

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LCD, LVD, POR, PWM, WDT
Number of I/O	98
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	64K × 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 42x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LBGA
Supplier Device Package	144-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk40dx256vmd10

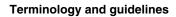
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

reminology and guidelines

Field	Description	Values
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB 2M0 = 2 MB
R	Silicon revision	 Z = Initial (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) MJ = 256 MAPBGA (17 mm x 17 mm)
СС	Maximum CPU frequency (MHz)	 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz
N	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example


This is an example part number:

MK40DN512ZVMD10

3 Terminology and guidelines

3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

3.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
•••	Digital I/O weak pullup/ pulldown current	10	130	μΑ

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

5.2 Nonswitching electrical specifications

5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
V _{SS} – V _{SSA}	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{BAT}	RTC battery supply voltage	1.71	3.6	V	
V _{IH}	Input high voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.7 \times V_{DD}$	—	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	—	V	
V _{IL}	Input low voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	_	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$		V	
I _{ICDIO}	Digital pin negative DC injection current — single pin				1
	• V _{IN} < V _{SS} -0.3V	-5	—	mA	
I _{ICAIO}	Analog ² , EXTAL, and XTAL pin DC injection current —				3
	single pin	_		mA	
	 V_{IN} < V_{SS}-0.3V (Negative current injection) 	-5	—		
	 V_{IN} > V_{DD}+0.3V (Positive current injection) 	—	+5		
I _{ICcont}	Contiguous pin DC injection current —regional limit,				
	includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins				
		-25	—	mA	
	Negative current injection		+25		
	Positive current injection				
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	4
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	_	V	
V _{RFVBAT}	V_{BAT} voltage required to retain the VBAT register file	V _{POR_VBAT}	—	V	

- All 5 V tolerant digital I/O pins are internally clamped to V_{SS} through an ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} is less than V_{DIO_MIN}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{DIO_MIN}-V_{IN})/II_{ICDIO}I.
- 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins.
- 3. All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is less than V_{AIO_MIN} or greater than V_{AIO_MAX}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICAIO}I. The positive injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICAIO}I. The positive injection current limiting resistor is calculated to positive and negative injection currents.
- 4. Open drain outputs must be pulled to VDD.

- 2. $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, f_{OSC} = 12 \text{ MHz} \text{ (crystal)}, f_{SYS} = 96 \text{ MHz}, f_{BUS} = 48 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins		7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mode	9	•		
f _{SYS}	System and core clock	—	100	MHz	
f _{SYS_USB}	System and core clock when Full Speed USB in operation	20	_	MHz	
f _{BUS}	Bus clock	—	50	MHz	
FB_CLK	FlexBus clock	—	50	MHz	
f _{FLASH}	Flash clock	—	25	MHz	
f _{LPTMR}	LPTMR clock	—	25	MHz	
	VLPR mode ¹				
f _{SYS}	System and core clock	—	4	MHz	
f _{BUS}	Bus clock	—	4	MHz	
FB_CLK	FlexBus clock	—	4	MHz	
f _{FLASH}	Flash clock	_	1	MHz	

Table continues on the next page ...

Symbol	Description	Min.	Max.	Unit	Notes
f _{ERCLK}	External reference clock	_	16	MHz	
f _{LPTMR_pin}	LPTMR clock	_	25	MHz	
f _{LPTMR_ERCLK}	LPTMR external reference clock	_	16	MHz	
f _{FlexCAN_ERCLK}	FlexCAN external reference clock		8	MHz	
f _{I2S_MCLK}	I2S master clock	_	12.5	MHz	
f _{I2S_BCLK}	I2S bit clock		4	MHz	

Table 9. Device clock specifications (continued)

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, and I²C signals.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	-	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	-	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	16	-	ns	3
	External reset pulse width (digital glitch filter disabled)	100	_	ns	3
	Mode select (EZP_CS) hold time after reset deassertion	2	_	Bus clock cycles	
	Port rise and fall time (high drive strength)				4
	Slew disabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	6	ns	
	Slew enabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	24	ns	

Table 10. General switching specifications

Table continues on the next page ...

Symbol	Description	Min.	Max.	Unit	Notes
	Port rise and fall time (low drive strength)				5
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	6	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	24	ns	

Table 10. General switching specifications (continued)

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75 pF load
- 5. 15 pF load

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

5.4.2 Thermal attributes

Board type	Symbol	Description	144 LQFP	144 MAPBGA	Unit	Notes
Single-layer (1s)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	45	48	°C/W	1

Table continues on the next page ...

Board type	Symbol	Description	144 LQFP	144 MAPBGA	Unit	Notes
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	36	29	°C/W	1
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	36	38	°C/W	1
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	30	25	°C/W	1
_	R _{θJB}	Thermal resistance, junction to board	24	16	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	9	9	°C/W	3
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	2	2	°C/W	4

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Swap Control execution time					
t _{swapx01}	control code 0x01	_	200	_	μs	
t _{swapx02}	control code 0x02	_	70	150	μs	
t _{swapx04}	control code 0x04	—	70	150	μs	
t _{swapx08}	control code 0x08	—	—	30	μs	
	Program Partition for EEPROM execution time					
t _{pgmpart64k}	64 KB FlexNVM	—	138	_	ms	
t _{pgmpart256k}	256 KB FlexNVM	_	145	_	ms	
	Set FlexRAM Function execution time:					
t _{setramff}	Control Code 0xFF	_	70	_	μs	
t _{setram32k}	• 32 KB EEPROM backup	_	0.8	1.2	ms	
t _{setram64k}	• 64 KB EEPROM backup	_	1.3	1.9	ms	
t _{setram256k}	• 256 KB EEPROM backup	—	4.5	5.5	ms	
	Byte-write to FlexRAM	for EEPROM	loperation			
t _{eewr8bers}	Byte-write to erased FlexRAM location execution time	—	175	260	μs	3
	Byte-write to FlexRAM execution time:					
t _{eewr8b32k}	• 32 KB EEPROM backup	—	385	1800	μs	
t _{eewr8b64k}	64 KB EEPROM backup	—	475	2000	μs	
t _{eewr8b128k}	128 KB EEPROM backup	—	650	2400	μs	
t _{eewr8b256k}	• 256 KB EEPROM backup	—	1000	3200	μs	
	Word-write to FlexRAM	for EEPRON	I operation			
t _{eewr16bers}	Word-write to erased FlexRAM location execution time	—	175	260	μs	
	Word-write to FlexRAM execution time:					
t _{eewr16b32k}	32 KB EEPROM backup	—	385	1800	μs	
t _{eewr16b64k}	64 KB EEPROM backup	—	475	2000	μs	
t _{eewr16b128k}	128 KB EEPROM backup	—	650	2400	μs	
t _{eewr16b256k}	• 256 KB EEPROM backup	—	1000	3200	μs	
	Longword-write to FlexRA	M for EEPR	OM operatior	<u>ו</u>		
t _{eewr32bers}	Longword-write to erased FlexRAM location execution time		360	540	μs	
	Longword-write to FlexRAM execution time:					
t _{eewr32b32k}	• 32 KB EEPROM backup	—	630	2050	μs	
t _{eewr32b64k}	64 KB EEPROM backup	—	810	2250	μs	
t _{eewr32b128k}	128 KB EEPROM backup	—	1200	2675	μs	
t _{eewr32b256k}	256 KB EEPROM backup	_	1900	3500	μs	

Table 21. Flash command timing specifications (continued)

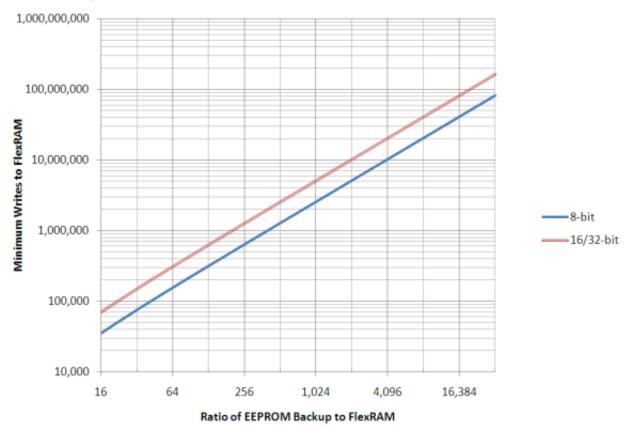
- 1. Assumes 25 MHz flash clock frequency.
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

6.4.1.3 Flash high voltage current behaviors

Table 22. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation		1.5	4.0	mA

6.4.1.4 Reliability specifications


Table 23. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Program	n Flash			•	
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2
	Data	Flash				
t _{nvmretd10k}	Data retention after up to 10 K cycles		50		years	
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	_	years	
n _{nvmcycd}	Cycling endurance	10 K	50 K	_	cycles	2
	FlexRAM a	s EEPROM				
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50		years	
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100	_	years	
	Write endurance					3
n _{nvmwree16}	 EEPROM backup to FlexRAM ratio = 16 	35 K	175 K	_	writes	
n _{nvmwree128}	EEPROM backup to FlexRAM ratio = 128	315 K	1.6 M	_	writes	
n _{nvmwree512}	 EEPROM backup to FlexRAM ratio = 512 	1.27 M	6.4 M	_	writes	
n _{nvmwree4k}	• EEPROM backup to FlexRAM ratio = 4096	10 M	50 M	_	writes	
n _{nvmwree32k}	 EEPROM backup to FlexRAM ratio = 32,768 	80 M	400 M	_	writes	

- Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.
- 2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_i \leq 125°C.
- Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.

rempheral operating requirements and behaviors

6.4.2 EzPort switching specifications

Table 24.	EzPort switching	specifications
-----------	------------------	----------------

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	—	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)	_	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	_	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5	—	ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5	_	ns
EP5	EZP_D input valid to EZP_CK high (setup)	2	_	ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	_	ns
EP7	EZP_CK low to EZP_Q output valid	_	16	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0	_	ns
EP9	EZP_CS negation to EZP_Q tri-state	_	12	ns

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion	16-bit mode					5
	rate	No ADC hardware averaging	37.037	—	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

 Table 27.
 16-bit ADC operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

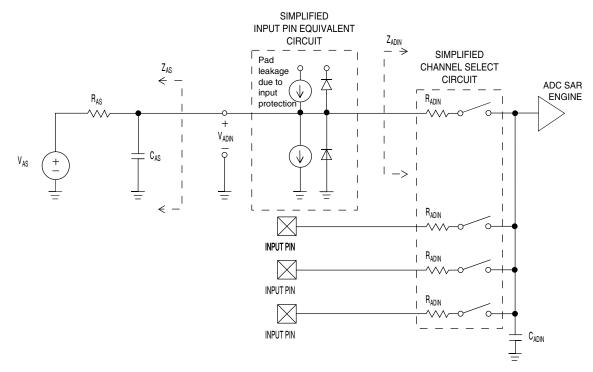


Figure 13. ADC input impedance equivalency diagram

6.6.1.2 16-bit ADC electrical characteristics Table 28. 16-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3

Table continues on the next page ...

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion	≤ 13 bit modes	18.484		450	Ksps	7
	rate	No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					
		16 bit modes	37.037	_	250	Ksps	8
		No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					

Table 29. 16-bit ADC with PGA operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. ADC must be configured to use the internal voltage reference (VREF_OUT)
- 3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled.
- 4. For single ended configurations the input impedance of the driven input is R_{PGAD}/2
- 5. The analog source resistance (R_{AS}), external to MCU, should be kept as minimum as possible. Increased R_{AS} causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
- The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for F_{in}=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
- 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
- 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1

6.6.1.4 16-bit ADC with PGA characteristics with Chop enabled (ADC_PGA[PGACHPb] =0) Table 30. 16-bit ADC with PGA characteristics

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
I _{DDA_PGA}	Supply current	Low power (ADC_PGA[PGALPb]=0)	_	420	644	μA	2
I _{DC_PGA}	Input DC current		$\frac{2}{R_{\rm PGAD}} \left(\frac{(V_{\rm REFPGA} \times 0.583) - V_{\rm CM}}{({\rm Gain}+1)} \right)$			A	3
		Gain =1, V_{REFPGA} =1.2V, V_{CM} =0.5V	_	1.54		μA	
		Gain =64, V _{REFPGA} =1.2V, V _{CM} =0.1V	_	0.57		μA	

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	—	mV
	• CR0[HYSTCTR] = 01	—	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	—	mV
	 CR0[HYSTCTR] = 11 	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_		V
V _{CMPOI}	Output low	—	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	—		40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	—	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB

Table 31. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

Peripheral operating requirements and behaviors

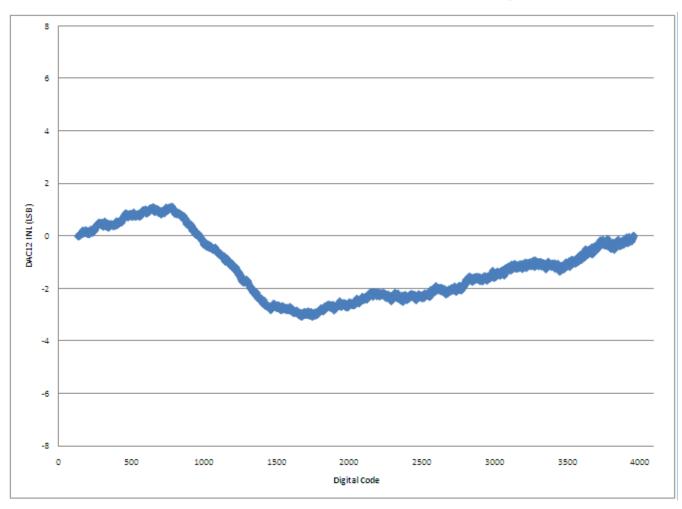


Figure 18. Typical INL error vs. digital code

6.8.6 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

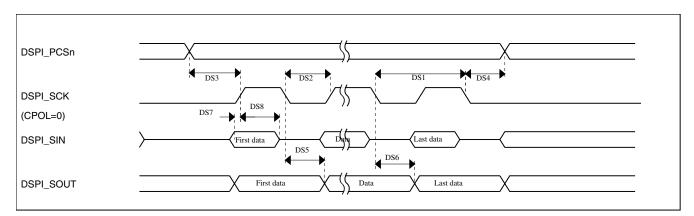

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	_	12.5	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	_	8.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-1.2	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	19.1	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

Table 42. Master mode DSPI timing (full voltage range)

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 22. DSPI classic SPI timing — master mode

Table 43. Slave mode DSPI timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation		6.25	MHz

Table continues on the next page...

- 1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.
- 2. Fixed external capacitance of 20 pF.
- 3. REFCHRG = 2, EXTCHRG=0.
- 4. REFCHRG = 0, EXTCHRG = 10.
- 5. $V_{DD} = 3.0 V.$
- 6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.
- 11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity depends on the configuration used. The documented values are provided as examples calculated for a specific configuration of operating conditions using the following equation: (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN)

The typical value is calculated with the following configuration:

I_{ext} = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, I_{ref} = 16 μA (REFCHRG = 7), C_{ref} = 1.0 pF

The minimum value is calculated with the following configuration:

I_{ext} = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, I_{ref} = 32 μA (REFCHRG = 15), C_{ref} = 0.5 pF

The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be measured by a single count.

- 12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, EXTCHRG = 7.
- 13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

6.9.2 LCD electrical characteristics

Table 53. LCD electricals

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{Frame}	LCD frame frequency	28	30	58	Hz	
C _{LCD}	LCD charge pump capacitance — nominal value		100	_	nF	1
C _{BYLCD}	LCD bypass capacitance — nominal value	_	100	_	nF	1
C _{Glass}	LCD glass capacitance		2000	8000	pF	2
V _{IREG}	V _{IREG}					3
	HREFSEL=0, RVTRIM=1111	—	1.11	_	V	
	HREFSEL=0, RVTRIM=1000	_	1.01	_	v	
	HREFSEL=0, RVTRIM=0000	—	0.91	_	v	
		_	1.84	_	v	
	HREFSEL=1, RVTRIM=1111	—	1.69	_	v	
	HREFSEL=1, RVTRIM=1000HREFSEL=1, RVTRIM=0000	—	1.54	_	V	
Δ _{RTRIM}	V _{IREG} TRIM resolution	_	—	3.0	% V _{IREG}	
—	V _{IREG} ripple					
	• HREFSEL = 0	—	_	30	mV	
	• HREFSEL = 1	—	_	50	mV	

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{VIREG}	V _{IREG} current adder — RVEN = 1	—	1	—	μA	4
I _{RBIAS}	RBIAS current adder	_	10	_	μA	
	 LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) 	_	1	_	μA	
	 LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) 					
R _{RBIAS}	RBIAS resistor values					
	 LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) 	_	0.28	_	MΩ	
	 LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) 	_	2.98	_	MΩ	
VLL2	VLL2 voltage					
	• HREFSEL = 0	2.0 – 5%	2.0	_	V	
	• HREFSEL = 1	3.3 – 5%	3.3	_	V	
VLL3	VLL3 voltage					
	• HREFSEL = 0	3.0 – 5%	3.0	_	V	
	• HREFSEL = 1	5 – 5%	5		V	

Table 53. LCD electricals (continued)

1. The actual value used could vary with tolerance.

2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual.

3. V_{IREG} maximum should never be externally driven to any level other than V_{DD} - 0.15 V

4. 2000 pF load LCD, 32 Hz frame frequency

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
144-pin LQFP	98ASS23177W
144-pin MAPBGA	98ASA00222D

144	144	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
144 LQFP	144 MAP BGA	Pin Name	Detault	ALIU	ALII	ALIZ	AL13	AL14	ALIS	ALI6	ALI/	EZPOR
15	G3	PTE12	DISABLED		PTE12			I2S0_TX_ BCLK	FB_AD0			
16	E6	VDD	VDD	VDD								
17	F7	VSS	VSS	VSS								
18	H3	VSS	VSS	VSS								
19	H1	USB0_DP	USB0_DP	USB0_DP								
20	H2	USB0_DM	USB0_DM	USB0_DM								
21	G1	VOUT33	VOUT33	VOUT33								
22	G2	VREGIN	VREGIN	VREGIN								
23	J1	ADC0_DP1	ADC0_DP1	ADC0_DP1								
24	J2	ADC0_DM1	ADC0_DM1	ADC0_DM1								
25	K1	ADC1_DP1	ADC1_DP1	ADC1_DP1								
26	K2	ADC1_DM1	ADC1_DM1	ADC1_DM1								
27	L1	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3								
28	L2	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3								
29	M1	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3								
30	M2	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3								
31	H5	VDDA	VDDA	VDDA								
32	G5	VREFH	VREFH	VREFH								
33	G6	VREFL	VREFL	VREFL								
34	H6	VSSA	VSSA	VSSA								
35	K3	ADC1_SE16/ CMP2_IN2/ ADC0_SE22	ADC1_SE16/ CMP2_IN2/ ADC0_SE22	ADC1_SE16/ CMP2_IN2/ ADC0_SE22								
36	J3	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	ADC0_SE16/ CMP1_IN2/ ADC0_SE21								
37	M3	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18								
38	L3	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23								
39	L4	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23								

NP

rmout

144 LQFP	144 Map Bga	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
40	M7	XTAL32	XTAL32	XTAL32								
41	M6	EXTAL32	EXTAL32	EXTAL32								
42	L6	VBAT	VBAT	VBAT								
43	_	VDD	VDD	VDD								
44	_	VSS	VSS	VSS								
45	M4	PTE24	ADC0_SE17	ADC0_SE17	PTE24	CAN1_TX	UART4_TX			EWM_OUT_b		
46	K5	PTE25	ADC0_SE18	ADC0_SE18	PTE25	CAN1_RX	UART4_RX		FB_AD23	EWM_IN		
47	K4	PTE26	DISABLED		PTE26		UART4_CTS_ b		FB_AD22	RTC_CLKOUT	USB_CLKIN	
48	J4	PTE27	DISABLED		PTE27		UART4_RTS_ b		FB_AD21			
49	H4	PTE28	DISABLED		PTE28				FB_AD20			
50	J5	PTAO	JTAG_TCLK/ SWD_CLK/ EZP_CLK	TSI0_CH1	PTA0	UART0_CTS_ b/ UART0_COL_ b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
51	J6	PTA1	JTAG_TDI/ EZP_DI	TSI0_CH2	PTA1	UART0_RX	FTM0_CH6				JTAG_TDI	EZP_DI
52	K6	PTA2	JTAG_TDO/ TRACE_SWO/ EZP_DO	TSI0_CH3	PTA2	UARTO_TX	FTM0_CH7				JTAG_TDO/ TRACE_SWO	EZP_DO
53	K7	PTA3	JTAG_TMS/ SWD_DIO	TSI0_CH4	PTA3	UART0_RTS_ b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
54	L7	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b	TSI0_CH5	PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
55	M8	PTA5	DISABLED		PTA5	USB_CLKIN	FTM0_CH2		CMP2_OUT	I2S0_TX_ BCLK	JTAG_TRST_ b	
56	E7	VDD	VDD	VDD								
57	G7	VSS	VSS	VSS								
58	J7	PTA6	DISABLED		PTA6		FTM0_CH3		CLKOUT		TRACE_ CLKOUT	
59	J8	PTA7	ADC0_SE10	ADC0_SE10	PTA7		FTM0_CH4		FB_AD18		TRACE_D3	
60	K8	PTA8	ADC0_SE11	ADC0_SE11	PTA8		FTM1_CH0		FB_AD17	FTM1_QD_ PHA	TRACE_D2	
61	L8	PTA9	DISABLED		PTA9		FTM1_CH1		FB_AD16	FTM1_QD_ PHB	TRACE_D1	
62	M9	PTA10	DISABLED		PTA10		FTM2_CH0		FB_AD15	FTM2_QD_ PHA	TRACE_D0	
63	L9	PTA11	DISABLED		PTA11		FTM2_CH1		FB_OE_b	FTM2_QD_ PHB		
64	K9	PTA12	CMP2_IN0	CMP2_IN0	PTA12	CAN0_TX	FTM1_CH0		FB_CS5_b/ FB_TSIZ1/ FB_BE23_16_ b	I2S0_TXD0	FTM1_QD_ PHA	
65	J9	PTA13/ LLWU_P4	CMP2_IN1	CMP2_IN1	PTA13/ LLWU_P4	CAN0_RX	FTM1_CH1		FB_CS4_b/ FB_TSIZ0/	I2S0_TX_FS	FTM1_QD_ PHB	

Rev. No.	Date	Substantial Changes
2	12/2012	Replaced TBDs throughout.
3	6/2013	 In ESD handling ratings, added a note for ILAT. Updated "Voltage and current operating requirements" Table 1. Updated I_{OL} data for V_{OL} row in "Voltage and current operating behaviors" Table 4. Updated wakeup times and t_{POR} value in "Power mode transition operating behaviors" Table 5. In "EMC radiated emissions operating behaviors" Table 7, added a column for 144MAPBGA. In "16-bit ADC operating conditions" Table 27, updated the max spec of VADIN. In "16-bit ADC electrical characteristics" Table 28, updated the temp sensor slope and voltage specs. Updated Inter-Integrated Circuit Interface (I²C) timing. In SDHC specifications, added operating voltage row.

Table 54. Revision history (continued)