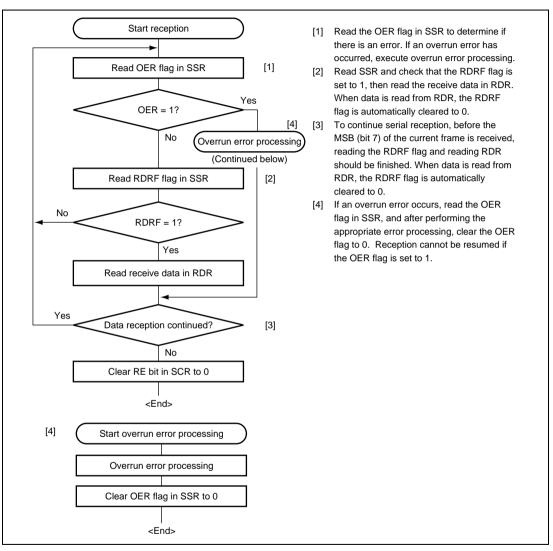


Figure 15.13 Sample Serial Reception Flowchart (Clocked Synchronous Mode)

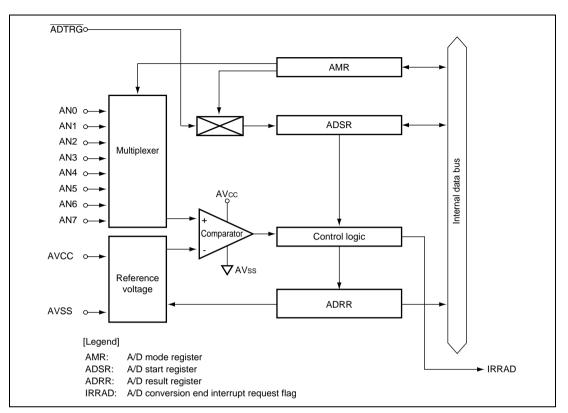


Figure 18.1 Block Diagram of A/D Converter

24.2.2 DC Characteristics

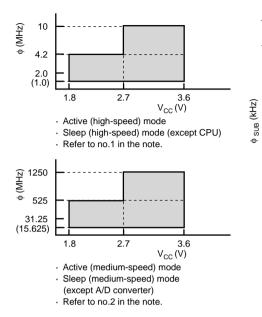

Table 24.2 lists the DC characteristics.


Table 24.2 DC Characteristics

 $V_{cc} = 1.8$ V to 3.6 V, $AV_{cc} = 1.8$ V to 3.6 V, $V_{ss} = AV_{ss} = 0.0$ V, unless otherwise specified.

					Valu	ies		
ltem	Symbol	Applicable Pins	Test Condition	Min.	Тур.	Max.	Unit	Notes
Input high voltage	V _{iH}	RES, NMI* ³ , WKP0 to WKP7, IRQ4, AEVL, AEVH, TMIF, ADTRG, SCK32, SCK31, SCK4		0.9V _{cc}	_	V _{cc} + 0.3	V	
		IRQ0, IRQ1, IRQ3		0.9V _{cc}	_	AV _{cc} + 0.3	_	
		RXD32, RXD31		0.8V _{cc}	_	V _{cc} + 0.3		
		OSC1		$0.9V_{cc}$	_	V _{cc} + 0.3	_	
		X1	$\rm V_{\rm cc}$ = 2.7 to 3.6 V	$0.9V_{cc}$	—	V _{cc} + 0.3		
		P10 to P16, P30 to P32, P36, P37, P40 to P42, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P93, PA0 to PA3, TCLKA, TCLKB, TCLKC, TIOCA1, TIOCA2, TIOCB1, TIOCB2, SCL, SDA		0.8V _{cc}	_	V _{cc} + 0.3		
		PB0 to PB7		0.8V _{cc}	_	AV _{cc} + 0.3	_	
		IRQAEC		$0.9V_{\rm cc}$	—	V _{cc} + 0.3	_	

(2) Power Supply Voltage and Operating Frequency Range

· Subactive mode

· Subsleep mode (except CPU)

· Watch mode (except CPU)

- Notes: 1. The value in parentheses is the minimum operating frequency when an external clock is input. When using a resonator, the minimum operating frequency (ϕ) is 2 MHz.
 - The value in parentheses is the minimum operating frequency when an external clock is input. When using a resonator, the minimum operating frequency (φ) is 31.25 kHz.

24.4.2 DC Characteristics

Table 24.12 lists the DC characteristics.

Table 24.12 DC Characteristics

 $V_{cc} = 1.8 \text{ V}$ to 3.6 V, $AV_{cc} = 1.8 \text{ V}$ to 3.6 V, $V_{ss} = AV_{ss} = 0.0 \text{ V}$, unless otherwise specified.

					Value	es		
Item	Symbol	Applicable Pins	Test Condition	Min.	Тур.	Max.	Unit	Notes
Input high	V	RES, NMI, WKPO to		0.9V _{cc}	_	V _{cc} + 0.3	V	
voltage		WKP7, IRQ4,						
		AEVL, AEVH,						
		TMIF, ADTRG,						
		SCK32, SCK31						
		IRQ0, IRQ1, IRQ3		$0.9V_{\rm cc}$	_	AV_{cc} + 0.3	_	
		RXD32, RXD31		$0.8V_{\rm cc}$	—	V _{cc} + 0.3		
		OSC1		$0.9V_{cc}$	_	V _{cc} + 0.3		
		X1	$V_{\rm cc}$ = 2.7 to 3.6 V	$0.9V_{\rm cc}$	_	V _{cc} + 0.3	_	
		P10 to P16,		$0.8V_{cc}$	—	V _{cc} + 0.3		
		P30 to P32,						
		P36, P37,						
		P40 to P42,						
		P50 to P57,						
		P60 to P67,						
		P70 to P77,						
		P80 to P87,						
		P90 to P93,						
		PA0 to PA3,						
		TCLKA, TCLKB,						
		TCLKC, TIOCA1,						
		TIOCA2, TIOCB1,						
		TIOCB2, SCL, SDA					_	
		PB0 to PB7		$0.8V_{\rm cc}$	_	AV_{cc} + 0.3	_	
		IRQAEC		$0.9V_{\rm cc}$	_	V _{cc} + 0.3		

24.4.5 LCD Characteristics

Table 24.17 shows the LCD characteristics.

Table 24.17 LCD Characteristics

 $V_{cc} = 1.8 \text{ V}$ to 3.6 V, $AV_{cc} = 1.8 \text{ V}$ to 3.6 V, $V_{ss} = AV_{ss} = 0.0 \text{ V}$, unless otherwise specified.

		Applicable			Values	6		
Item	Symbol	Pins	Test Condition	Min.	Тур.	Max.	Unit	Notes
Segment driver drop voltage	$V_{\rm ds}$	SEG1 to SEG32	$I_{_{D}} = 2 \ \mu A$ V1 = 2.7 V to 3.6 V	_	_	0.6	V	*1
Common driver drop voltage	V _{dc}	COM1 to COM4	$I_{_{D}} = 2 \ \mu A$ V1 = 2.7 V to 3.6 V	-	_	0.3	V	*1
LCD power supply split- resistance	R		Between V1 and $\rm V_{ss}$	1.5	3.0	7.0	MΩ	
LCD display voltage	V	V1		2.2	—	3.6	V	*2
V3 power supply voltage	V_{LCD3}	V3	Between V3 and $\rm V_{ss}$	0.9	1.0	1.1	V	* ³ * ⁴
V2 power supply voltage	V_{LCD2}	V2	Between V2 and V_{ss}	_	2.0 (V _{LCD3} × 2)	_	V	* ³ * ⁴
V1 power supply voltage	V_{LCD1}	V1	Between V1 and $\rm V_{ss}$	_	3.0 (V _{LCD3} × 3)	-	V	*3*4
3-V constant voltage LCD power supply circuit current consumption	I _{LCD}	Vcc	V _{cc} = 3.0 V Booster clock: 125 kHz	_	20	_	μΑ	Reference value* ⁴ * ⁵

Notes: 1. The voltage drop from power supply pins V1, V2, V3, and V_{ss} to each segment pin or common pin.

- 2. When the LCD display voltage is supplied from an external power source, ensure that the following relationship is maintained: $V1 \ge V2 \ge V3 \ge V_{ss}$.
- 3. The value when the LCD power supply split-resistor is separated and 3-V constant voltage power supply circuit is driven.
- 4. For details on the register (BGRMR) setting range when the voltage of the V3 pin is set to 1.0 V, refer to section 19.3.5, BGR Control Register (BGRMR).
- 5. Includes the current consumption of the band-gap reference circuit (BGR) (operation).

Table A.1Instruction Set

1. Data Transfer Instructions

				Addressing Mode and Instruction Length (bytes)																No. of States ^{*1}	
Mnemonic MOV MOV.B #xx:8, Rd		Operand Size	#xx	Rn I, ERn)		@-ERn/@ERn+	@aa	@(d, PC)	@ @ aa	-	Operation		Condition Code						Advanced		
		в	₩ 2	~	0	0	0	0	0	0		#xx:8 → Rd8	1	н	N ↓	z ≎	v	c	Normal		
MOV	MOV.B Rs, Rd	В	~	2								$Rs8 \rightarrow Rd8$	1_	1_	↓	1	0	_	2		
	MOV.B @ERs, Rd	В		-	2							$@ERs \rightarrow Rd8$	_	_	↓	1	0	_	4		
	MOV.B @(d:16, ERs), Rd	В			-	4						$@(d:16, ERs) \rightarrow Rd8$	-	1_	↓	1	0	_	6		
	MOV.B @(d:24, ERs), Rd	В				8						$@(d:24, ERs) \rightarrow Rd8$	1_	1_	\$	1	0	_	10		
	MOV.B @ERs+, Rd	в				_	2					@ERs → Rd8 ERs32+1 → ERs32	-	-	\$	\$	0	-	6		
	MOV.B @aa:8, Rd	В						2				$@aa:8 \rightarrow Rd8$	-	-	\$	\$	0	—	4		
	MOV.B @aa:16, Rd	в						4				@aa:16 → Rd8	-	1-	\$	\$	0	—	6		
	MOV.B @aa:24, Rd	В						6				@aa:24 → Rd8	-	-	\$	\$	0	—	8		
	MOV.B Rs, @ERd	В			2							$Rs8 \rightarrow @ERd$	-	-	\$	\$	0	—	4		
	MOV.B Rs, @(d:16, ERd)	в				4						$Rs8 \rightarrow @(d:16, ERd)$	-	-	\$	\$	0	—	6	3	
	MOV.B Rs, @(d:24, ERd)	В				8						$Rs8 \rightarrow @(d:24, ERd)$	-	-	\$	\$	0	—	10		
	MOV.B Rs, @-ERd	В					2					$ERd32-1 \rightarrow ERd32$ $Rs8 \rightarrow @ERd$	-	-	\$	\$	0	—	6		
	MOV.B Rs, @aa:8	В						2				Rs8 → @aa:8	-	-	\$	\$	0	—	4		
	MOV.B Rs, @aa:16	в						4				Rs8 → @aa:16	-	-	\$	\$	0	—	6		
	MOV.B Rs, @aa:24	В						6				$Rs8 \rightarrow @aa:24$	-	-	\$	\$	0	—	8		
	MOV.W #xx:16, Rd	W	4									#xx:16 → Rd16	-	-	\$	\$	0	—	4		
	MOV.W Rs, Rd	W		2								$Rs16 \rightarrow Rd16$	-	-	\$	\$	0	—	2		
	MOV.W @ERs, Rd	W			2							$@ERs \to Rd16$	-	-	\$	\uparrow	0	—	4		
	MOV.W @(d:16, ERs), Rd	W				4						$@(d:16, ERs) \rightarrow Rd16$	-	-	\$	\$	0	—	6		
	MOV.W @(d:24, ERs), Rd	W				8						@(d:24, ERs) → Rd16	-	-	\$	\$	0	—	1	0	
	MOV.W @ERs+, Rd	w					2					@ERs → Rd16 ERs32+2 → @ERd32	-	-	\$	\$	0	_	6		
	MOV.W @aa:16, Rd	W						4				@aa:16 → Rd16	-	-	\$	\$	0	—	6		
	MOV.W @aa:24, Rd	W						6				@aa:24 → Rd16	-	-	\$	\$	0	—	8		
	MOV.W Rs, @ERd	W			2							$Rs16 \rightarrow @ERd$	-	-	\$	\$	0	—	4		
	MOV.W Rs, @(d:16, ERd)	W				4						$Rs16 \rightarrow @(d:16, ERd)$	-	-	\$	\$	0	—	- 6		
	MOV.W Rs, @(d:24, ERd)	W				8						$Rs16 \rightarrow @(d:24, ERd)$	-	-	\$	\$	0	—	1	0	

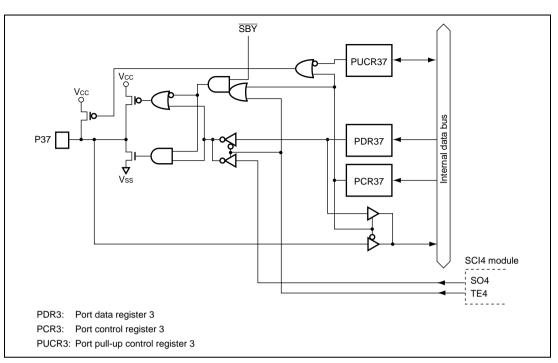


Figure B.2 (a) Port 3 Block Diagram (P37) (F-ZTAT Version)

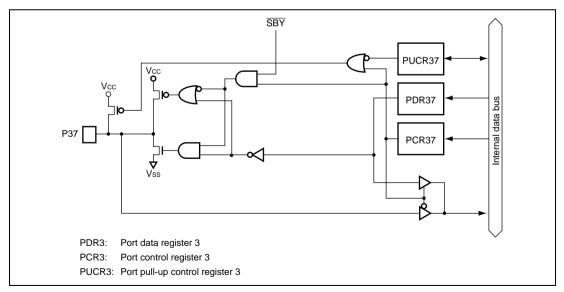


Figure B.2 (b) Port 3 Block Diagram (P37) (Masked ROM Version)

Renesas 16-Bit Single-Chip Microcomputer Hardware Manual H8/38076R Group

Publication Date:	Rev.1.00, November 2003
	Rev.4.00, August 23, 2006
Published by:	Sales Strategic Planning Div.
	Renesas Technology Corp.
Edited by:	Customer Support Department
	Global Strategic Communication Div.
	Renesas Solutions Corp.

©2006. Renesas Technology Corp., All rights reserved. Printed in Japan.