
# E·XFL



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                                |
|---------------------------------|-------------------------------------------------------------------------|
| Core Processor                  | PowerPC e600                                                            |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                          |
| Speed                           | 1.066GHz                                                                |
| Co-Processors/DSP               | -                                                                       |
| RAM Controllers                 | DDR, DDR2                                                               |
| Graphics Acceleration           | No                                                                      |
| Display & Interface Controllers | DIU, LCD                                                                |
| Ethernet                        | -                                                                       |
| SATA                            | -                                                                       |
| USB                             | -                                                                       |
| Voltage - I/O                   | 1.8V, 2.5V, 3.3V                                                        |
| Operating Temperature           | -40°C ~ 105°C (TA)                                                      |
| Security Features               |                                                                         |
| Package / Case                  | 783-BBGA, FCBGA                                                         |
| Supplier Device Package         | 783-FCPBGA (29x29)                                                      |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc8610tvt1066jb |
|                                 |                                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# **Table of Contents**

| 1 | Pin A | ssignments and Reset States4                  |
|---|-------|-----------------------------------------------|
| 2 | Elect | rical Characteristics                         |
|   | 2.1   | Overall DC Electrical Characteristics15       |
|   | 2.2   | Power Sequencing                              |
|   | 2.3   | Power Characteristics                         |
|   | 2.4   | Input Clocks                                  |
|   | 2.5   | RESET Initialization                          |
|   | 2.6   | DDR and DDR2 SDRAM25                          |
|   | 2.7   | Local Bus                                     |
|   | 2.8   | Display Interface Unit                        |
|   | 2.9   | l <sup>2</sup> C                              |
|   | 2.10  | DUART                                         |
|   | 2.11  | Fast/Serial Infrared Interfaces (FIRI/SIRI)42 |
|   | 2.12  | Synchronous Serial Interface (SSI)42          |
|   | 2.13  | Global Timer Module48                         |
|   | 2.14  | GPIO                                          |
|   | 2.15  | Serial Peripheral Interface (SPI)             |
|   | 2.16  | PCI Interface                                 |
|   | 2.17  | High-Speed Serial Interfaces (HSSI)54         |
|   | 2.18  | PCI Express                                   |
|   | 2.19  | JTAG                                          |
| 3 | Hard  | ware Design Considerations                    |
|   |       |                                               |

|   | 3.1   | System Clocking                                    |
|---|-------|----------------------------------------------------|
|   | 3.2   | Power Supply Design and Sequencing                 |
|   | 3.3   | Decoupling Recommendations                         |
|   | 3.4   | SerDes Block Power Supply Decoupling               |
|   |       | Recommendations                                    |
|   | 3.5   | Connection Recommendations                         |
|   | 3.6   | Pull-Up and Pull-Down Resistor Requirements 78     |
|   | 3.7   | Output Buffer DC Impedance                         |
|   | 3.8   | Configuration Pin Muxing                           |
|   | 3.9   | JTAG Configuration Signals                         |
|   | 3.10  | Guidelines for High-Speed Interface Termination 83 |
|   | 3.11  | Guidelines for PCI Interface Termination           |
|   | 3.12  | Thermal                                            |
| 4 | Orde  | ring Information                                   |
|   | 4.1   | Part Numbers Fully Addressed by This Document 90   |
|   | 4.2   | Part Marking                                       |
| 5 | Pack  | age Information                                    |
|   | 5.1   | Package Parameters for the MPC8610 92              |
|   | 5.2   | Mechanical Dimensions of the MPC8610 FC-PBGA 93    |
| 6 | Prod  | uct Documentation                                  |
| 7 | Revis | sion History                                       |
|   |       |                                                    |

MPC8610 Integrated Host Processor Hardware Specifications, Rev. 2

NP



| Driver Type                                                                                                                  | Programmable<br>Output Impedance<br>(Ω) | Supply<br>Voltage                                                                | Notes |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|-------|
| Local bus                                                                                                                    | 25<br>35                                | BV <sub>DD</sub> = 3.3 V<br>BV <sub>DD</sub> = 2.5 V                             | 2     |
|                                                                                                                              | 45 (default)<br>45 (default)<br>125     | BV <sub>DD</sub> = 3.3 V<br>BV <sub>DD</sub> = 2.5 V<br>BV <sub>DD</sub> = 1.8 V |       |
| PCI, DUART, DMA, interrupts, system control and clocking, debug, test, JTAG, power management, and miscellaneous I/O voltage | 45                                      | OV <sub>DD</sub> = 3.3 V                                                         |       |
| l <sup>2</sup> C                                                                                                             | 150                                     | OV <sub>DD</sub> = 3.3 V                                                         |       |
| PCI Express                                                                                                                  | 100                                     | XV <sub>DD</sub> = 1.0 V                                                         | 3     |

### Table 4. Output Drive Capability (continued)

Notes:

- 1. See the DDR control driver registers in the MPC8610 Integrated Host Processor Reference Manual, for more information.
- 2. See the POR impedance control register in the *MPC8610 Integrated Host Processor Reference Manual*, for more information about local bus signals and their drive strength programmability.
- 3. See Section 1, "Pin Assignments and Reset States," for details on resistor requirements for the calibration of SD*n*\_IMP\_CAL\_TX and SD*n*\_IMP\_CAL\_RX transmit and receive signals.
- 4. Stub series terminated logic (SSTL-25) type pins.
- 5. Stub series terminated logic (SSTL-18) type pins.
- 6. The drive strength of the DDR interface in half strength mode is at  $T_i = 105^{\circ}C$  and at  $GV_{DD}$  (min).

# 2.2 Power Sequencing

The MPC8610 requires its power rails to be applied in a specific sequence in order to ensure proper device operation. These requirements are as follows:

The chronological order of power up is:

- 1.  $OV_{DD}$ ,  $BV_{DD}$
- 2. V<sub>DD</sub>\_PLAT, AV<sub>DD</sub>\_PLAT, V<sub>DD</sub>\_Core, AV<sub>DD</sub>\_Core, AV<sub>DD</sub>\_PCI, SnV<sub>DD</sub>, XnV<sub>DD</sub>, SDnAV<sub>DD</sub> (this rail must reach 90% of its value before the rail for GV<sub>DD</sub> and MV<sub>REF</sub> reaches 10% of its value)
- 3. GV<sub>DD</sub>, MV<sub>REF</sub>
- 4. SYSCLK

The order of power down is as follows:

- 1. SYSCLK
- 2. GV<sub>DD</sub>, MV<sub>REF</sub>
- 3. V<sub>DD</sub>\_PLAT, AV<sub>DD</sub>\_PLAT, V<sub>DD</sub>\_Core, AV<sub>DD</sub>\_Core, AV<sub>DD</sub>\_PCI, SnV<sub>DD</sub>, XnV<sub>DD</sub>, SDnAV<sub>DD</sub>
- 4. O<sub>DD</sub>, BV<sub>DD</sub>

### NOTE

 $AV_{DD}$  type supplies should be delayed with respect to their source supplies by the RC time constant of the PLL filter circuit described in Section 3.2, "Power Supply Design and Sequencing."



# 2.6.1 DDR SDRAM DC Electrical Characteristics

Table 14 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8610 when  $GV_{DD}(typ) = 1.8 \text{ V}.$ 

| Parameter/Condition                              | Symbol            | Min                       | Мах                       | Unit | Notes |
|--------------------------------------------------|-------------------|---------------------------|---------------------------|------|-------|
| I/O supply voltage                               | GV <sub>DD</sub>  | 1.71                      | 1.89                      | V    | 1     |
| I/O reference voltage                            | MV <sub>REF</sub> | $0.49 	imes GV_{DD}$      | $0.51 	imes GV_{DD}$      | V    | 2     |
| I/O termination voltage                          | V <sub>TT</sub>   | MV <sub>REF</sub> – 0.04  | MV <sub>REF</sub> + 0.04  | V    | 3     |
| Input high voltage                               | V <sub>IH</sub>   | MV <sub>REF</sub> + 0.125 | GV <sub>DD</sub> + 0.3    | V    |       |
| Input low voltage                                | V <sub>IL</sub>   | -0.3                      | MV <sub>REF</sub> – 0.125 | V    |       |
| Output leakage current                           | I <sub>OZ</sub>   | -50                       | 50                        | μA   | 4     |
| Output high current (V <sub>OUT</sub> = 1.420 V) | I <sub>ОН</sub>   | -13.4                     | _                         | mA   |       |
| Output low current (V <sub>OUT</sub> = 0.280 V)  | I <sub>OL</sub>   | 13.4                      | _                         | mA   |       |

### Table 14. DDR2 SDRAM DC Electrical Characteristics for GV<sub>DD</sub>(typ) = 1.8 V

### Notes:

1.  $GV_{DD}$  is expected to be within 50 mV of the DRAM  $GV_{DD}$  at all times.

2. MV<sub>REF</sub> is expected to be equal to 0.5 × GV<sub>DD</sub>, and to track GV<sub>DD</sub> DC variations as measured at the receiver. Peak-to-peak noise on MV<sub>REF</sub> may not exceed ±2% of the DC value.

 V<sub>TT</sub> is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV<sub>REF</sub>. This rail should track variations in the DC level of MV<sub>REF</sub>.

4. Output leakage is measured with all outputs disabled, 0 V  $\leq$  V<sub>OUT</sub>  $\leq$  GV<sub>DD</sub>.

Table 15 provides the DDR capacitance when  $GV_{DD}(typ) = 1.8$  V.

### Table 15. DDR2 SDRAM Capacitance for GV<sub>DD</sub>(typ)=1.8 V

| Parameter/Condition                          | Symbol           | Min | Мах | Unit | Notes |
|----------------------------------------------|------------------|-----|-----|------|-------|
| Input/output capacitance: DQ, DQS, DQS       | C <sub>IO</sub>  | 6   | 8   | pF   | 1     |
| Delta input/output capacitance: DQ, DQS, DQS | C <sub>DIO</sub> | _   | 0.5 | pF   | 1     |

### Note:

1. This parameter is sampled.  $GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$ , f = 1 MHz, T<sub>A</sub> = 25°C, V<sub>OUT</sub> =  $GV_{DD}/2$ , V<sub>OUT</sub> (peak-to-peak) = 0.2 V.

Table 16 provides the recommended operating conditions for the DDR SDRAM component(s) when  $GV_{DD}(typ) = 2.5 V$ .

### Table 16. DDR SDRAM DC Electrical Characteristics for GV<sub>DD</sub> (typ) = 2.5 V

| Parameter/Condition     | Symbol            | Min                      | Мах                      | Unit | Notes |
|-------------------------|-------------------|--------------------------|--------------------------|------|-------|
| I/O supply voltage      | GV <sub>DD</sub>  | 2.375                    | 2.625                    | V    | 1     |
| I/O reference voltage   | MV <sub>REF</sub> | $0.49 	imes GV_{DD}$     | $0.51 	imes GV_{DD}$     | V    | 2     |
| I/O termination voltage | V <sub>TT</sub>   | MV <sub>REF</sub> – 0.04 | MV <sub>REF</sub> + 0.04 | V    | 3     |
| Input high voltage      | V <sub>IH</sub>   | MV <sub>REF</sub> + 0.15 | GV <sub>DD</sub> + 0.3   | V    |       |
| Input low voltage       | V <sub>IL</sub>   | -0.3                     | MV <sub>REF</sub> – 0.15 | V    |       |
| Output leakage current  | I <sub>OZ</sub>   | -50                      | 50                       | μA   | 4     |



# 2.6.2.2 DDR SDRAM Output AC Timing Specifications

### Table 22. DDR SDRAM Output AC Timing Specifications

At recommended operating conditions.

| Parameter                                                                          | Symbol <sup>1</sup>                         | Min                             | Мах                        | Unit | Notes  |
|------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------|----------------------------|------|--------|
| MCK[n] cycle time, MCK[n]/MCK[n] crossing                                          | t <sub>MCK</sub>                            | 3                               | 10                         | ns   | 2      |
| MCK duty cycle<br>533 MHz<br>400 MHz<br>333 MHz                                    | <sup>t</sup> мскн <sup>/t</sup> мск         | 47<br>47<br>47                  | 53<br>53<br>53             | %    | 8<br>8 |
| ADDR/CMD output setup with respect to MCK<br>533 MHz<br>400 MHz<br>333 MHz         | <sup>t</sup> DDKHAS                         | 1.48<br>1.95<br>2.40            | <br>                       | ns   | 3<br>7 |
| ADDR/CMD output hold with respect to MCK<br>533 MHz<br>400 MHz<br>333 MHz          | t <sub>ddkhax</sub>                         | 1.48<br>1.95<br>2.40            |                            | ns   | 3<br>7 |
| MCS[n] output setup with respect to MCK<br>533 MHz<br>400 MHz<br>333 MHz           | t <sub>DDKHCS</sub>                         | 1.48<br>1.95<br>2.40            |                            | ns   | 3<br>7 |
| MCS[n] output hold with respect to MCK<br>533 MHz<br>400 MHz<br>333 MHz            | <sup>t</sup> DDKHCX                         | 1.48<br>1.95<br>2.40            | <br>                       | ns   | 3<br>7 |
| MCK to MDQS Skew                                                                   | t <sub>DDKHMH</sub>                         | -0.6                            | 0.6                        | ns   | 4      |
| MDQ/MECC/MDM output setup with respect<br>to MDQS<br>533 MHz<br>400 MHz<br>333 MHz | <sup>t</sup> ddkhds,<br><sup>t</sup> ddklds | 590<br>700<br>900               |                            | ps   | 5<br>7 |
| MDQ/MECC/MDM output hold with respect to<br>MDQS<br>533 MHz<br>400 MHz<br>333 MHz  | <sup>t</sup> ddkhdx,<br><sup>t</sup> ddkldx | 590<br>700<br>900               |                            | ps   | 5<br>7 |
| MDQS preamble start                                                                | t <sub>DDKHMP</sub>                         | $-0.5\times t_{\text{MCK}}-0.6$ | $-0.5 \times t_{MCK}$ +0.6 | ns   | 6      |



# 2.10 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8610.

# 2.10.1 DUART DC Electrical Characteristics

Table 32 provides the DC electrical characteristics for the DUART interface.

### Table 32. DUART DC Electrical Characteristics

| Parameter                                                                  | Symbol          | Min                    | Мах                    | Unit |
|----------------------------------------------------------------------------|-----------------|------------------------|------------------------|------|
| High-level input voltage                                                   | V <sub>IH</sub> | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage                                                    | V <sub>IL</sub> | - 0.3                  | 0.8                    | V    |
| Input current ( $V_{IN}^{1} = 0 V \text{ or } V_{IN} = V_{DD}$ )           | I <sub>IN</sub> | —                      | ±5                     | μA   |
| High-level output voltage (OV <sub>DD</sub> = mn, $I_{OH}$ = -100 $\mu$ A) | V <sub>OH</sub> | OV <sub>DD</sub> - 0.2 | —                      | V    |
| Low-level output voltage ( $OV_{DD} = min$ , $I_{OL} = 100 \ \mu A$ )      | V <sub>OL</sub> | _                      | 0.2                    | V    |

#### Note:

1. The symbol V<sub>IN</sub>, in this case, represents the OV<sub>IN</sub> symbol referenced in Table 2 and Table 3.

# 2.10.2 DUART AC Electrical Specifications

Table 33 provides the AC timing parameters for the DUART interface.

### **Table 33. DUART AC Timing Specifications**

| Parameter         | Value                    | Unit | Notes |
|-------------------|--------------------------|------|-------|
| Minimum baud rate | Platform clock/1,048,576 | baud | 1     |
| Maximum baud rate | Platform clock/16        | baud | 1, 2  |
| Oversample rate   | 16                       | _    | 1, 3  |

### Notes:

1. Guaranteed by design.

- 2. Actual attainable baud rate will be limited by the latency of interrupt processing.
- 3. The middle of a start bit is detected as the 8<sup>th</sup> sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16<sup>th</sup> sample.

# 2.11 Fast/Serial Infrared Interfaces (FIRI/SIRI)

The fast/serial infrared interfaces (FIRI/SIRI) implements asynchronous infrared protocols (FIR, MIR, SIR) that are defined by IrDA (Infrared Data Association). Refer to http://www.IrDA.org for details on FIR and SIR protocols.

# 2.12 Synchronous Serial Interface (SSI)

This section describes the DC and AC electrical specifications for the SSI interface of the MPC8610.

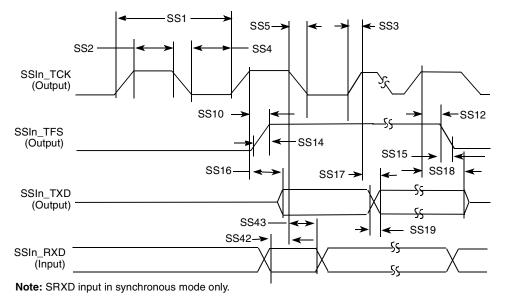
# 2.12.1 SSI DC Electrical Characteristics

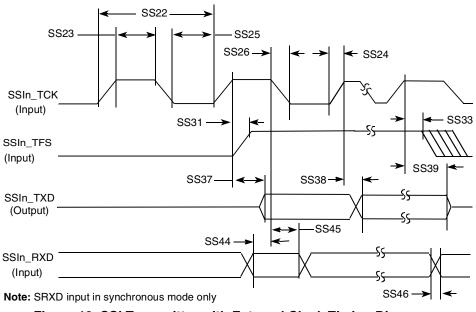
Table 34 provides SSI DC electrical characteristics.



| Parameter                       | Symbol | Min | Мах | Unit |
|---------------------------------|--------|-----|-----|------|
| SRXD hold after (Tx) CK falling | SS43   | 0   | _   | ns   |
| Loading                         | SS52   |     | 25  | pF   |

Figure 17 provides the SSI transmitter timing with internal clock.





Figure 17. SSI Transmitter with Internal Clock Timing Diagram



| Parameter                                      | Symbol         | Min   | Max  | Unit |
|------------------------------------------------|----------------|-------|------|------|
| (Tx/Rx) CK clock low period                    | SS25           | 36.0  | _    | ns   |
| (Tx/Rx) CK clock fall time                     | SS26           |       | 6.0  | ns   |
| (Tx) CK high to FS high                        | SS31           | -10.0 | 15.0 | ns   |
| (Tx) CK high to FS low                         | SS33           | 10.0  |      | ns   |
| (Tx) CK high to STXD valid from high impedance | SS37           | _     | 15.0 | ns   |
| (Tx) CK high to STXD high/low                  | SS38           | _     | 15.0 | ns   |
| (Tx) CK high to STXD high impedance            | SS39           | _     | 15.0 | ns   |
| Synchronous External                           | Clock Operatio | n     |      |      |
| SRXD setup before (Tx) CK falling              | SS44           | 10.0  | _    | ns   |
| SRXD hold after (Tx) CK falling                | SS45           | 2.0   | —    | ns   |
| SRXD rise/fall time                            | SS46           | —     | 6.0  | ns   |

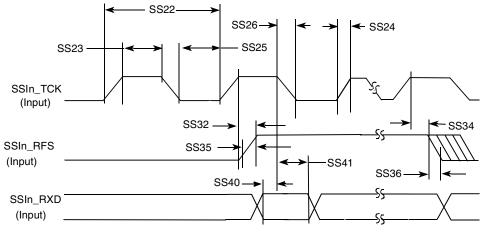
### Table 37. SSI Transmitter with External Clock Timing Parameters (continued)

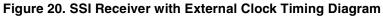
Figure 19 provides the SSI transmitter timing with external clock.








### 2.12.2.4 SSI Receiver Timing with External Clock


Table 38 provides the receiver timing parameters with external clock.

### Table 38. SSI Receiver with External Clock Timing Parameters

| Parameter                          | Symbol | Min   | Мах  | Unit |  |
|------------------------------------|--------|-------|------|------|--|
| External Clock Operation           |        |       |      |      |  |
| (Tx/Rx) CK clock period            | SS22   | 81.4  | —    | ns   |  |
| (Tx/Rx) CK clock high period       | SS23   | 36.0  | —    | ns   |  |
| (Tx/Rx) CK clock rise time         | SS24   | —     | 6.0  | ns   |  |
| (Tx/Rx) CK clock low period        | SS25   | 36.0  | —    | ns   |  |
| (Tx/Rx) CK clock fall time         | SS26   | —     | 6.0  | ns   |  |
| (Rx) CK high to FS high            | SS32   | -10.0 | 15.0 | ns   |  |
| (Rx) CK high to FS low             | SS34   | 10.0  | —    | ns   |  |
| (Tx/Rx) external FS rise time      | SS35   | —     | 6.0  | ns   |  |
| (Tx/Rx) external FS fall time      | SS36   | —     | 6.0  | ns   |  |
| SRXD setup time before (Rx) CK low | SS40   | 10.0  | —    | ns   |  |
| SRXD hold time after (Rx) CK low   | SS41   | 2.0   | —    | ns   |  |

Figure 20 provides the SSI receiver timing with external clock.







# 2.13 Global Timer Module

This section describes the DC and AC electrical specifications for the global timer module (GTM) of the MPC8610.

### 2.13.1 GTM DC Electrical Characteristics

Table 39 provides the DC electrical characteristics for the MPC8610 global timer module pins, including  $GTMn_TINn$ ,  $GTMn_TOUTn$ ,  $GTMn_TGATEn$ , and RTC.

| Parameter                                                                   | Symbol          | Min                    | Мах                    | Unit |
|-----------------------------------------------------------------------------|-----------------|------------------------|------------------------|------|
| High-level input voltage                                                    | V <sub>IH</sub> | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage                                                     | V <sub>IL</sub> | -0.3                   | 0.8                    | V    |
| Input current ( $V_{IN}^{1} = 0 V \text{ or } V_{IN} = V_{DD}$ )            | I <sub>IN</sub> | _                      | ±5                     | μA   |
| High-level output voltage (OV <sub>DD</sub> = min, $I_{OH} = -100 \ \mu$ A) | V <sub>OH</sub> | OV <sub>DD</sub> - 0.2 | _                      | V    |
| Low-level output voltage (OV <sub>DD</sub> = min, $I_{OL}$ = 100 $\mu$ A)   | V <sub>OL</sub> | _                      | 0.2                    | V    |

### **Table 39. GTM DC Electrical Characteristics**

Note:

1. The symbol  $V_{IN}$ , in this case, represents the  $OV_{IN}$  symbol referenced in Table 2 and Table 3.

# 2.13.2 GTM AC Timing Specifications

Table 40 provides the GTM input and output AC timing specifications.

### Table 40. GTM Input and Output AC Timing Specification<sup>1</sup>

| Characteristic                  | Symbol <sup>2</sup> | Min | Unit | Notes |
|---------------------------------|---------------------|-----|------|-------|
| GTM inputs-minimum pulse width  | t <sub>GTIWID</sub> | 7.5 | ns   | 3     |
| GTM outputs—minimum pulse width | t <sub>GTOWID</sub> | 12  | ns   |       |

#### Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

- 2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by external synchronous logic. Timer inputs are required to be valid for at least t<sub>GTIWID</sub> ns to ensure proper operation.
- 3. The minimum pulse width is a function of the MPX/platform clock. The minimum pulse width must be greater than or equal to 4 times the MPX/platform clock period.

Figure 21 provides the AC test load for the GTM.

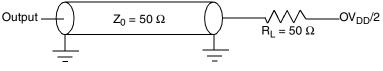



Figure 21. GTM AC Test Load



# 2.15 Serial Peripheral Interface (SPI)

This section describes the DC and AC electrical specifications for the SPI interface of the MPC8610.

# 2.15.1 SPI DC Electrical Characteristics

Table 43 provides the SPI DC electrical characteristics.

### Table 43. SPI DC Electrical Characteristics

| Parameter                                                                  | Symbol          | Min                    | Мах                    | Unit |
|----------------------------------------------------------------------------|-----------------|------------------------|------------------------|------|
| High-level input voltage                                                   | V <sub>IH</sub> | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage                                                    | V <sub>IL</sub> | - 0.3                  | 0.8                    | V    |
| Input current $(V_{IN}^{1} = 0 V \text{ or } V_{IN} = V_{DD})$             | I <sub>IN</sub> | —                      | ±5                     | μA   |
| High-level output voltage (OV <sub>DD</sub> = mn, $I_{OH}$ = -100 $\mu$ A) | V <sub>OH</sub> | OV <sub>DD</sub> - 0.2 | —                      | V    |
| Low-level output voltage ( $OV_{DD} = min$ , $I_{OL} = 100 \mu A$ )        | V <sub>OL</sub> | —                      | 0.2                    | V    |

#### Note:

1. The symbol V<sub>IN</sub>, in this case, represents the OV<sub>IN</sub> symbol referenced in Table 2 and Table 3.

# 2.15.2 SPI AC Timing Specifications

Table 44 provides the SPI input and output AC timing specifications.

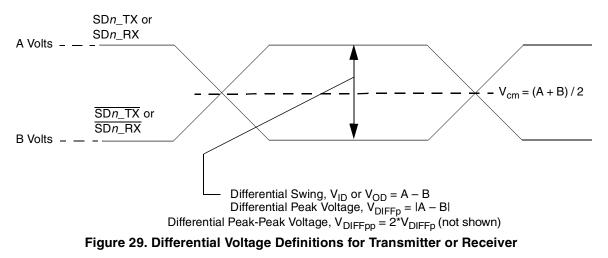
### Table 44. SPI AC Timing Specifications<sup>1</sup>

| Characteristic                                          | Symbol <sup>2</sup> | Min  | Мах | Unit |
|---------------------------------------------------------|---------------------|------|-----|------|
| SPI outputs valid—master mode (internal clock) delay    | t <sub>NIKHOV</sub> |      | 1   | ns   |
| SPI outputs hold—master mode (internal clock) delay     | t <sub>NIKHOX</sub> | -0.2 |     | ns   |
| SPI outputs valid—slave mode (external clock) delay     | t <sub>NEKHOV</sub> |      | 8   | ns   |
| SPI outputs hold—slave mode (external clock) delay      | t <sub>NEKHOX</sub> | 2    |     | ns   |
| SPI inputs-master mode (internal clock input setup time | t <sub>NIIVKH</sub> | 4    |     | ns   |
| SPI inputs-master mode (internal clock input hold time  | t <sub>NIIXKH</sub> | 0    |     | ns   |
| SPI inputs—slave mode (external clock) input setup time | t <sub>NEIVKH</sub> | 4    |     | ns   |
| SPI inputs—slave mode (external clock) input hold time  | t <sub>NEIXKH</sub> | 2    |     | ns   |

Notes:

1. Output specifications are measured from the 50 percent level of the rising edge of CLKIN to the 50 percent level of the signal. Timings are measured at the pin.

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>NIKHOX</sub> symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).
</sub>


of differential swing in amplitude, or twice of the differential peak. For example, the output differential peak-peak voltage can also be calculated as  $V_{TX-DIFFp-p} = 2 * |V_{OD}|$ .

6. Differential waveform

The differential waveform is constructed by subtracting the inverting signal ( $\overline{SDn_TX}$ , for example) from the noninverting signal ( $SDn_TX$ , for example) within a differential pair. There is only one signal trace curve in a differential waveform. The voltage represented in the differential waveform is not referenced to ground. Refer to Figure 38 as an example for differential waveform.

7. Common mode voltage,  $V_{cm}$ 

The common mode voltage is equal to one half of the sum of the voltages between each conductor of a balanced interchange circuit and ground. In this example, for SerDes output,  $V_{cm_out} = (V_{SDn_TX} + V_{\overline{SDn_TX}})/2 = (A + B)/2$ , which is the arithmetic mean of the two complimentary output voltages within a differential pair. In a system, the common mode voltage may often differ from one component's output to the other's input. Sometimes, it may be even different between the receiver input and driver output circuits within the same component. It's also referred as the DC offset in some occasion.



To illustrate these definitions using real values, consider the case of a CML (current mode logic) transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing that goes between 2.5 and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD or TD) is 500 mV p-p, which is referred as the single-ended swing for each signal. In this example, since the differential signaling environment is fully symmetrical, the transmitter output's differential swing (V<sub>OD</sub>) has the same amplitude as each signal's single-ended swing. The differential output signal ranges between 500 mV and -500 mV, in other words, V<sub>OD</sub> is 500 mV in one phase and -500 mV in the other phase. The peak differential voltage (V<sub>DIFEp</sub>) is 500 mV. The peak-to-peak differential voltage (V<sub>DIFEp-p</sub>) is 1000 mV p-p.

# 2.17.2 SerDes Reference Clocks

The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clocks inputs are  $SDn_REF_CLK$  and  $\overline{SDn_REF_CLK}$  for PCI Express.

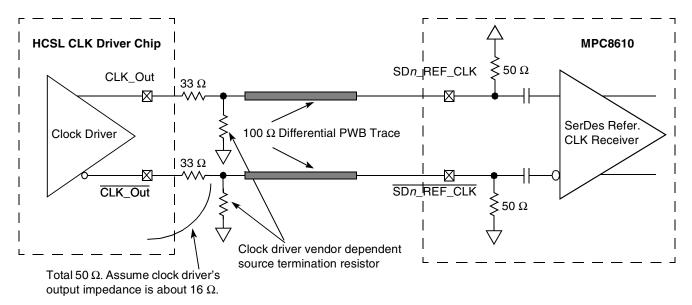
The following sections describe the SerDes reference clock requirements and some application information.

### 2.17.2.1 SerDes Reference Clock Receiver Characteristics

Figure 30 shows a receiver reference diagram of the SerDes reference clocks.

• The supply voltage requirements for  $X_n V_{DD}$  are specified in Table 2 and Table 3.




### 2.17.2.3 Interfacing With Other Differential Signaling Levels

- With on-chip termination to SGND, the differential reference clocks inputs are HCSL (high-speed current steering logic) compatible DC-coupled.
- Many other low voltage differential type outputs like LVDS (low voltage differential signaling) can be used but may need to be AC-coupled due to the limited common mode input range allowed (100 to 400 mV) for DC-coupled connection.
- LVPECL outputs can produce signal with too large amplitude and may need to be DC-biased at clock driver output first, then followed with series attenuation resistor to reduce the amplitude, in addition to AC-coupling.

### NOTE

Figure 34 to Figure 37 are for conceptual reference only. Due to the fact that clock driver chip's internal structure, output impedance and termination requirements are different between various clock driver chip manufacturers, it is very possible that the clock circuit reference designs provided by clock driver chip vendor are different from what is shown below. They might also vary from one vendor to the other. Therefore, Freescale Semiconductor can neither provide the optimal clock driver reference circuits nor guarantee the correctness of the following clock driver connection reference circuits. The system designer is recommended to contact the selected clock driver chip vendor for the optimal reference circuits with the MPC8610 SerDes reference clock receiver requirement provided in this document.

Figure 34 shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It assumes that the DC levels of the clock driver chip is compatible with MPC8610 SerDes reference clock input's DC requirement.



### Figure 34. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)

Figure 35 shows the SerDes reference clock connection reference circuits for LVDS type clock driver. Since LVDS clock driver's common mode voltage is higher than the MPC8610 SerDes reference clock input's allowed range (100 to 400 mV), AC-coupled connection scheme must be used. It assumes the LVDS output driver features  $50-\Omega$  termination resistor. It also assumes that the LVDS transmitter establishes its own common mode level without relying on the receiver or other external component.



# 2.17.3 SerDes Transmitter and Receiver Reference Circuits

Figure 40 shows the reference circuits for SerDes data lane's transmitter and receiver.

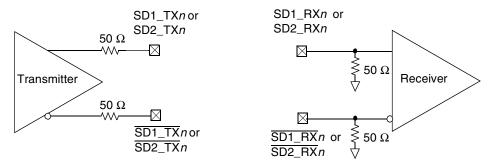



Figure 40. SerDes Transmitter and Receiver Reference Circuits

The DC and AC specification of SerDes data lanes are defined in each interface protocol section below (PCI Express) in this document based on the application usage:"

Section 2.18, "PCI Express"

Note that external AC Coupling capacitor is required for the above serial transmission protocols with the capacitor value defined in specification of each protocol section.

# 2.18 PCI Express

This section describes the DC and AC electrical specifications for the PCI Express bus of the MPC8610.

# 2.18.1 DC Requirements for PCI Express SD*n*\_REF\_CLK and SD*n*\_REF\_CLK

For more information, see Section 2.17.2, "SerDes Reference Clocks."

### 2.18.2 AC Requirements for PCI Express SerDes Clocks

Table 48 lists AC requirements.

| Symbol             | Parameter Description                                                                    | Min | Тур | Max | Units |
|--------------------|------------------------------------------------------------------------------------------|-----|-----|-----|-------|
| t <sub>REF</sub>   | REFCLK cycle time                                                                        | _   | 10  | _   | ns    |
| t <sub>REFCJ</sub> | REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles | _   | _   | 100 | ps    |
| t <sub>REFPJ</sub> | Phase jitter. Deviation in edge location with respect to mean edge location              | -50 | —   | 50  | ps    |

Table 48. SDn\_REF\_CLK and SDn\_REF\_CLK AC Requirements

# 2.18.3 Clocking Dependencies

The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm) of each other at all times. This is specified to allow bit rate clock sources with a  $\pm 300$  ppm tolerance.



| Symbol               | Parameter  | Min | Nom | Мах | Units | Comments                                                                                                                                                                                                                |
|----------------------|------------|-----|-----|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L <sub>TX-SKEW</sub> | Total skew |     |     | 20  | _     | Skew across all lanes on a link. This includes variation<br>in the length of SKP ordered set (e.g., COM and one<br>to five symbols) at the RX as well as any delay<br>differences arising from the interconnect itself. |

#### Notes:

- 2.)Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 43 should be used as the RX device when taking measurements (also refer to the receiver compliance eye diagram shown in Figure 42). If the clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram.
- 3.)A T<sub>RX-EYE</sub> = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and interconnect collected any 250 consecutive UIs. The T<sub>RX-EYE-MEDIAN-to-MAX-JITTER</sub> specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram.
- 4.)The receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased to 300 mV and the D– line biased to -300 mV and a common mode return loss greater than or equal to 6 dB (no bias required) over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements for is 50  $\Omega$  to ground for both the D+ and D– line (that is, as measured by a Vector Network Analyzer with 50- $\Omega$  probes—see Figure 43). Note that the series capacitors CTX is optional for the return loss measurement.
- 5.)Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.
- 6.)The RX DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit will not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the RX ground.
- 7.)It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data.

# 2.18.5 Receiver Compliance Eye Diagrams

The RX eye diagram in Figure 42 is specified using the passive compliance/test measurement load (see Figure 43) in place of any real PCI Express RX component.

Note: In general, the minimum receiver eye diagram measured with the compliance/test measurement load (see Figure 43) will be larger than the minimum receiver eye diagram measured over a range of systems at the input receiver of any real PCI Express component. The degraded eye diagram at the input receiver is due to traces internal to the package as well as silicon parasitic characteristics which cause the real PCI Express component to vary in impedance from the compliance/test measurement load. The input receiver eye diagram is implementation specific and is not specified. RX component designer should provide additional margin to adequately compensate for the degraded minimum receiver eye diagram (shown in Figure 42) expected at the input receiver based on some adequate combination of system simulations and the return loss measured looking into the RX package and silicon. The RX eye diagram must be aligned in time using the jitter median to locate the center of the eye diagram.

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

<sup>1.)</sup>No test load is necessarily associated with this value.

### NOTE

The reference impedance for return loss measurements is 50  $\Omega$  to ground for both the D+ and D- line (i.e., as measured by a vector network analyzer with 50- $\Omega$  probes—see Figure 43). Note that the series capacitors, CTX, are optional for the return loss measurement.

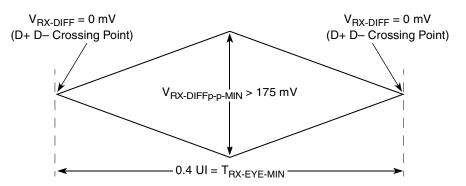



Figure 42. Minimum Receiver Eye Timing and Voltage Compliance Specification

### 2.18.5.1 Compliance Test and Measurement Load

The AC timing and voltage parameters must be verified at the measurement point, as specified within 0.2 inches of the package pins, into a test/measurement load shown in Figure 43.

### NOTE

The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary.

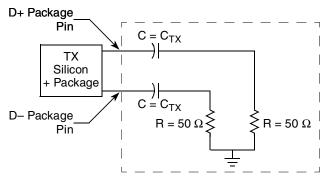



Figure 43. Compliance Test/Measurement Load

# 2.19 JTAG

This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8610.

### 2.19.1 JTAG DC Electrical Characteristics

Table 51 provides the JTAG DC electrical characteristics for the JTAG interface.



Hardware Design Considerations

# 3.9 JTAG Configuration Signals

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 53. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion will give unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 specification, but is provided on all processors that implement the Power Architecture technology. The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, more reliable power-on reset performance will be obtained if the TRST signal is asserted during power-on reset. Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying TRST to HRESET is not practical.

The COP function of these processors allows a remote computer system (typically a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP port connects primarily through the JTAG interface of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 52 allows the COP port to independently assert  $\overline{\text{HRESET}}$  or  $\overline{\text{TRST}}$ , while ensuring that the target can drive  $\overline{\text{HRESET}}$  as well.

The COP interface has a standard header, shown in Figure 52, for connection to the target system, and is based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features. An inexpensive option can be to leave the COP header unpopulated until needed.

There is no standardized way to number the COP header shown in Figure 53; consequently, many different pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 53 is common to all known emulators.

# 3.9.1 Termination of Unused Signals

If the JTAG interface and COP header will not be used, Freescale recommends the following connections:

- TRST should be tied to HRESET through a 0-k $\Omega$  isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 53. If this is not possible, the isolation resistor will allow future access to TRST in case a JTAG interface may need to be wired onto the system in future debug situations.
- Tie TCK to  $OV_{DD}$  through a 10-k $\Omega$  resistor. This will prevent TCK from changing state and reading incorrect data into the device.
- No connection is required for TDI, TMS, or TDO.



#### **Ordering Information**

An approximate value of the ideality may be obtained by calibrating the device near the expected operating temperature.

Ideality factor is defined as the deviation from the ideal diode equation:

$$I_{fw} = I_s \left[ e^{\frac{qV_f}{nKT}} - 1 \right]$$

Another useful equation is:

$$\mathbf{V}_{H} - \mathbf{V}_{L} = \mathbf{n} \frac{\mathbf{KT}}{\mathbf{q}} \left[ \mathbf{In} \frac{\mathbf{I}_{H}}{\mathbf{I}_{L}} \right]$$

Where:

$$\begin{split} & I_{fw} = \text{Forward current} \\ & I_s = \text{Saturation current} \\ & V_d = \text{Voltage at diode} \\ & V_f = \text{Voltage forward biased} \\ & V_H = \text{Diode voltage while I}_H \text{ is flowing} \\ & V_L = \text{Diode voltage while I}_L \text{ is flowing} \\ & I_H = \text{Larger diode bias current} \\ & I_L = \text{Smaller diode bias current} \\ & q = \text{Charge of electron } (1.6 \times 10^{-19} \text{ C}) \\ & n = \text{Ideality factor (normally 1.0)} \\ & K = \text{Boltzman's constant } (1.38 \times 10^{-23} \text{ Joules/K}) \\ & T = \text{Temperature (Kelvins)} \end{split}$$

The ratio of  $I_H$  to  $I_L$  is usually selected to be 10:1. The above simplifies to the following:

$$V_{\rm H} - V_{\rm I} = 1.986 \times 10^{-4} \times \rm nT$$

Solving for T, the equation becomes:

$$\mathbf{nT} = \frac{\mathbf{V}_{\mathsf{H}} - \mathbf{V}_{\mathsf{L}}}{1.986 \times 10^{-4}}$$

# 4 Ordering Information

Ordering information for the parts fully covered by this specification document is provided in Section 4.1, "Part Numbers Fully Addressed by This Document."

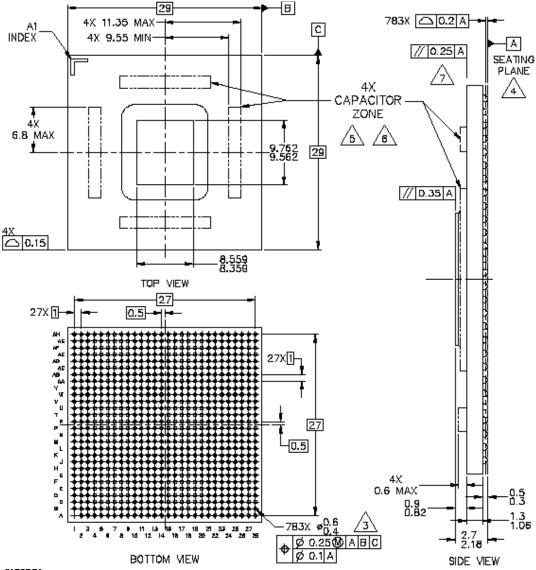

# 4.1 Part Numbers Fully Addressed by This Document

Table 63 provides the Freescale part numbering nomenclature for the MPC8610. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier which may specify special application conditions. Each part number also contains a revision code which refers to the die mask revision number.



# 5.2 Mechanical Dimensions of the MPC8610 FC-PBGA

Figure 59 shows the mechanical dimensions and bottom surface nomenclature of the MPC8610 lead-free FC-PBGA.



#### NOTES:

- <sup>1</sup> All dimensions are in millimeters.
- <sup>2</sup> Dimensions and tolerances per ASME Y14.5M-1994.
- <sup>3</sup> Maximum solder ball diameter measured parallel to datum A.
- <sup>4</sup> Datum A, the seating plane, is defined by the spherical crowns of the solder balls.
- <sup>5</sup> Capacitors may not be present on all devices.
- <sup>6</sup> Caution must be taken not to short capacitors or expose metal capacitor pads on package top.
- <sup>7</sup> All dimensions symmetrical about centerlines unless otherwise specified.

### Figure 59. MPC8610 FC-PBGA Dimensions



THIS PAGE INTENTIONALLY BLANK



#### How to Reach Us:

Home Page: www.freescale.com

#### Web Support: http://www.freescale.com/support

**USA/Europe or Locations Not Listed:** Freescale Semiconductor, Inc.

Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

#### For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +303-675-2140 Fax: +303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC8610EC Rev. 2 01/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale and the Freescale logo are trademarks or registered trademarks of Freescale Semiconductor, Inc. in the U.S. and other countries. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. IEEE 1149.1 is a trademark of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE.

© Freescale Semiconductor, Inc., 2008, 2009. All rights reserved.



