
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Security; SEC
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	620-BBGA Exposed Pad
Supplier Device Package	620-HBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8347ezqagdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- Address translation units for address mapping between host and peripheral
- Dual address cycle for target
- Internal configuration registers accessible from PCI
- Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, IEEE Std. 802.11i[®], iSCSI, and IKE processing. The security engine contains four crypto-channels, a controller, and a set of crypto execution units (EUs):
 - Public key execution unit (PKEU) :
 - RSA and Diffie-Hellman algorithms
 - Programmable field size up to 2048 bits
 - Elliptic curve cryptography
 - F2m and F(p) modes
 - Programmable field size up to 511 bits
 - Data encryption standard (DES) execution unit (DEU)
 - DES and 3DES algorithms
 - Two key (K1, K2) or three key (K1, K2, K3) for 3DES
 - ECB and CBC modes for both DES and 3DES
 - Advanced encryption standard unit (AESU)
 - Implements the Rijndael symmetric-key cipher
 - Key lengths of 128, 192, and 256 bits
 - ECB, CBC, CCM, and counter (CTR) modes
 - XOR parity generation accelerator for RAID applications
 - ARC four execution unit (AFEU)
 - Stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
 - Message digest execution unit (MDEU)
 - SHA with 160-, 224-, or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
 - Random number generator (RNG)
 - Four crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units through an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Universal serial bus (USB) dual role controller
 - USB on-the-go mode with both device and host functionality
 - Complies with USB specification Rev. 2.0
 - Can operate as a stand-alone USB device
 - One upstream facing port
 - Six programmable USB endpoints

Power Characteristics

	Core Frequency (MHz)	CSB Frequency (MHz)	Typical at T _J = 65	Typical ^{2,3}	Maximum ⁴	Unit
TBGA	333	333	2.0	3.0	3.2	W
		166	1.8	2.8	2.9	W
	400	266	2.1	3.0	3.3	W
		133	1.9	2.9	3.1	W
	450	300	2.3	3.2	3.5	W
		150	2.1	3.0	3.2	W
	500	333	2.4	3.3	3.6	W
		166	2.2	3.1	3.4	W
	533	266	2.4	3.3	3.6	W
		133	2.2	3.1	3.4	W
	667 ^{5,6}	333	3.5	4.6	5	W

 Table 4. MPC8347EA Power Dissipation¹ (continued)

¹ The values do not include I/O supply power (OV_{DD}, LV_{DD}, GV_{DD}) or AV_{DD}. For I/O power values, see Table 5.

² Typical power is based on a voltage of $V_{DD} = 1.2$ V, a junction temperature of $T_J = 105$ °C, and a Dhrystone benchmark application.

³ Thermal solutions may need to design to a value higher than typical power based on the end application, T_A target, and I/O power.

⁴ Maximum power is based on a voltage of V_{DD} = 1.2 V, worst case process, a junction temperature of T_J = 105°C, and an artificial smoke test.

⁵ Typical power is based on a voltage of V_{DD} = 1.3 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.

⁶ Maximum power is based on a voltage of V_{DD} = 1.3 V, worst case process, a junction temperature of T_J = 105°C, and an artificial smoke test.

DDR and DDR2 SDRAM

Table 15 provides the DDR capacitance when $GV_{DD}(typ) = 2.5$ V.

Table 15. DDR SDRAM Capacitance for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Max	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 2.5 V \pm 0.125 V$, f = 1 MHz, $T_A = 25^{\circ}C$, $V_{OUT} = GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 16 provides the current draw characteristics for MV_{REF} .

Table 16. Current Draw Characteristics for MV_{REF}

Parameter/Condition	Symbol	Min	Мах	Unit	Note
Current draw for MV _{REF}	I _{MVREF}		500	μA	1

Note:

1. The voltage regulator for MV_{REF} must supply up to 500 μA current.

6.2 DDR and DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR and DDR2 SDRAM interface.

6.2.1 DDR and DDR2 SDRAM Input AC Timing Specifications

Table 17 provides the input AC timing specifications for the DDR2 SDRAM when $GV_{DD}(typ) = 1.8 \text{ V}$.

Table 17. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions with GV_{DD} of 1.8 ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	_	MV _{REF} – 0.25	V	—
AC input high voltage	V _{IH}	MV _{REF} + 0.25	_	V	—

Table 18 provides the input AC timing specifications for the DDR SDRAM when $GV_{DD}(typ) = 2.5 \text{ V}$.

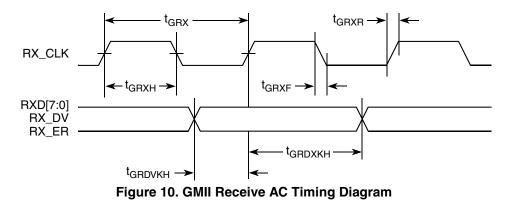
Table 18. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface

At recommended operating conditions with GV_{DD} of 2.5 ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	—	MV _{REF} – 0.31	V	—
AC input high voltage	V _{IH}	MV _{REF} + 0.31	_	V	—

Ethernet: Three-Speed Ethernet, MII Management

Table 26. GMII Receive AC Timing Specifications (continued)


At recommended operating conditions with LV_DD/OV_DD of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock rise (20%–80%)	t _{GRXR}	_	_	1.0	ns
RX_CLK clock fall time (80%–20%)	t _{GRXF}			1.0	ns

Note:

1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GRDVKH} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the high state (H) or setup time. Also, t_{GRDXKL} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{GRX} clock reference (K) going to the low (L) state or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{GRX} represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 10 shows the GMII receive AC timing diagram.

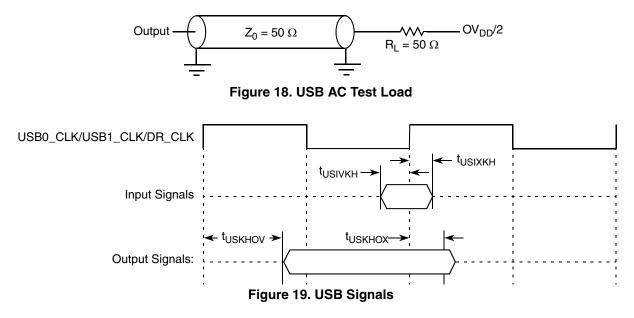
8.2.2 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.2.1 MII Transmit AC Timing Specifications

Table 27 provides the MII transmit AC timing specifications.

Table 27. MII Transmit AC	Timing Specifications
---------------------------	-----------------------


At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	_	400	—	ns
TX_CLK clock period 100 Mbps	t _{MTX}	_	40	—	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	—	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns

Local Bus

Figure 18 and Figure 19 provide the AC test load and signals for the USB, respectively.

10 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8347EA.

10.1 Local Bus DC Electrical Characteristics

Table 37 provides the DC electrical characteristics for the local bus interface.

 Table 37. Local Bus DC Electrical Characteristics

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current	I _{IN}	_	±5	μA
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} - 0.2	_	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	_	0.2	V

Figure 21 through Figure 26 show the local bus signals.

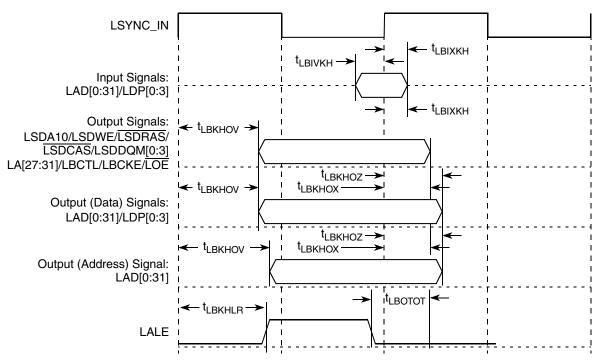


Figure 21. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)

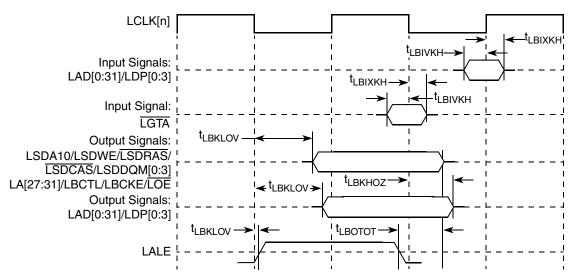


Figure 22. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)

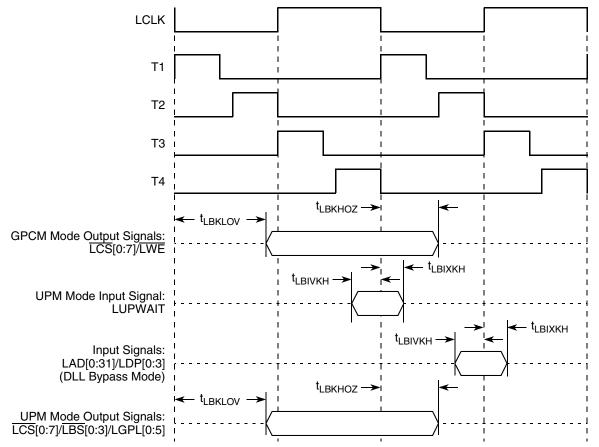


Figure 25. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Bypass Mode)

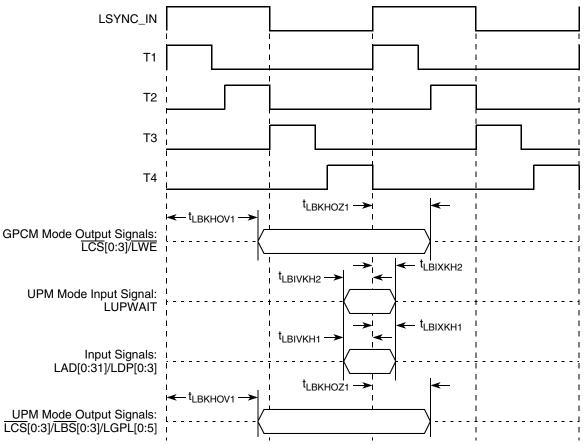


Figure 26. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Enabled)

11 JTAG

This section describes the DC and AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8347EA.

11.1 JTAG DC Electrical Characteristics

Table 40 provides the DC electrical characteristics for the IEEE Std. 1149.1 (JTAG) interface of the MPC8347EA.

Table 40. JTAG Interface DC Electrical Characteristics
--

Parameter	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}	_	$OV_{DD} - 0.3$	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	_	_	±5	μA
Output high voltage	V _{OH}	I _{OH} =8.0 mA	2.4	—	V

I²C

12 I²C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8347EA.

12.1 I²C DC Electrical Characteristics

Table 42 provides the DC electrical characteristics for the I²C interface of the MPC8347EA.

Table 42. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V \pm 10%.

Parameter	Symbol	Min	Мах	Unit	Notes
Input high voltage level	V _{IH}	$0.7 \times OV_{DD}$	OV _{DD} + 0.3	V	_
Input low voltage level	V _{IL}	-0.3	$0.3\times \text{OV}_{\text{DD}}$	V	_
Low level output voltage	V _{OL}	0	$0.2\times \text{OV}_{\text{DD}}$	V	1
Output fall time from V_{IH} (min) to V_{IL} (max) with a bus capacitance from 10 to 400 pF	t _{I2KLKV}	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between $0.1 \times OV_{DD}$ and $0.9 \times OV_{DD}$ (max)	lı	-10	10	μA	4
Capacitance for each I/O pin	Cl	—	10	pF	_

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. C_B = capacitance of one bus line in pF.

3. Refer to the MPC8349EA Integrated Host Processor Family Reference Manual, for information on the digital filter used.

4. I/O pins obstruct the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ is switched off.

12.2 I²C AC Electrical Specifications

Table 43 provides the AC timing parameters for the I²C interface of the MPC8347EA. Note that all values refer to $V_{IH}(min)$ and $V_{IL}(max)$ levels (see Table 42).

Table 43. I²C AC Electrical Specifications

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL}	1.3	—	μS
High period of the SCL clock	t _{I2CH}	0.6	—	μS
Setup time for a repeated START condition	t _{I2SVKH}	0.6	—	μS
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	_	μs
Data setup time	t _{I2DVKH}	100	—	ns
Data hold time:CBUS compatible masters I ² C bus devices	t _{i2DXKL}	$\overline{0^2}$	 0.9 ³	μs

PCI

13 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8347EA.

13.1 PCI DC Electrical Characteristics

Table 44 provides the DC electrical characteristics for the PCI interface of the MPC8347EA.

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	$V_{OUT} \le V_{OL}$ (max)	-0.3	0.8	V
Input current	I _{IN}	$V_{IN}^{1} = 0 V \text{ or } V_{IN} = OV_{DD}$	_	±5	μA
High-level output voltage	V _{OH}	OV _{DD} = min, I _{OH} = −100 μA	OV _{DD} – 0.2	_	V
Low-level output voltage	V _{OL}	OV _{DD} = min, I _{OL} = 100 μA	_	0.2	V

 Table 44. PCI DC Electrical Characteristics

Note:

1. The symbol V_{IN} in this case, represents the OV_{IN} symbol referenced in Table 1.

13.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the MPC8347EA. Note that the PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the device is configured as a host or agent device. Table 45 provides the PCI AC timing specifications at 66 MHz.

Parameter	Symbol ²	Min	Мах	Unit	Notes
Clock to output valid	^t PCKHOV	_	6.0	ns	3
Output hold from clock	t _{PCKHOX}	1	_	ns	3
Clock to output high impedance	t _{PCKHOZ}	-	14	ns	3, 4
Input setup to clock	t _{PCIVKH}	3.0	_	ns	3, 5

14.2 Timer AC Timing Specifications

Table 48 provides the timer input and output AC timing specifications.

Table 48. Timers Input AC Timing Specifications¹

Parameter	Symbol ²	Min	Unit
Timers inputs—minimum pulse width	t _{TIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by external synchronous logic. Timer inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

15 GPIO

This section describes the DC and AC electrical specifications for the GPIO.

15.1 GPIO DC Electrical Characteristics

Table 49 provides the DC electrical characteristics for the MPC8347EA GPIO.

Table 49	GPIO	DC	Electrical	Characteristics
----------	------	----	------------	-----------------

PArameter	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	_	±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

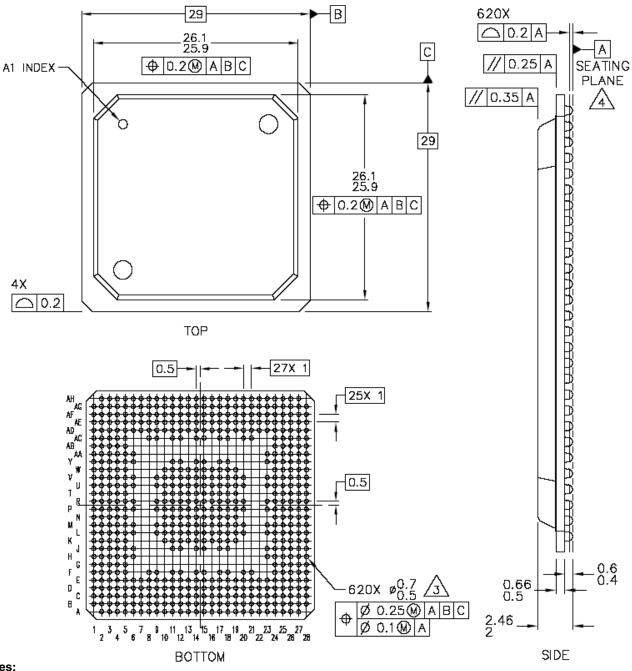
15.2 GPIO AC Timing Specifications

Table 50 provides the GPIO input and output AC timing specifications.

Table 50. GPIO Input AC Timing Specifications¹

Parameter	Symbol ²	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:


1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

 GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by external synchronous logic. GPIO inputs must be valid for at least t_{PIWID} ns to ensure proper operation.

18.4 Mechanical Dimensions for the MPC8347EA PBGA

Figure 41 shows the mechanical dimensions and bottom surface nomenclature for the MPC8347EA, 620-PBGA package.

Notes:

- 1. All dimensions are in millimeters.
- 2. Dimensioning and tolerancing per ASME Y14. 5M-1994.
- 3. Maximum solder ball diameter measured parallel to datum A.
- 4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Figure 41. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC8347EA PBGA

Table 55. MPC8347EA (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	No Connection			
NC	W32, AA31, AA32, AA33, AA34, AB31, AB32, AB33, AB34, AC29, AC31, AC33, AC34, AD30, AD32, AD33, AD34, AE29, AE30, AH32, AH33, AH34, AM33, AJ31, AJ32, AJ33, AJ34, AK32, AK33, AK34, AM34, AL33, AL34, AK31, AH30, AC32, AE32, AH31, AL32, AG34, AE33, AF32, AE34, AF34, AF33, AG33, AG32, AL11, AM11, AP10, Y32, Y34, Y31, Y33	_	_	_

Notes:

1. This pin is an open-drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OV_{DD}.

- 2. This pin is an open-drain signal. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to OV_{DD}.
- 3. During reset, this output is actively driven rather than three-stated.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull-up if the chip is in PCI host mode. Follow the PCI specifications.

6. This pin must always be tied to GND.

- 7. This pin must always be pulled up to OV_{DD} .
- 8. This pin must always be left not connected.
- 9. Thermal sensitive resistor.
- 10.It is recommended that MDIC0 be tied to GRD using an 18 Ω resistor and MDIC1 be tied to DDR power using an 18 Ω resistor.

11.TSEC1_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net.

- 12. A weak pull-up resistor (2–10 k $\Omega)$ should be placed on this pin to $\text{LV}_{\text{DD1}}.$
- 13. For systems that boot from local bus (GPCM)-controlled NOR flash, a pullup on LGPL4 is required.

Table 56 provides the pinout listing for the MPC8347EA, 620 PBGA package.

Table 56. MPC8347EA (PBGA) Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	PCI			
PCI1_INTA/IRQ_OUT	D20	0	OV _{DD}	2
PCI1_RESET_OUT	B21	0	OV _{DD}	—
PCI1_AD[31:0]	E19, D17, A16, A18, B17, B16, D16, B18, E17, E16, A15, C16, D15, D14, C14, A12, D12, B11, C11, E12, A10, C10, A9, E11, E10, B9, B8, D9, A8, C9, D8, C8	I/O	OV _{DD}	_
PCI1_C/BE[3:0]	A17, A14, A11, B10	I/O	OV _{DD}	—
PCI1_PAR	D13	I/O	OV _{DD}	—
PCI1_FRAME	B14	I/O	OV _{DD}	5

Table 56. MPC8347EA (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI1_TRDY	A13	I/O	OV _{DD}	5
PCI1_IRDY	E13	I/O	OV _{DD}	5
PCI1_STOP	C13	I/O	OV _{DD}	5
PCI1_DEVSEL	B13	I/O	OV _{DD}	5
PCI1_IDSEL	C17	I	OV _{DD}	_
PCI1_SERR	C12	I/O	OV _{DD}	5
PCI1_PERR	B12	I/O	OV _{DD}	5
PCI1_REQ[0]	A21	I/O	OV _{DD}	
PCI1_REQ[1]/CPCI1_HS_ES	C19	I	OV _{DD}	_
PCI1_REQ[2:4]	C18, A19, E20	I	OV _{DD}	
PCI1_GNT0	B20	I/O	OV _{DD}	_
PCI1_GNT1/CPCI1_HS_LED	C20	0	OV _{DD}	_
PCI1_GNT2/CPCI1_HS_ENUM	B19	0	OV _{DD}	
PCI1_GNT[3:4]	A20, E18	0	OV _{DD}	_
M66EN	L26	I	OV _{DD}	_
	DDR SDRAM Memory Interface		-	
MDQ[0:63]	AC25, AD27, AD25, AH27, AE28, AD26, AD24, AF27, AF25, AF28, AH24, AG26, AE25, AG25, AH26, AH25, AG22, AH22, AE21, AD19, AE22, AF23, AE19, AG20, AG19, AD17, AE16, AF16, AF18, AG18, AH17, AH16, AG9, AD12, AG7, AE8, AD11, AH9, AH8, AF6, AF8, AE6, AF1, AE4, AG8, AH3, AG3, AG4, AH2, AD7, AB4, AB3, AG1, AD5, AC2, AC1, AC4, AA3, Y4, AA4, AB1, AB2, Y5, Y3	I/O	GV _{DD}	
MECC[0:4]/MSRCID[0:4]	AG13, AE14, AH12, AH10, AE15	I/O	GV _{DD}	—
MECC[5]/MDVAL	AH14	I/O	GV _{DD}	—
MECC[6:7]	AE13, AH11	I/O	GV _{DD}	—
MDM[0:8]	AG28, AG24, AF20, AG17, AE9, AH5, AD1, AA2, AG12	0	GV _{DD}	-
MDQS[0:8]	AE27, AE26, AE20, AH18, AG10, AF5, AC3, AA1, AH13	I/O	GV _{DD}	—
MBA[0:1]	AF10, AF11	0	GV _{DD}	—
MA[0:14]	AF13, AF15, AG16, AD16, AF17, AH20, AH19, AH21, AD18, AG21, AD13, AF21, AF22, AE1, AA5	0	GV _{DD}	—
MWE	AD10	0	GV _{DD}	—

Table 56. MPC8347EA (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
General Purpose I/O Timers					
GPIO1[0]/DMA_DREQ0/GTM1_TIN1/ GTM2_TIN2	D27	I/O	OV _{DD}	_	
GPIO1[1]/DMA_DACK0/GTM1_TGATE1/ GTM2_TGATE2	E26	I/O	OV _{DD}	—	
GPIO1[2]/DMA_DDONE0/GTM1_TOUT1	D28	I/O	OV _{DD}	—	
GPIO1[3]/DMA_DREQ1/GTM1_TIN2/ GTM2_TIN1	G25	I/O	OV _{DD}	—	
GPIO1[4]/DMA_DACK1/GTM1_TGATE2/ GTM2_TGATE1	J24	I/O	OV _{DD}	—	
GPIO1[5]/DMA_DDONE1/GTM1_TOUT2/ GTM2_TOUT1	F26	I/O	OV _{DD}	—	
GPIO1[6]/DMA_DREQ2/GTM1_TIN3/ GTM2_TIN4	E27	I/O	OV _{DD}	—	
GPIO1[7]/DMA_DACK2/GTM1_TGATE3/ GTM2_TGATE4	E28	I/O	OV _{DD}	—	
GPIO1[8]/DMA_DDONE2/GTM1_TOUT3	H25	I/O	OV _{DD}	—	
GPIO1[9]/DMA_DREQ3/GTM1_TIN4/ GTM2_TIN3	F27	I/O	OV _{DD}	—	
GPIO1[10]/DMA_DACK3/ GTM1_TGATE4/GTM2_TGATE3	K24	I/O	OV _{DD}	—	
GPIO1[11]/DMA_DDONE3/ GTM1_TOUT4/GTM2_TOUT3	G26	I/O	OV _{DD}	—	
	USB Port 1		•		
MPH1_D0_ENABLEN/DR_D0_ENABLEN	C28	I/O	OV _{DD}	—	
MPH1_D1_SER_TXD/DR_D1_SER_TXD	F25	I/O	OV _{DD}	—	
MPH1_D2_VMO_SE0/DR_D2_VMO_SE0	B28	I/O	OV _{DD}	—	
MPH1_D3_SPEED/DR_D3_SPEED	C27	I/O	OV _{DD}	—	
MPH1_D4_DP/DR_D4_DP	D26	I/O	OV _{DD}	—	
MPH1_D5_DM/DR_D5_DM	E25	I/O	OV _{DD}	—	
MPH1_D6_SER_RCV/DR_D6_SER_RCV	C26	I/O	OV _{DD}	—	
MPH1_D7_DRVVBUS/DR_D7_DRVVBUS	D25	I/O	OV _{DD}	—	
MPH1_NXT/DR_SESS_VLD_NXT	B26	I	OV _{DD}	—	
MPH1_DIR_DPPULLUP/ DR_XCVR_SEL_DPPULLUP	E24	I/O	OV _{DD}	—	
MPH1_STP_SUSPEND/ DR_STP_SUSPEND	A27	0	OV _{DD}	—	
MPH1_PWRFAULT/ DR_RX_ERROR_PWRFAULT	C25	I	OV _{DD}	—	

Table 56. MPC8347EA (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
TSEC1_RX_CLK	U26	I	LV _{DD1}	—	
TSEC1_RX_DV	U24	I LV _C		—	
TSEC1_RX_ER/GPIO2[26]	L28	I/O	I/O OV _{DD}		
TSEC1_RXD[7:4]/GPIO2[22:25]	M27, M28, N26, N27	I/O	OV _{DD}	—	
TSEC1_RXD[3:0]	W26, W24, Y28, Y27	I	LV _{DD1}	—	
TSEC1_TX_CLK	N25	I	OV _{DD}	_	
TSEC1_TXD[7:4]/GPIO2[27:30]	N28, P25, P26, P27	I/O	OV _{DD}	—	
TSEC1_TXD[3:0]	V28, V27, V26, W28	0	LV _{DD1}	10	
TSEC1_TX_EN	W27	0	LV _{DD1}	_	
TSEC1_TX_ER/GPIO2[31]	N24	I/O	OV _{DD}	_	
Three-Speed	d Ethernet Controller (Gigabit Ether	rnet 2)			
TSEC2_COL/GPIO1[21]	P28	I/O	OV _{DD}	_	
TSEC2_CRS/GPIO1[22]	AC28	I/O	LV _{DD2}	_	
TSEC2_GTX_CLK	AC27	0	LV _{DD2}	_	
TSEC2_RX_CLK	AB25	I	LV _{DD2}	_	
TSEC2_RX_DV/GPIO1[23]	AC26	I/O	LV _{DD2}	—	
TSEC2_RXD[7:4]/GPIO1[26:29]	R28, T24, T25, T26	I/O	OV _{DD}	_	
TSEC2_RXD[3:0]/GPIO1[13:16]	AA25, AA26, AA27, AA28	I/O	LV _{DD2}	_	
TSEC2_RX_ER/GPIO1[25]	R25	I/O	OV _{DD}	—	
TSEC2_TXD[7]/GPIO1[31]	T27	I/O	OV _{DD}	—	
TSEC2_TXD[6]/DR_XCVR_TERM_SEL	T28	0	OV _{DD}	—	
TSEC2_TXD[5]/DR_UTMI_OPMODE1	U28	0	OV _{DD}	_	
TSEC2_TXD[4]/DR_UTMI_OPMODE0	U27	0	OV _{DD}	_	
TSEC2_TXD[3:0]/GPIO1[17:20]	AB26, AB27, AA24, AB28	I/O	LV _{DD2}	_	
TSEC2_TX_ER/GPIO1[24]	R27	I/O	OV _{DD}	_	
TSEC2_TX_EN/GPIO1[12]	AD28	I/O	LV _{DD2}	3	
TSEC2_TX_CLK/GPIO1[30]	R26	I/O	OV _{DD}	_	
DUART					
UART_SOUT[1:2]/MSRCID[0:1]/LSRCID[0:1]	B4, A4	0	OV _{DD}	_	
UART_SIN[1:2]/MSRCID[2:3]/LSRCID[2:3]	D5, C5	I/O	OV _{DD}	_	
UART_CTS[1]/MSRCID4/LSRCID4	B5	I/O	OV _{DD}	—	
UART_CTS[2]/MDVAL/LDVAL	A5	I/O	OV _{DD}		
UART_RTS[1:2]	D6, C6	0	OV _{DD}		

Table 65. Package Thermal Characteristics for TBGA (continued)

Characteristic	Symbol	Value	Unit	Notes
Junction-to-package natural convection on top	ΨJT	1	°C/W	6

Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal, 1 m/s is approximately equal to 200 linear feet per minute (LFM).
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Table 66 provides the package thermal characteristics for the 62029×29 mm PBGA of the MPC8347EA.

Table 66. Package Thermal	Characteristics for PBGA
---------------------------	--------------------------

Parameter	Symbol	Value	Unit	Notes
Junction-to-ambient natural convection on single-layer board (1s)	$R_{ hetaJA}$	21	°C/W	1, 2
Junction-to-ambient natural convection on four-layer board (2s2p)	$R_{ ext{ heta}JMA}$	15	°C/W	1, 3
Junction-to-ambient (at 200 ft/min) on single-layer board (1s)	$R_{ ext{ heta}JMA}$	17	°C/W	1, 3
Junction-to-ambient (at 200 ft/min) on four-layer board (2s2p)	$R_{ ext{ heta}JMA}$	12	°C/W	1, 3
Junction-to-board thermal	$R_{\theta JB}$	6	°C/W	4
Junction-to-case thermal	$R_{ ext{ heta}JC}$	5	°C/W	5
Junction-to-package natural convection on top	ΨJT	5	°C/W	6

Notes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

20.2 Thermal Management Information

For the following sections, $P_D = (V_{DD} \times I_{DD}) + P_{I/O}$ where $P_{I/O}$ is the power dissipation of the I/O drivers. See Table 5 for I/O power dissipation values.

20.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, use the thermal characterization parameter (Ψ_{JT}) to determine the junction temperature and a measure of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_T = thermocouple temperature on top of package (°C)

 Ψ_{JT} = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per the JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

20.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

Some application environments require a heat sink to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device.

The thermal performance of devices with heat sinks has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, air flow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Shin-Etsu MicroSi, Inc. 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com

The Bergquist Company 18930 West 78th St. Chanhassen, MN 55317 Internet: www.bergquistcompany.com 888-642-7674

800-347-4572

20.3 Heat Sink Attachment

When heat sinks are attached, an interface material is required, preferably thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces that can lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint lifetime of the package. The recommended maximum force on the top of the package is 10 lb force (4.5 kg force). Any adhesive attachment should attach to painted or plastic surfaces, and its performance should be verified under the application requirements.

20.3.1 Experimental Determination of the Junction Temperature with a Heat Sink

When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimize the size of the clearance to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

$$T_J = T_C + (R_{\theta JC} \times P_D)$$

where:

 T_J = junction temperature (°C) T_C = case temperature of the package (°C) $R_{\partial JC}$ = junction-to-case thermal resistance (°C/W) P_D = power dissipation (W)

Rev. Number	Date	Substantive Change(s)
8	2/2009	 Added footnote 6 to Table 7. In Section 9.2, "USB AC Electrical Specifications," clarified that AC table is for ULPI only. In Table 39, corrected t_{LBKHOV} parameter to t_{LBKLOV} (output data is driven on falling edge of clock in DLL bypass mode). Similarly, made the same correction to Figure 22, Figure 24, and Figure 25 for output signals. Added footnote 10 and 11 to Table 55 and Table 56. In Section 21.1, "System Clocking," removed "(AVDD1)" and "(AVDD2") from bulleted list. In Section 21.2, "PLL Power Supply Filtering," in the second paragraph, changed "provide five independent filter circuits," and "the five AVDD pins" to provide four independent filter circuits," and "the four AVDD pins." In Table 58, corrected the max csb_clk to 266 MHz. In Table 64, added PLL configurations 903, 923, A03, A23, and 503 for 533 MHz Added footnote 4 to Table 70. In Table 70, updated note 1 to say the following: "For temperature range = C, processor frequency is limited to 533 (TBGA) and 400 (PBGA) with a platform frequency of 266."
7	4/2007	 In Table 3, "Output Drive Capability," changed the values in the Output Impedance column and added USB to the seventh row. In Table 4, "Operating Frequencies for TBGA," added column for 400 MHz. In Section 21.7, "Pull-Up Resistor Requirements, "deleted last two paragraphs and after first paragraph, added a new paragraph. Deleted Section 21.8, "JTAG Configuration Signals," and Figure 43, "JTAG Interface Connection."
6	3/2007	 Page 1, updated first paragraph to reflect PowerQUICC II Pro information. In Table 18, "DDR and DDR2 SDRAM Input AC Timing Specifications," added note 2 to t_{CISKEW} and deleted original note 3; renumbered the remaining notes. In Figure 43, "JTAG Interface Connection," updated with new figure. In Table 57, "Operating Frequencies for TBGA," in the 'Coherent system bus frequency (<i>csb_clk</i>)' row, changed the value in the 533 MHz column to 100-333. In Table 63, "Suggested PLL Configurations," under the subhead, '33 MHz CLKIN/PCI_CLK Options,' added row A03 between Ref. No. 724 and 804. Under the subhead '66 MHz CLKIN/PCI_CLK Options,' added row 503 between Ref. No. 305 and 404. For Ref. No. 306, changed the CORE PLL value to 0000110. In Section 23, "Ordering Information," replaced first paragraph and added a note. In Section 23.1, "Part Numbers Fully Addressed by this Document," replaced first paragraph.
5	1/2007	 In Table 1, "Absolute Maximum Ratings," added (1.36 max for 667-MHz core frequency). In Table 2, "Recommended Operating Conditions," added a row showing nominal core supply voltage of 1.3 V for 667-MHz parts. In Table 4, "MPC8347EA Power Dissipation," added two footnotes to 667-MHz row showing nominal core supply voltage of 1.3 V for 667-MHz parts. In Table 54, "MPC8347EA (TBGA) Pinout Listing," updated V_{DD} row to show nominal core supply voltage of 1.3 V for 667-MHz parts.
4	12/2006	Table 19, "DDR and DDR2 SDRAM Output AC Timing Specifications," modified T _{ddkhds} for 333 MHz from 900 ps to 775 ps.
3	11/2006	 Updated note in introduction. In the features list in Section 1, "Overview," updated DDR data rate to show 266 MHz for PBGA parts for all silicon revisions, and 400 MHz for DDR2 for TBGA parts for silicon Rev. 2 and 3. In Table 5, "MPC8347EA Typical I/O Power Dissipation," added GV_{DD} 1.8-V values for DDR2; added table footnote to designate rates that apply only to the TBGA package. In Section 23, "Ordering Information," replicated note from document introduction.