

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	672-LBGA
Supplier Device Package	672-LBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8347vvajf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NP

Electrical Characteristics

- On-chip digital filtering rejects spikes on the bus
- System initialization data optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - Handshaking (external control) signals for all channels: DMA_DREQ[0:3], DMA_DACK[0:3], DMA_DDONE[0:3]
 - All channels accessible to local core and remote PCI masters
 - Misaligned transfer capability
 - Data chaining and direct mode
 - Interrupt on completed segment and chain
- DUART
 - Two 4-wire interfaces (RxD, TxD, RTS, CTS)
 - Programming model compatible with the original 16450 UART and the PC16550D
- Serial peripheral interface (SPI) for master or slave
- General-purpose parallel I/O (GPIO)
 - 52 parallel I/O pins multiplexed on various chip interfaces
- System timers
 - Periodic interrupt timer
 - Real-time clock
 - Software watchdog timer
 - Eight general-purpose timers
- Designed to comply with IEEE Std. 1149.1[™], JTAG boundary scan
- Integrated PCI bus and SDRAM clock generation

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8347EA. The device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

Table 1	. Absolute	Maximum	Ratings ¹
---------	------------	---------	----------------------

	Parameter	Symbol	Max Value	Unit	Notes
Core supply voltage		V _{DD}	-0.3 to 1.32 (1.36 max for 667-MHz core frequency)	V	_
PLL supply voltage		AV _{DD}	-0.3 to 1.32 (1.36 max for 667-MHz core frequency)	V	—
DDR and DDR2 DRAM I/O voltage		GV _{DD}	-0.3 to 2.75 -0.3 to 1.98	V	—
Three-speed Ethernet I/O, MII management voltage		LV _{DD}	-0.3 to 3.63	V	—
PCI, local bus, DUAF and JTAG I/O voltage	RT, system control and power management, I ² C,	OV _{DD}	-0.3 to 3.63	V	—
Input voltage	DDR DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	Three-speed Ethernet signals	LV _{IN}	-0.3 to (LV _{DD} + 0.3)	V	4, 5
	Local bus, DUART, CLKIN, system control and power management, I ² C, and JTAG signals	OV _{IN}	–0.3 to (OV _{DD} + 0.3)	V	3, 5
	PCI	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	6
Storage temperature	range	T _{STG}	-55 to 150	°C	—

Notes:

- ¹ Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- ² **Caution:** MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ³ Caution: OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁴ **Caution:** LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁵ (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- 6 OVIN on the PCI interface can overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

Parameter	Symbol	Min	Мах	Unit
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} - 0.2	_	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V

Table 21. DUART DC Electrical Characteristics (continued)

7.2 DUART AC Electrical Specifications

Table 22 provides the AC timing parameters for the DUART interface of the MPC8347EA.

Table 22. DUART AC Timing Specifications

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	_
Maximum baud rate	> 1,000,000	baud	1
Oversample rate	16		2

Notes:

1. Actual attainable baud rate will be limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speeds (10/100/1000 Mbps) and MII management.

8.1 Three-Speed Ethernet Controller (TSEC)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to gigabit media independent interface (GMII), the media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The MII, GMII, and TBI interfaces are defined for 3.3 V, and the RGMII and RTBI interfaces are defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard *Reduced Pin-Count Interface for Gigabit Ethernet Physical Layer Device Specification*, Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

Table 27. MII Transmit AC Timing Specifications (continued)

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TX_CLK data clock rise (20%-80%)	t _{MTXR}	1.0	_	4.0	ns
TX_CLK data clock fall (80%-20%)	t _{MTXF}	1.0	_	4.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). In general, the clock reference symbol is based on two to three letters representing the clock of a particular function. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub></sub>

Figure 11 shows the MII transmit AC timing diagram.

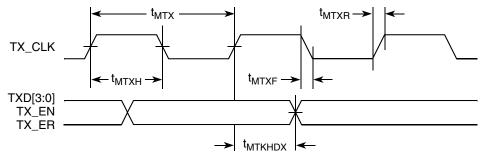


Figure 11. MII Transmit AC Timing Diagram

8.2.2.2 MII Receive AC Timing Specifications

Table 28 provides the MII receive AC timing specifications.

Table 28. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	_	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	_	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	_	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	_	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	_	_	ns

8.2.4 RGMII and RTBI AC Timing Specifications

Table 31 presents the RGMII and RTBI AC timing specifications.

Table 31. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
Data to clock output skew (at transmitter)	t _{SKRGT}	-0.5		0.5	ns
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0	—	2.8	ns
Clock cycle duration ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ^{4, 5}	t _{RGTH} /t _{RGT}	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 5}	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{RGTR}	_	—	0.75	ns
Fall time (80%–20%)	t _{RGTF}			0.75	ns

Notes:

1. In general, the clock reference symbol for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Also, the notation for rise (R) and fall (F) times follows the clock symbol. For symbols representing skews, the subscript is SK followed by the clock being skewed (RGT).

2. This implies that PC board design requires clocks to be routed so that an additional trace delay of greater than 1.5 ns is added to the associated clock signal.

3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.

4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned.

5. Duty cycle reference is $LV_{DD}/2$.

14.2 Timer AC Timing Specifications

Table 48 provides the timer input and output AC timing specifications.

Table 48. Timers Input AC Timing Specifications¹

Parameter	Symbol ²	Min	Unit
Timers inputs—minimum pulse width	t _{TIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by external synchronous logic. Timer inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

15 GPIO

This section describes the DC and AC electrical specifications for the GPIO.

15.1 GPIO DC Electrical Characteristics

Table 49 provides the DC electrical characteristics for the MPC8347EA GPIO.

Table 49	GPIO	DC	Electrical	Characteristics
----------	------	----	------------	-----------------

PArameter	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	_	±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

15.2 GPIO AC Timing Specifications

Table 50 provides the GPIO input and output AC timing specifications.

Table 50. GPIO Input AC Timing Specifications¹

Parameter	Symbol ²	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

 GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by external synchronous logic. GPIO inputs must be valid for at least t_{PIWID} ns to ensure proper operation.

Parameter	Symbol	Condition	Min	Мах	Unit
Input current	I _{IN}	_	_	±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Table 53. SPI DC Electrical Characteristics (continued)

17.2 SPI AC Timing Specifications

Table 54 provides the SPI input and output AC timing specifications.

Table 54. SFT AC TIMING Specifications	Table 54.	SPI AC	Timing	Specifications ¹
--	-----------	--------	--------	-----------------------------

Parameter	Symbol ²	Min	Мах	Unit
SPI outputs valid—Master mode (internal clock) delay	t _{NIKHOV}	—	6	ns
SPI outputs hold—Master mode (internal clock) delay	t _{NIKHOX}	0.5	—	ns
SPI outputs valid—Slave mode (external clock) delay	t _{NEKHOV}	—	8	ns
SPI outputs hold—Slave mode (external clock) delay	t _{NEKHOX}	2	—	ns
SPI inputs—Master mode (internal clock input setup time	t _{NIIVKH}	4	—	ns
SPI inputs—Master mode (internal clock input hold time	t _{NIIXKH}	0	_	ns
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4	_	ns
SPI inputs—Slave mode (external clock) input hold time	t _{NEIXKH}	2	—	ns

Notes:

1. Output specifications are measured from the 50 percent level of the rising edge of CLKIN to the 50 percent level of the signal. Timings are measured at the pin.

The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{NIKHOX} symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).

Figure 37 provides the AC test load for the SPI.

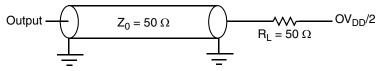


Figure 37. SPI AC Test Load

Package and Pin Listings

Table 55. MPC8347EA (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MECC[0:4]/MSRCID[0:4]	W4, W3, Y3, AA6, T1	I/O	GV _{DD}	—
MECC[5]/MDVAL	U1	I/O	GV _{DD}	—
MECC[6:7]	Y1, Y6	I/O	GV _{DD}	—
MDM[0:8]	B1, F1, K1, R4, AD4, AJ1, AP3, AP7, Y4	0	GV _{DD}	—
MDQS[0:8]	B2, F5, J1, P2, AC1, AJ2, AN4, AL8, W2	I/O	GV _{DD}	—
MBA[0:1]	AD1, AA5	0	GV _{DD}	—
MA[0:14]	W1, U4, T3, R3, P1, M1, N1, L3, L1, K2, Y2, K3, J3, AP2, AN6	0	GV _{DD}	—
MWE	AF1	0	GV _{DD}	—
MRAS	AF4	0	GV _{DD}	—
MCAS	AG3	0	GV _{DD}	—
MCS[0:3]	AG2, AG1, AK1, AL4	0	GV _{DD}	—
MCKE[0:1]	H3, G1	0	GV _{DD}	3
MCK[0:5]	U2, F4, AM3, V3, F2, AN3	0	GV _{DD}	—
MCK[0:5]	U3, E3, AN2, V4, E1, AM4	0	GV _{DD}	—
MODT[0:3]	AH3, AJ5, AH1, AJ4	0	GV _{DD}	—
MBA[2]	H4	0	GV _{DD}	—
MDIC0	AB1	I/O	—	10
MDIC1	AA1	I/O	—	10
	Local Bus Controller Interface		1	
LAD[0:31]	AM13, AP13, AL14, AM14, AN14, AP14, AK15, AJ15, AM15, AN15, AP15, AM16, AL16, AN16, AP16, AL17, AM17, AP17, AK17, AP18, AL18, AM18, AN18, AP19, AN19, AM19, AP20, AK19, AN20, AL20, AP21, AN21	I/O	OV _{DD}	_
LDP[0]/CKSTOP_OUT	AM21	I/O	OV _{DD}	_
LDP[1]/CKSTOP_IN	AP22	I/O	OV _{DD}	—
LDP[2]/LCS[4]	AN22	I/O	OV _{DD}	—
LDP[3]/LCS[5]	AM22	I/O	OV _{DD}	—
LA[27:31]	AK21, AP23, AN23, AP24, AK22	0	OV _{DD}	—
LCS[0:3]	AN24, AL23, AP25, AN25	0	OV _{DD}	—
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	AK23, AP26, AL24, AM25	0	OV _{DD}	—
LBCTL	AN26	0	OV _{DD}	—

Package and Pin Listings

Table 55. MPC8347EA	(TBGA) Pinout Listing	(continued)
	(100/	/ i moat Eloting	(oonalaa)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LALE	AK24	0	OV _{DD}	—
LGPL0/LSDA10/cfg_reset_source0	AP27	I/O	OV _{DD}	—
LGPL1/LSDWE/cfg_reset_source1	AL25	I/O	OV _{DD}	_
LGPL2/LSDRAS/LOE	AJ24	0	OV _{DD}	_
LGPL3/LSDCAS/cfg_reset_source2	AN27	I/O	OV _{DD}	_
LGPL4/LGTA/LUPWAIT/LPBSE	AP28	I/O	OV _{DD}	13
LGPL5/cfg_clkin_div	AL26	I/O	OV _{DD}	—
LCKE	AM27	0	OV _{DD}	_
LCLK[0:2]	AN28, AK26, AP29	0	OV _{DD}	—
LSYNC_OUT	AM12	0	OV _{DD}	—
LSYNC_IN	AJ10	I	OV _{DD}	—
G	eneral Purpose I/O Timers			
GPIO1[0]/DMA_DREQ0/GTM1_TIN1/ GTM2_TIN2	F24	I/O	OV _{DD}	—
GPIO1[1]/DMA_DACK0/GTM1_TGATE1/ GTM2_TGATE2	E24	I/O	OV _{DD}	—
GPIO1[2]/DMA_DDONE0/GTM1_TOUT1	B25	I/O	OV _{DD}	—
GPIO1[3]/DMA_DREQ1/GTM1_TIN2/ GTM2_TIN1	D24	I/O	OV _{DD}	—
GPIO1[4]/DMA_DACK1/GTM1_TGATE2/ GTM2_TGATE1	A25	I/O	OV _{DD}	—
GPIO1[5]/DMA_DDONE1/GTM1_TOUT2/ GTM2_TOUT1	B24	I/O	OV _{DD}	—
GPIO1[6]/DMA_DREQ2/GTM1_TIN3/ GTM2_TIN4	A24	I/O	OV _{DD}	—
GPIO1[7]/DMA_DACK2/GTM1_TGATE3/ GTM2_TGATE4	D23	I/O	OV _{DD}	—
GPIO1[8]/DMA_DDONE2/GTM1_TOUT3	B23	I/O	OV _{DD}	—
GPIO1[9]/DMA_DREQ3/GTM1_TIN4/ GTM2_TIN3	A23	I/O	OV _{DD}	—
GPIO1[10]/DMA_DACK3/GTM1_TGATE4/ GTM2_TGATE3	F22	I/O	OV _{DD}	—
GPIO1[11]/DMA_DDONE3/GTM1_TOUT4/ GTM2_TOUT3	E22	I/O	OV _{DD}	—
	USB Port 1	I	1	1
MPH1_D0_ENABLEN/DR_D0_ENABLEN	A26	I/O	OV _{DD}	_
MPH1_D1_SER_TXD/DR_D1_SER_TXD	B26	I/O	OV _{DD}	—
MPH1_D2_VMO_SE0/DR_D2_VMO_SE0	D25	I/O	OV _{DD}	

Package and Pin Listings

Table 55. MPC8347EA (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
TSEC2_TXD[3:0]/GPIO1[17:20]	B5, A5, F8, B6	I/O	LV _{DD2}	—
TSEC2_TX_ER/GPIO1[24]	F14	I/O	OV _{DD}	—
TSEC2_TX_EN/GPIO1[12]	C5	I/O	LV _{DD2}	3
TSEC2_TX_CLK/GPIO1[30]	E14	I/O	OV _{DD}	—
	DUART	ł	1	
UART_SOUT[1:2]/MSRCID[0:1]/LSRCID[0:1]	AK27, AN29	0	OV _{DD}	—
UART_SIN[1:2]/MSRCID[2:3]/LSRCID[2:3]	AL28, AM29	I/O	OV _{DD}	—
UART_CTS[1]/MSRCID4/LSRCID4	AP30	I/O	OV _{DD}	—
UART_CTS[2]/MDVAL/ LDVAL	AN30	I/O	OV _{DD}	—
UART_RTS[1:2]	AP31, AM30	0	OV _{DD}	—
	I ² C interface	ł	1	
IIC1_SDA	AK29	I/O	OV _{DD}	2
IIC1_SCL	AP32	I/O	OV _{DD}	2
IIC2_SDA	AN31	I/O	OV _{DD}	2
IIC2_SCL	AM31	I/O	OV _{DD}	2
	SPI	I	1	
SPIMOSI/LCS[6]	AN32	I/O	OV _{DD}	—
SPIMISO/LCS[7]	AP33	I/O	OV _{DD}	—
SPICLK	AK30	I/O	OV _{DD}	—
SPISEL	AL31	I	OV _{DD}	—
	Clocks		1	
PCI_CLK_OUT[0:2]	AN9, AP9, AM10	0	OV _{DD}	_
PCI_CLK_OUT[3]/LCS[6]	AN10	0	OV _{DD}	—
PCI_CLK_OUT[4]/LCS[7]	AJ11	0	OV _{DD}	—
PCI_SYNC_IN/PCI_CLOCK	AK12	I	OV _{DD}	—
PCI_SYNC_OUT	AP11	0	OV _{DD}	3
RTC/PIT_CLOCK	AM32	I	OV _{DD}	—
CLKIN	AM9	I	OV _{DD}	—
	JTAG	I	1	
ТСК	E20	I	OV _{DD}	_
TDI	F20	I	OV _{DD}	4
TDO	B20	0	OV _{DD}	3
TMS	A20	I	OV _{DD}	4
TRST	B19	I	OV _{DD}	4

Package and Pin Listings

Table 56. MPC8347EA (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	General Purpose I/O Timers		•	
GPIO1[0]/DMA_DREQ0/GTM1_TIN1/ GTM2_TIN2	D27	I/O	OV _{DD}	_
GPIO1[1]/DMA_DACK0/GTM1_TGATE1/ GTM2_TGATE2	E26	I/O	OV _{DD}	—
GPIO1[2]/DMA_DDONE0/GTM1_TOUT1	D28	I/O	OV _{DD}	—
GPIO1[3]/DMA_DREQ1/GTM1_TIN2/ GTM2_TIN1	G25	I/O	OV _{DD}	—
GPIO1[4]/DMA_DACK1/GTM1_TGATE2/ GTM2_TGATE1	J24	I/O	OV _{DD}	—
GPIO1[5]/DMA_DDONE1/GTM1_TOUT2/ GTM2_TOUT1	F26	I/O	OV _{DD}	—
GPIO1[6]/DMA_DREQ2/GTM1_TIN3/ GTM2_TIN4	E27	I/O	OV _{DD}	—
GPIO1[7]/DMA_DACK2/GTM1_TGATE3/ GTM2_TGATE4	E28	I/O	OV _{DD}	—
GPIO1[8]/DMA_DDONE2/GTM1_TOUT3	H25	I/O	OV _{DD}	—
GPIO1[9]/DMA_DREQ3/GTM1_TIN4/ GTM2_TIN3	F27	I/O	OV _{DD}	—
GPIO1[10]/DMA_DACK3/ GTM1_TGATE4/GTM2_TGATE3	K24	I/O	OV _{DD}	—
GPIO1[11]/DMA_DDONE3/ GTM1_TOUT4/GTM2_TOUT3	G26	I/O	OV _{DD}	—
	USB Port 1		•	
MPH1_D0_ENABLEN/DR_D0_ENABLEN	C28	I/O	OV _{DD}	—
MPH1_D1_SER_TXD/DR_D1_SER_TXD	F25	I/O	OV _{DD}	—
MPH1_D2_VMO_SE0/DR_D2_VMO_SE0	B28	I/O	OV _{DD}	—
MPH1_D3_SPEED/DR_D3_SPEED	C27	I/O	OV _{DD}	—
MPH1_D4_DP/DR_D4_DP	D26	I/O	OV _{DD}	—
MPH1_D5_DM/DR_D5_DM	E25	I/O	OV _{DD}	—
MPH1_D6_SER_RCV/DR_D6_SER_RCV	C26	I/O	OV _{DD}	—
MPH1_D7_DRVVBUS/DR_D7_DRVVBUS	D25	I/O	OV _{DD}	—
MPH1_NXT/DR_SESS_VLD_NXT	B26	I	OV _{DD}	—
MPH1_DIR_DPPULLUP/ DR_XCVR_SEL_DPPULLUP	E24	I/O	OV _{DD}	—
MPH1_STP_SUSPEND/ DR_STP_SUSPEND	A27	0	OV _{DD}	—
MPH1_PWRFAULT/ DR_RX_ERROR_PWRFAULT	C25	I	OV _{DD}	—

19 Clocking

Figure 42 shows the internal distribution of the clocks.

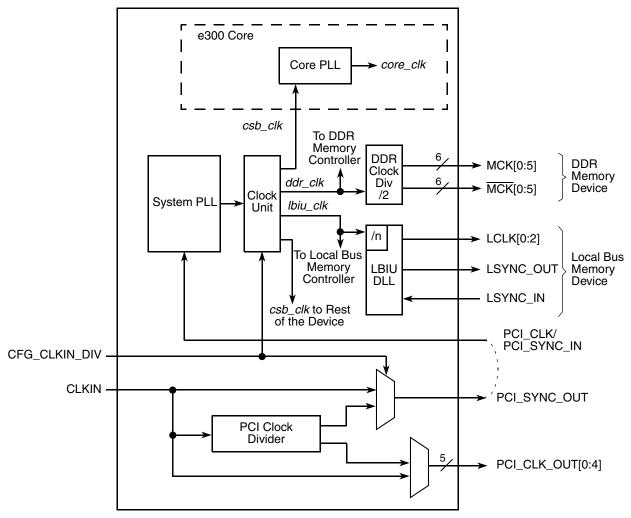


Figure 42. MPC8347EA Clock Subsystem

The primary clock source can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. When the MPC8347EA is configured as a PCI host device, CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (÷2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCICD*n*] parameters select whether CLKIN or CLKIN/2 is driven out on the PCI_CLK_OUT signals.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the system, to allow the MPC8347EA to function. When the device is configured as a PCI agent device, PCI_CLK is the primary input clock and the CLKIN signal should be tied to GND.

As shown in Figure 42, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the DDR controller (ddr_clk), and the internal clock for the local bus interface unit ($lbiu_clk$).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

 $csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL), which is loaded at power-on reset or by one of the hard-coded reset options. See the chapter on reset, clocking, and initialization in the *MPC8349EA Reference Manual* for more information on the clock subsystem.

The internal *ddr_clk* frequency is determined by the following equation:

 $ddr_clk = csb_clk \times (1 + RCWL[DDRCM])$

 ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the same frequency as ddr_clk .

The internal *lbiu_clk* frequency is determined by the following equation:

 $lbiu_clk = csb_clk \times (1 + \text{RCWL[LBIUCM]})$

lbiu_clk is not the external local bus frequency; *lbiu_clk* passes through the LBIU clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBIU clock divider ratio is controlled by LCCR[CLKDIV].

In addition, some of the internal units may have to be shut off or operate at lower frequency than the *csb_clk* frequency. Those units have a default clock ratio that can be configured by a memory-mapped register after the device exits reset. Table 57 specifies which units have a configurable clock frequency.

Unit	Default Frequency	Options
TSEC1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
TSEC2, I ² C1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
Security core	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
USB DR, USB MPH	csb_clk/3	Off, csb_clk, csb_clk/2, <i>csb_clk/3</i>
PCI and DMA complex	csb_clk	Off, csb_clk

Table 57	. Configurable	Clock Units
----------	----------------	-------------

Table 58 provides the operating frequencies for the MPC8347EA TBGA under recommended operating conditions (see Table 2). All frequency combinations shown in the table below may not be available. Maximum operating frequencies depend on the part ordered, see Section 22.1, "Part Numbers Fully

Addressed by This Document," for part ordering details and contact your Freescale Sales Representative or authorized distributor for more information.

Characteristic ¹	400 MHz	533 MHz	667 MHz	Unit
e300 core frequency (core_clk)	266–400	266–533	266–667	MHz
Coherent system bus frequency (<i>csb_clk</i>)	100–266	100–333	100–333	MHz
DDR1 memory bus frequency (MCK) ²	100–133	100–133	100–166.67	MHz
DDR2 memory bus frequency (MCK) ³	100–133	100–200	100–200	MHz
Local bus frequency (LCLKn) ⁴	16.67–133	16.67–133	16.67–133	MHz
PCI input frequency (CLKIN or PCI_CLK)	25–66	25–66	25–66	MHz
Security core maximum internal operating frequency	133	133	166	MHz
USB_DR, USB_MPH maximum internal operating frequency	133	133	166	MHz

Table 58. Operating Frequencies for TBGA

¹ The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen so that the resulting *csb_clk*, MCLK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[ENCCM], SCCR[USBDRCM], and SCCR[USBMPHCM] must be programmed so that the maximum internal operating frequency of the Security core and USB modules does not exceed the respective values listed in this table.

² The DDR data rate is 2x the DDR memory bus frequency.

³ The DDR data rate is 2x the DDR memory bus frequency.

⁴ The local bus frequency is 1/2, 1/4, or 1/8 of the *lbiu_clk* frequency (depending on LCCR[CLKDIV]) which is in turn 1x or 2x the *csb_clk* frequency (depending on RCWL[LBIUCM]).

Table 59 provides the operating frequencies for the MPC8347EA PBGA under recommended operating conditions.

Table 59.	Operating Frequ	encies for PBGA

Parameter ¹	266 MHz	333 MHz	400 MHz	Unit
e300 core frequency (<i>core_clk</i>)	200–266	200–333	200–400	MHz
Coherent system bus frequency (<i>csb_clk</i>)		100–266		MHz
DDR1 memory bus frequency (MCK) ²		100–133		MHz
DDR2 memory bus frequency (MCK) ³	100–133			MHz
Local bus frequency (LCLKn) ⁴	16.67–133			MHz
PCI input frequency (CLKIN or PCI_CLK)	25–66			MHz
Security core maximum internal operating frequency	133			MHz
USB_DR, USB_MPH maximum internal operating frequency	133			MHz

¹ The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen so that the resulting *csb_clk*, MCLK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[ENCCM], SCCR[USBDRCM], and SCCR[USBMPHCM] must be programmed so that the maximum internal operating frequency of the Security core and USB modules does not exceed the respective values listed in this table.

² The DDR data rate is 2× the DDR memory bus frequency.

VCO divider must be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

RCWL[COREPLL]		aava alki aab alk Datia	VCO Divider ¹		
0–1	2–5	6	<i>core_clk</i> : <i>csb_clk</i> Ratio	VCO Divider	
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	
00	0001	0	1:1	2	
01	0001	0	1:1	4	
10	0001	0	1:1	8	
11	0001	0	1:1	8	
00	0001	1	1.5:1	2	
01	0001	1	1.5:1	4	
10	0001	1	1.5:1	8	
11	0001	1	1.5:1	8	
00	0010	0	2:1	2	
01	0010	0	2:1	4	
10	0010	0	2:1	8	
11	0010	0	2:1	8	
00	0010	1	2.5:1	2	
01	0010	1	2.5:1	4	
10	0010	1	2.5:1	8	
11	0010	1	2.5:1	8	
00	0011	0	3:1	2	
01	0011	0	3:1	4	
10	0011	0	3:1	8	
11	0011	0	3:1	8	

Table 63. e300 Core PLL Configuration

¹ Core VCO frequency = core frequency × VCO divider. The VCO divider must be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

NP

Thermal

20.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Generally, the value obtained on a single-layer board is appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity $T_J - T_A$) are possible.

20.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal resistance. The thermal performance of any component is strongly dependent on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (°C) T_A = ambient temperature for the package (°C) R_A = iunction to embient thermal resistance

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

System Design Information

21 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8347EA.

21.1 System Clocking

The MPC8347EA includes two PLLs:

- 1. The platform PLL generates the platform clock from the externally supplied CLKIN input. The frequency ratio between the platform and CLKIN is selected using the platform PLL ratio configuration bits as described in Section 19.1, "System PLL Configuration."
- 2. The e300 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e300 core clock and the platform clock is selected using the e300 PLL ratio configuration bits as described in Section 19.2, "Core PLL Configuration."

21.2 PLL Power Supply Filtering

Each PLL gets power through independent power supply pins ($AV_{DD}1$, $AV_{DD}2$, respectively). The AV_{DD} level should always equal to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme.

There are a number of ways to provide power reliably to the PLLs, but the recommended solution is to provide four independent filter circuits as illustrated in Figure 43, one to each of the four AV_{DD} pins. Independent filters to each PLL reduce the opportunity to cause noise injection from one PLL to the other.

The circuit filters noise in the PLL resonant frequency range from 500 kHz to 10 MHz. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

To minimize noise coupled from nearby circuits, each circuit should be placed as closely as possible to the specific AV_{DD} pin being supplied. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

Figure 43 shows the PLL power supply filter circuit.

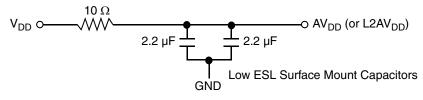


Figure 43. PLL Power Supply Filter Circuit

21.3 Decoupling Recommendations

Due to large address and data buses and high operating frequencies, the MPC8347EA can generate transient power surges and high frequency noise in its power supply, especially while driving large

Ordering Information

However, while HRESET is asserted, these pins are treated as inputs, and the value on these pins is latched when PORESET deasserts. Then the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for the output pins.

21.7 Pull-Up Resistor Requirements

The MPC8347EA requires high resistance pull-up resistors (10 k Ω is recommended) on open-drain pins, including I²C pins, and IPIC interrupt pins.

For more information on required pull-up resistors and the connections required for the JTAG interface, refer to application note AN2931, "PowerQUICC Design Checklist."

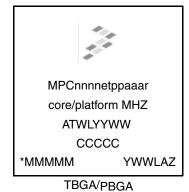
22 Ordering Information

This section presents ordering information for the device discussed in this document, and it shows an example of how the parts are marked.

NOTE

The information in this document is accurate for revision 3.x silicon and later (in other words, for orderable part numbers ending in A or B). For information on revision 1.1 silicon and earlier versions, see the *MPC8347E PowerQUICC II Pro Integrated Host Processor Hardware Specifications* (Document Order No. MPC8347EEC).

22.1 Part Numbers Fully Addressed by This Document


Table 70 shows an analysis of the Freescale part numbering nomenclature for the MPC8347EA. The individual part numbers correspond to a maximum processor core frequency. Each part number also contains a revision code that refers to the die mask revision number. For available frequency configuration

Document Revision History

22.2 Part Marking

Parts are marked as in the example shown in Figure 45.

Notes:

ATWLYYWW is the traceability code. CCCCC is the country code. MMMMM is the mask number. YWWLAZ is the assembly traceability code.

Figure 45. Freescale Part Marking for TBGA or PBGA Devices

23 Document Revision History

This table provides a revision history of this document.

Rev. Number	Date	Substantive Change(s)	
12	09/2011	 In Section 2.2, "Power Sequencing," added Section 2.2.1, "Power-Up Sequencing" and Figure 4. In Table 25, Table 29 and Table 31, removed the GTX_CLK125. In Table 34, updated t_{MDKHDX} Max value from 170ns to 70ns. 	
11	11/2010	 In Table 56, added overbar to LCS[4] and LCS[5] signals. In Table 55 and Table 56, added note for pin LGPL4. In Section 21.7, "Pull-Up Resistor Requirements, updated the list of open drain type pins. 	
10	05/2010	 In Table 25 through Table 30, changed V_{IL}(min) to V_{IH}(max) to (20%–80%). Added Table 8, "EC_GTX_CLK125 AC Timing Specifications." 	
9	5/2009	 In Section 18.3, "Package Parameters for the MPC8347EA PBGA, changed solder ball for TBGA and PBGA from 95.5 Sn/0.5 Cu/4 Ag to 96.5 Sn/3.5 Ag. In Table 58, updated frequency for DDR2, from 100-200 to 100-133 at core frequency = 533MHz. In Table 59, added two columns for the DDR1 and DDR2 memory bus frequency. In Table 70, footnote 1, changed 667(TBGA) to 533(TBGA). footnote 4, added data rate for DDR1 and DDR2. 	

Rev. Number	Date	Substantive Change(s)		
8	2/2009	 Added footnote 6 to Table 7. In Section 9.2, "USB AC Electrical Specifications," clarified that AC table is for ULPI only. In Table 39, corrected t_{LBKHOV} parameter to t_{LBKLOV} (output data is driven on falling edge of clock in DLL bypass mode). Similarly, made the same correction to Figure 22, Figure 24, and Figure 25 for output signals. Added footnote 10 and 11 to Table 55 and Table 56. In Section 21.1, "System Clocking," removed "(AVDD1)" and "(AVDD2") from bulleted list. In Section 21.2, "PLL Power Supply Filtering," in the second paragraph, changed "provide five independent filter circuits," and "the five AVDD pins" to provide four independent filter circuits," and "the four AVDD pins." In Table 58, corrected the max csb_clk to 266 MHz. In Table 64, added PLL configurations 903, 923, A03, A23, and 503 for 533 MHz Added footnote 4 to Table 70. In Table 70, updated note 1 to say the following: "For temperature range = C, processor frequency is limited to 533 (TBGA) and 400 (PBGA) with a platform frequency of 266." 		
7	4/2007	 In Table 3, "Output Drive Capability," changed the values in the Output Impedance column and added USB to the seventh row. In Table 4, "Operating Frequencies for TBGA," added column for 400 MHz. In Section 21.7, "Pull-Up Resistor Requirements, "deleted last two paragraphs and after first paragraph, added a new paragraph. Deleted Section 21.8, "JTAG Configuration Signals," and Figure 43, "JTAG Interface Connection." 		
6	3/2007	 Page 1, updated first paragraph to reflect PowerQUICC II Pro information. In Table 18, "DDR and DDR2 SDRAM Input AC Timing Specifications," added note 2 to to and deleted original note 3; renumbered the remaining notes. In Figure 43, "JTAG Interface Connection," updated with new figure. In Table 57, "Operating Frequencies for TBGA," in the 'Coherent system bus frequency (<i>cs</i> row, changed the value in the 533 MHz column to 100-333. In Table 63, "Suggested PLL Configurations," under the subhead, '33 MHz CLKIN/PCI_C Options,' added row A03 between Ref. No. 724 and 804. Under the subhead '66 MHz CLKIN/PCI_CLK Options,' added row 503 between Ref. No. 305 and 404. For Ref. No. 30 changed the CORE PLL value to 0000110. In Section 23, "Ordering Information," replaced first paragraph and added a note. In Section 23.1, "Part Numbers Fully Addressed by this Document," replaced first paragraph 		
5	1/2007	 In Table 1, "Absolute Maximum Ratings," added (1.36 max for 667-MHz core frequency). In Table 2, "Recommended Operating Conditions," added a row showing nominal core supply voltage of 1.3 V for 667-MHz parts. In Table 4, "MPC8347EA Power Dissipation," added two footnotes to 667-MHz row showing nominal core supply voltage of 1.3 V for 667-MHz parts. In Table 54, "MPC8347EA (TBGA) Pinout Listing," updated V_{DD} row to show nominal core supply voltage of 1.3 V for 667-MHz parts. 		
4	12/2006	Table 19, "DDR and DDR2 SDRAM Output AC Timing Specifications," modified T _{ddkhds} for 333 MHz from 900 ps to 775 ps.		
3	11/2006	 Updated note in introduction. In the features list in Section 1, "Overview," updated DDR data rate to show 266 MHz for PBGA parts for all silicon revisions, and 400 MHz for DDR2 for TBGA parts for silicon Rev. 2 and 3. In Table 5, "MPC8347EA Typical I/O Power Dissipation," added GV_{DD} 1.8-V values for DDR2; added table footnote to designate rates that apply only to the TBGA package. In Section 23, "Ordering Information," replicated note from document introduction. 		