

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	ARM1136JF-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Multimedia; IPU, VFP
RAM Controllers	LPDDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	Keypad, KPP, LCD
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.0V, 2.5V, 2.7V, 3.0V, 3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	Secure Fusebox, Secure JTAG
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcimx355avm4b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Mnemonic	Block Name	Domain ¹	Subsystem	Brief Description
I ² C(3)	I ² C module	ARM	ARM1136 platform peripherals	Inter-integrated circuit (I ² C) is an industry-standard, bidirectional serial bus that provides a simple, efficient method of data exchange, minimizing the interconnection between devices. I ² C is suitable for applications requiring occasional communications over a short distance among many devices. The interface operates at up to 100 kbps with maximum bus loading and timing. The I ² C system is a true multiple-master bus, with arbitration and collision detection that prevent data corruption if multiple devices attempt to control the bus simultaneously. This feature supports complex applications with multiprocessor control and can be used for rapid testing and alignment of end products through external connections to an assembly-line computer.
IIM	IC identification module	ARM	Security modules	The IIM provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, and various control signals requiring a fixed value.
IOMUX	External signals and pin multiplexing	ARM	Pins	 Each I/O multiplexer provides a flexible, scalable multiplexing solution with the following features: Up to eight output sources multiplexed per pin Up to four destinations for each input pin Unselected input paths held at constant levels for reduced power consumption
IPUv1	Image processing unit	ARM	Multimedia peripherals	 The IPU supports video and graphics processing functions. It also provides the interface for image sensors and displays. The IPU performs the following main functions: Preprocessing of data from the sensor or from the external system memory Postprocessing of data from the external system memory Post-filtering of data from the system memory with support of the MPEG-4 (both deblocking and deringing) and H.264 post-filtering algorithms Displaying video and graphics on a synchronous (dumb or memory-less) display Displaying video and graphics on an asynchronous (smart) display Transferring data between IPU sub-modules and to/from the system memory with flexible pixel reformatting
KPP	Keypin port	ARM	Connectivity peripherals	Can be used for either keypin matrix scanning or general purpose I/O.
MLB	Media local bus	ARM	Connectivity peripherals	The MLB is designed to interface to an automotive MOST ring.
OSCAUD	OSC audio reference oscillator	Analog	Clock	The OSCAUDIO oscillator provides a stable frequency reference for the PLLs. This oscillator is designed to work in conjunction with an external 24.576-MHz crystal.

Block Mnemonic	Block Name	Domain ¹	Subsystem	Brief Description
OSC24M	OSC24M 24-MHz reference oscillator	Analog	Clock	The signal from the external 24-MHz crystal is the source of the CLK24M signal fed into USB PHY as the reference clock and to the real time clock (RTC).
MPLL PPLL	Digital phase-locked loops	SDMA	Clocks	DPLLs are used to generate the clocks: MCU PLL (MPLL)—programmable Peripheral PLL (PPLL)—programmable
PWM	Pulse-width modulator	ARM	ARM1136 platform peripherals	The pulse-width modulator (PWM) is optimized to generate sound from stored sample audio images; it can also generate tones.
RTC	Real-time clock	ARM	Clocks	Provides the ARM1136 platform with a clock function (days, hours, minutes, seconds) and includes alarm, sampling timer, and minute stopwatch capabilities.
SDMA	Smart DMA engine	SDMA	System controls	The SDMA provides DMA capabilities inside the processor. It is a shared module that implements 32 DMA channels and has an interface to connect to the ARM1136 platform subsystem, EMI interface, and the peripherals.
SJC	Secure JTAG controller	ARM	Pins	The secure JTAG controller (SJC) provides debug and test control with maximum security.
SPBA	SDMA peripheral bus arbiter	SDMA	System controls	The SPBA controls access to the SDMA peripherals. It supports shared peripheral ownership and access rights to an owned peripheral.
S/PDIF	Serial audio interface	SDMA	Connectivity peripherals	Sony/Philips digital transceiver interface
SSI(2)	Synchronous serial interface	SDMA, ARM(2)	Connectivity peripherals	The SSI is a full-duplex serial port that allows the processor connected to it to communicate with a variety of serial protocols, including the Freescale Semiconductor SPI standard and the I^2C sound (I^2S) bus standard. The SSIs interface to the AUDMUX for flexible audio routing.
UART(3)	Universal asynchronous receiver/trans mitters	ARM (UART1,2) SDMA (UART3)	Connectivity peripherals	Each UART provides serial communication capability with external devices through an RS-232 cable using the standard RS-232 non-return-to-zero (NRZ) encoding format. Each module transmits and receives characters containing either 7 or 8 bits (program-selectable). Each UART can also provide low-speed IrDA compatibility through the use of external circuitry that converts infrared signals to electrical signals (for reception) or transforms electrical signals to signals that drive an infrared LED (for transmission).

Table 4.	Digital and	Analog	Modules	(continued)	۱
	Digital ana	Analog	modules	(continued)	,

Table 12. Thermal Resistance Data (continued)

Rating	Condition	Symbol	Value	Unit
Junction to ambient ¹ (at 200 ft/min)	Single layer board (1s)	R _{eJMA}	44	ºC/W
Junction to ambient ¹ (at 200 ft/min)	Four layer board (2s2p)	R _{eJMA}	27	ºC/W
Junction to boards ²	—	R _{eJB}	19	ºC/W
Junction to case (top) ³	—	R _{eJCtop}	10	ºC/W
Junction to package top ⁴	Natural convection	Ψ_{JT}	2	ºC/W

¹ Junction-to-ambient thermal resistance determined per JEDC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.

- ² Junction-to-board thermal resistance determined per JEDC JESD51-8. Thermal test board meets JEDEC specification for this package.
- ³ Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
- ⁴ Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, this thermal characterization parameter is written as Psi-JT.

4.7 I/O Pin DC Electrical Characteristics

I/O pins are of two types: GPIO and DDR. DDR pins can be configured in three different drive strength modes: mobile DDR, SDRAM, and DDR2. The SDRAM and mobile DDR modes can be further customized at three drive strength levels: normal, high, and max.

Table 13 shows currents for the different DDR pin drive strength modes.

Drive Mode	Normal	High	Max.
Mobile DDR (1.8 V)	3.6 mA	7.2 mA	10.8 mA
SDRAM (1.8 V)	_	_	6.5 mA
SDRAM (3.3 V)	4 mA	8 mA	12 mA
DDR2 (1.8 V)	—	—	13.4 mA

Table 13. DDR Pin Drive Strength Mode Current Levels

Pin	DC Electrical Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Unit
SDR	High-level output voltage	Voh	loh = 5.7 mA	OVDD - 0.28	—	_	V
(1.8 V)	Low-level output voltage	Vol	loh = 5.7 mA	—	—	0.4	V
	High-level output current	loh	Max. drive	5.7	_	_	mA
	Low-level output current	lol	Max. drive	7.3	_	_	mA
	High-level DC Input Voltage	VIH	—	1.4	_	1.98	V
	Low-level DC Input Voltage	VIL	—	-0.3	_	0.8	V
	Input current (no pull-up/down)	IIN	VI = 0 VI=NVCC	—	_	150 80	μA
	Tri-state I/O supply current	Icc (NVCC)	VI = OVDD or 0	—	_	1180	μA
	Tri-state core supply current	Icc (NVCC)	VI = VDD or 0	—		1220	μA
SDR (3.3 V)	High-level output voltage	Voh	loh=specified drive (loh = -4 , -8 , -12 , -16 mA)	2.4		_	V
	Low-level output voltage	Vol	loh=specified drive (loh = 4, 8, 12, 16 mA)	—	_	0.4	V
	High-level output current	loh	Standard drive High drive Max. drive	-4.0 -8.0 -12.0	_	_	mA
	Low-level output current	lol	Standard drive High drive Max. drive	4.0 8.0 12.0	_	_	mA
	High-level DC Input Voltage	VIH	—	2.0	_	3.6	V
	Low-level DC Input Voltage	VIL	—	–0.3V	—	0.8	V
	Input current (no pull-up/down)	IIN	VI = 0 VI = NVCC	_	_	±1	μA
	Tri-state I/O supply current	Icc (NVCC)	VI = NVCC or 0	—	—	±1	μA

Table 14. I/O Pin	DC Electrical	Characteristics ((continued)

4.8 I/O Pin AC Electrical Characteristics

Figure 5 shows the load circuit for output pins.

CL includes package, probe and jig capacitance Figure 5. Load Circuit for Output Pin

Parameter	Symbol	Test Condition	Min. Rise/Fall	Тур.	Max. Rise/Fall	Units
Duty cycle	Fduty	—	40	—	60	%
Output pin slew rate (max. drive)	tps	25 pF 50 pF	0.30/0.42 0.20/0.29	0.54/0.73 0.35/0.50	0.91/1.20 0.60/0.80	V/ns
Output pin slew rate (high drive)	tps	25 pF 50 pF	0.19/0.28 0.12/0.18	0.34/0.49 0.34/0.49	0.58/0/79 0.36/0.49	V/ns
Output pin slew rate (standard drive)	tps	25 pF 50 pF	0.12/0.18 0.07/0.11	0.20/0.30 0.11/0.17	0.34/0.47 0.20/0.27	V/ns
Output pin di/dt (max. drive)	tdit	25 pF 50 pF	7 7	21 22	56 58	mA/ns
Output pin di/dt (high drive)	tdit	25 pF 50 pF	5 5	14 15	38 40	mA/ns
Output pin di/dt (standard drive)	tdit	25 pF 50 pF	2 2	7 7	18 19	mA/ns

Table 17. AC Electrical Characteristics of GPIO Pins in Slow Slew Rate Mode [NVCC = 1.65 V–1.95 V]

Table 18. AC Electrical Characteristics of GPIO Pins in Fast Slew Rate Mode for [NVCC = 3.0 V-3.6 V]

Parameter	Symbol	Test Condition	Min. rise/fall	Тур.	Max. Rise/Fall	Units
Duty cycle	Fduty	—	40	—	60	%
Output pin slew rate (max. drive)	tps	25 pF 50 pF	0.96/1.40 0.54/0.83	1.54/2.10 0.85/1.24	2.30/3.00 1.26/1.70	V/ns
Output pin slew rate (high drive)	tps	25 pF 50 pF	0.76/1.10 0.41/0.64	1.19/1.71 0.63/0.95	1.78/2.39 0.95/1.30	V/ns
Output pin slew rate (standard drive)	tps	25 pF 50 pF	0.52/0.78 0.28/0.44	0.80/1.19 0.43/0.64	1.20/1.60 0.63/0.87	V/ns
Output pin di/dt (max. drive)	tdit	25 pF 50 pF	46 49	108 113	250 262	mA/ns
Output pin di/dt (high drive)	tdit	25 pF 50 pF	35 37	82 86	197 207	mA/ns
Output pin di/dt (standard drive)	tdit	25 pF 50 pF	22 23	52 55	116 121	mA/ns

Input data, ECB and DTACK all captured according to BCLK rising edge time. Figure 15 depicts the timing of the WEIM module, and Table 33 lists the timing parameters.

WEIM Input Timing

Figure 15. WEIM Bus Timing Diagram

Figure 26. DTACK Read Access

Table 34. W	EIM Asynchronous	s Timing Parameter	s Relative Ch	ip Select Table
	Elle Asynonionous	, i mining i arameter	S HOILING ON	p ocicot iubic

Ref No.	Parameter	Determination By Synchronous Measured Parameters ¹	Min	Max (If 133 MHz is supported by SoC)	Unit
WE31	CS[x] valid to Address valid	WE4 – WE6 – CSA ²	—	3 – CSA	ns
WE32	Address invalid to $\overline{CS}[x]$ invalid	WE7 – WE5 – CSN ³	_	3 – CSN	ns
WE32A(muxed A/D	CS[x] valid to address invalid	WE4 – WE7 + (LBN + LBA + 1 – CSA ²)	-3 + (LBN + LBA + 1 - CSA)	_	ns
WE33	CS[x] valid to WE valid	WE8 – WE6 + (WEA – CSA)	_	3 + (WEA – CSA)	ns
WE34	\overline{WE} invalid to $\overline{CS}[x]$ invalid	WE7 – WE9 + (WEN – CSN)	_	3 – (WEN_CSN)	ns
WE35	$\overline{CS}[x]$ valid to \overline{OE} valid	WE10 – WE6 + (OEA – CSA)	—	3 + (OEA – CSA)	ns
WE35A (muxed A/D)	$\overline{CS}[x]$ valid to \overline{OE} valid	WE10 – WE6 + (OEA + RLBN + RLBA + ADH + 1 – CSA)	-3 + (OEA + RLBN + RLBA + ADH + 1 - CSA)	3 + (OEA + RLBN + RLBA + ADH + 1 – CSA)	ns
WE36	\overline{OE} invalid to $\overline{CS}[x]$ invalid	WE7 – WE11 + (OEN – CSN)	_	3 – (OEN – CSN)	ns
WE37	CS[x] valid to BE[y] valid (read access)	WE12 – WE6 + (RBEA – CSA)	_	3 + (RBEA ⁴ – CSA)	ns
WE38	BE[y] invalid to CS[x] invalid (read access)	WE7 – WE13 + (RBEN – CSN)	_	3 – (RBEN ⁵ – CSN)	ns
WE39	$\overline{CS}[x]$ valid to \overline{LBA} valid	WE14 – WE6 + (LBA – CSA)	_	3 + (LBA – CSA)	ns
WE40	\overline{LBA} invalid to $\overline{CS}[x]$ invalid	WE7 – WE15 – CSN	_	3 – CSN	ns

Figure 32. DDR2 SDRAM Write Cycle Timing Diagram

	DADAMETED	Symbol	DDR2-	Unit	
טו	PARAMETER	Symbol	Min	Max	Unit
DDR17	DQ and DQM setup time to DQS (single-ended strobe)	tDS1(base)	0.5	—	ns
DDR18	DQ and DQM hold time to DQS (single-ended strobe)	tDH1(base)	0.5	—	ns
DDR19	Write cycle DQS falling edge to SDCLK output setup time.	tDSS	0.2	—	tCK
DDR20	Write cycle DQS falling edge to SDCLK output hold time.	t DSH	0.2	—	tCK
DDR21	DQS latching rising transitions to associated clock edges	tDQSS	-0.25	0.25	tCK
DDR22	DQS high level width	t DQSH	0.35	—	tCK
DDR23	DQS low level width	tDQSL	0.35	—	tCK

Table 41. DDR2 SDRAM Write Cycle Parameters

NOTE

These values are for DQ/DM slew rate of 1 V/ns and DQS slew rate of 1 V/ns. For different values use the derating table.

4.9.6 Enhanced Serial Audio Interface (ESAI) Timing Specifications

The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. Table 46 shows the interface timing values. The number field in the table refers to timing signals found in Figure 36 and Figure 37.

No.	Characteristics ^{1,2}	Symbol	Expression ²	Min.	Max.	Condition ³	Unit
62	Clock cycle ⁴	tssicc	$\begin{array}{c} 4 \times T_{\textbf{C}} \\ 4 \times T_{\textbf{C}} \end{array}$	30.0 30.0	_	i ck i ck	ns
63	Clock high period • For internal clock	_	$2 \times T_c - 9.0$	6	_	_	ns
	For external clock	_	$2 \times T_{C}$	15	—	—	
64	Clock low period For internal clock 	_	$2 \times T_{C} - 9.0$	6	_	_	ns
	For external clock	—	$2 \times T_{C}$	15	—	—	
65	SCKR rising edge to FSR out (bl) high	_	_		17.0 7.0	x ck i ck a	ns
66	SCKR rising edge to FSR out (bl) low	_	_		17.0 7.0	x ck i ck a	ns
67	SCKR rising edge to FSR out (wr) high ⁵	_			19.0 9.0	x ck i ck a	ns
68	SCKR rising edge to FSR out (wr) low ⁵	_			19.0 9.0	x ck i ck a	ns
69	SCKR rising edge to FSR out (wl) high		—		16.0 6.0	x ck i ck a	ns
70	SCKR rising edge to FSR out (wl) low		—		17.0 7.0	x ck i ck a	ns
71	Data in setup time before SCKR (SCK in synchronous mode) falling edge			12.0 19.0	_	x ck i ck	ns
72	Data in hold time after SCKR falling edge		—	3.5 9.0	_	x ck i ck	ns
73	FSR input (bl, wr) high before SCKR falling edge ⁵	_		2.0 12.0	_	x ck i ck a	ns
74	FSR input (wl) high before SCKR falling edge	_	_	2.0 12.0	_	x ck i ck a	ns
75	FSR input hold time after SCKR falling edge		—	2.5 8.5	_	x ck i ck a	ns
78	SCKT rising edge to FST out (bl) high		—	—	18.0 8.0	x ck i ck	ns
79	SCKT rising edge to FST out (bl) low		—		20.0 10.0	x ck i ck	ns

Table 46. Enhanced Serial Audio Interface Timing

inserted in between EAV and SAV code. The CSI decodes and filters out the timing coding from the data stream, thus recovering SENSB_VSYNC and SENSB_HSYNC signals for internal use.

4.9.12.2.2 Gated Clock Mode

The SENSB_VSYNC, SENSB_HSYNC, and SENSB_PIX_CLK signals are used in this mode. See Figure 44.

A frame starts with a rising edge on SENSB_VSYNC (all the timing corresponds to straight polarity of the corresponding signals). Then SENSB_HSYNC goes to high and hold for the entire line. The pixel clock is valid as long as SENSB_HSYNC is high. Data is latched at the rising edge of the valid pixel clocks. SENSB_HSYNC goes to low at the end of the line. Pixel clocks then become invalid and the CSI stops receiving data from the stream. For the next line, the SENSB_HSYNC timing repeats. For the next frame, the SENSB_VSYNC timing repeats.

4.9.12.2.3 Non-Gated Clock Mode

The timing is the same as the gated-clock mode (described in Section 4.9.12.2.2, "Gated Clock Mode"), except for the SENSB_HSYNC signal, which is not used. See Figure 45. All incoming pixel clocks are valid and will cause data to be latched into the input FIFO. The SENSB_PIX_CLK signal is inactive (states low) until valid data is going to be transmitted over the bus.

Figure 45. Non-Gated Clock Mode Timing Diagram

INITION Applications Frocessors for Automotive Froducts, nev. It	i.	MX35	Applications	Processors	for	Automotive	Products,	Rev.	10
--	----	------	--------------	------------	-----	------------	-----------	------	----

4.9.13.1 Synchronous Interfaces

This section discusses the interfaces to active matrix TFT LCD panels, Sharp HR-TFT, and dual-port smart displays.

4.9.13.1.4 Interface to Active Matrix TFT LCD Panels, Functional Description

Figure 47 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure, signals are shown with negative polarity. The sequence of events for active matrix interface timing is as follows:

- DISPB_D3_CLK latches data into the panel on its negative edge (when positive polarity is selected). In active mode, DISPB_D3_CLK runs continuously.
- DISPB_D3_HSYNC causes the panel to start a new line.
- DISPB_D3_VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse.
- DISPB_D3_DRDY acts like an output enable signal to the CRT display. This output enables the data to be shifted to the display. When disabled, the data is invalid and the trace is off.

	DISPB_D3_VSYNC	LINE 1 LINE 2 LINE 3 LINE 4 LINE n - 1 LINE n	_
$\left(\right)$	DISPB_D3_HSYNC		-)
	DISPB_D3_DRDY		
	DISPB_D3_CLK	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
C	DISPB_D3_DATA		Z

Figure 47. Interface Timing Diagram for TFT (Active Matrix) Panels

4.9.13.1.5 Interface to Active Matrix TFT LCD Panels, Electrical Characteristics

Figure 48 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and the data. All figure parameters shown are programmable. The timing images correspond to inverse polarity

Single access mode (all control signals are not active for one display interface clock after each display access)

Figure 55. Asynchronous Parallel System 68k Interface (Type 1) Burst Mode Timing Diagram

Figure 71 depicts write 0 sequence timing, and Table 65 lists the timing parameters.

Figure 71. Write 0 Sequence Timing Diagram

Table 65. WR0 Sequence Timing Parameters

ID	Parameter	Symbol	Min.	Тур.	Max.	Units
OW5	Write 0 low time	t _{WR0_low}	60	100	120	μs
OW6	Transmission time slot	t _{SLOT}	OW5	117	120	μs

Figure 72 shows write 1 sequence timing, and Figure 73 depicts the read sequence timing. Table 66 lists the timing parameters.

Figure 72. Write 1 Sequence Timing Diagram

Figure 73. Read Sequence Timing Diagram

Table	66.	WR1/RD	Timing	Parameters
-------	-----	--------	--------	------------

ID	Parameter	Symbol	Min.	Тур.	Max.	Units
OW7	Write 1/read low time	t _{LOW1}	1	5	15	μs
OW8	Transmission time slot	t _{SLOT}	60	117	120	μs
OW9	Release time	tRELEASE	15	_	45	μs

4.9.17.6 UDMA-Out Timing

Figure 82 shows timing when the UDMA-out transfer starts, Figure 83 shows timing when the UDMA-out host terminates transfer, Figure 84 shows timing when the UDMA-out device terminates transfer, and Table 73 lists the timing parameters for the UDMA-out burst.

Figure 82. UDMA-Out Transfer Starts Timing Diagram

Figure 83. UDMA-Out Host Terminates Transfer Timing Diagram

ID	Parameter	Symbol	Min.	Max.	Units
UA3	Transmit bit time in IrDA mode	t _{TIRbit}	1/F _{baud_rate} 1 – T _{ref_clk} 2	1/F _{baud_rate} + T _{ref_clk}	_
UA4	Transmit IR pulse duration	t _{TIRpulse}	$(3/16) \times (1/F_{baud_rate}) - T_{ref_clk}$	$(3/16) \times (1/F_{baud_rate}) + T_{ref_clk}$	_

Table 64. II DA MOUE Transmit Timing Farameter	Table 84.	IrDA Mode	Transmit	Timing	Parameter
--	-----------	-----------	----------	--------	-----------

¹ F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

² T_{ref clk}: The period of UART reference clock *ref_clk* (*ipg_perclk* after RFDIV divider).

4.9.23.2.14 UART IrDA Mode Receiver

Figure 99 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 85 lists the receive timing characteristics.

Figure 99. UART IrDA Mode Receive Timing Diagram

Table 85.	IrDA Mode	Receive	Timing	Parameters
-----------	-----------	---------	--------	------------

ID	Parameter	Symbol	Min.	Max.	Units
UA5	Receive bit time ¹ in IrDA mode	t _{RIRbit}	1/F _{baud_rate} ² – 1/(16 × F _{baud_rate})	1/F _{baud_rate} + 1/(16 × F _{baud_rate})	
UA6	Receive IR pulse duration	t _{RIRpulse}	1.41 us	(5/16) × (1/ F_{baud_rate})	_

The UART receiver can tolerate $1/(16 \times F_{baud_rate})$ tolerance in each bit. But accumulation tolerance in one frame must not exceed $3/(16 \times F_{baud_rate})$.

² F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency) ÷ 16.

4.9.24 USB Electrical Specifications

In order to support four different serial interfaces, the USB serial transceiver can be configured to operate in one of four modes:

- DAT_SE0 bidirectional, 3-wire mode
- DAT_SE0 unidirectional, 6-wire mode
- VP_VM bidirectional, 4-wire mode
- VP_VM unidirectional, 6-wire mode

1

Figure 104. USB Transmit Waveform in VP_VM Bidirectional Mode

Figure 105. USB Receive Waveform in VP_VM Bidirectional Mode

Table 91 describes the port timing specification in VP_VM bidirectional mode.

Table 91. USB Port Timing Specification in VP_VM Bidirectional Mode

No.	Parameter	Signal Name	Direction	Min.	Max.	Unit	Condition/ Reference Signal
US18	Tx rise/fall time	USB_DAT_VP	Out		5.0	ns	50 pF
US19	Tx rise/fall time	USB_SE0_VM	Out		5.0	ns	50 pF
US20	Tx rise/fall time	USB_TXOE_B	Out	_	5.0	ns	50 pF
US21	Tx duty cycle	USB_DAT_VP	Out	49.0	51.0	%	_
US22	Tx overlap	USB_SE0_VM	Out	-3.0	+3.0	ns	USB_DAT_VP
US26	Rx rise/fall time	USB_DAT_VP	In	_	3.0	ns	35 pF
US27	Rx rise/fall time	USB_SE0_VM	In	_	3.0	ns	35 pF

No.	Parameter	Signal Name	Direction	Min.	Max.	Unit	Condition/ Reference Signal	
US28	Rx skew	USB_DAT_VP	In	-4.0	+4.0	ns	USB_SE0_VM	
US29	Rx skew	USB_RCV	In	-6.0	+2.0	ns	USB_DAT_VP	

Table 91. USB Port Timing Specification in VP_VM Bidirectional Mode (continued)

4.9.24.4 VP_VM Unidirectional Mode

Table 92 defines the signals for VP_VM unidirectional mode. Figure 106 and Figure 107 show the transmit and receive waveforms respectively.

Name	Direction	Signal Description
USB_TXOE_B	Out	Transmit enable, active low
USB_DAT_VP	Out	Tx VP data when USB_TXOE_B is low
USB_SE0_VM	Out	Tx VM data when USB_TXOE_B is low
USB_VP1	In	Rx VP data when USB_TXOE_B is high
USB_VM1	In	Rx VM data when USB_TXOE_B is high
USB_RCV	In	Differential Rx data

Table 92. Signal Definitions—VP_VM Unidirectional Mode

5.2 MAPBGA Signal Assignments

Table 94 and Table 95 list MAPBGA signals, alphabetized by signal name, for silicon revisions 2.0 and 2.1, respectively. Table 96 and Table 97 show the signal assignment on the i.MX35 ball map for silicon revisions 2.0 and 2.1, respectively. The ball map for silicon revision 2.1 is different than the ballmap for silicon revision 2.0. The layout for each revision is not compatible, so it is important that the correct ballmap be used to implement the layout.

Signal ID	Ball Location
A0	A5
A1	D7
A10	F15
A11	D5
A12	F6
A13	B3
A14	D14
A15	D15
A16	D13
A17	D12
A18	E11
A19	D11
A2	E7
A20	D10
A21	E10
A22	D9
A23	E9
A24	D8
A25	E8
A3	C6
A4	D6
A5	B5
A6	C5
A7	A4
A8	B4
A9	A3
ATA_BUFF_EN ¹	T5
ATA_CS0 ¹	V7
ATA_CS1 ¹	T7
ATA_DA0 ¹	R4
ATA_DA1 ¹	V1
ATA_DA2 ¹	R5
ATA_DATA0 ¹	Y5
ATA_DATA1 ¹	W5
ATA_DATA10 ¹	V3
ATA_DATA11 ¹	Y2
ATA_DATA12 ¹	U3

Table	94.	Silicon	Revision	2.0	Signal	Ball	Мар	Locations
		•••						

Signal ID	Ball Location
ATA DATA7 ¹	Y3
ATA DATA8 ¹	U4
ATA_DATA9 ¹	W3
ATA_DIOR ¹	Y6
ATA_DIOW ¹	W6
ATA_DMACK ¹	V6
ATA_DMARQ ¹	Т3
ATA_INTRQ ¹	V2
ATA_IORDY ¹	U6
ATA_RESET_B ¹	T6
BCLK	E14
BOOT_MODE0	W10
BOOT_MODE1	U9
CAPTURE	V12
CAS	E16
CLK_MODE0	Y10
CLK_MODE1	T10
CLKO	V10
COMPARE	T12
CONTRAST ¹	L16
CS0	F17
CS1	E19
CS2	B20
CS3	C19
CS4	E18
CS5	F19
CSI_D10 ¹	V16
CSI_D11 ¹	T15
CSI_D12 ¹	W16
CSI_D13 ¹	V15
CSI_D14 ¹	U14
CSI_D15 ¹	Y16
CSI_D8 ¹	U15
CSI_D9 ¹	W17
CSI_HSYNC ¹	V14
CSI_MCLK ¹	W15
CSI_PIXCLK ¹	Y15

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
A	VSS	D0	A9	A7	A0	SDB A0	SD3 0	SD2 7	SD2 4	SDQ S2	SD2 1	SD1 8	SDQ S1	SD1 4	SD1 0	SD9	SD6	SD4	SD1	VSS	A
В	D5	D2	A13	A8	A5	SDB A1	SD3 1	SD2 8	SD2 6	SD2 3	SD2 0	SD1 9	SD1 5	SD1 3	SD1 1	SD7	SDQ S0	SD2	DQM 0	CS2	в
С	D8	D7	D4	MA1 0	A6	A3	SDQ S3	SD2 9	SD2 5	SD2 2	SD1 7	SD1 6	SD1 2	SD8	SD5	SD3	SD0	DQM 3	CS3	RW	С
D	D14	D10	D6	D1	A11	A4	A1	A24	A22	A20	A19	A17	A16	A14	A15	DQM 2	DQM 1	SDC KE0	ECB	LBA	D
E	NFC LE	D15	D12	D9	D3	D11	A2	A25	A23	A21	A18	SDC LK	SDC LK_ B	BCL K	RAS	CAS	SDC KE1	CS4	CS1	OE	E
F	NFR E_B	NFA LE	NFR B	NFW P_B	D13	A12	VDD	VDD	VDD	NVC C_E MI1	NVC C_E MI1	VDD	NVC C_E MI2	NVC C_E MI2	A10	EB1	CS0	EB0	CS5	LD0	F
G	RTS 2	NFW E_B	NF_ CE0	TX0	CTS 2	NVC C_N FC	NVC C_E MI1	NVC C_E MI1	NVC C_E MI1	NVC C_E MI1	NVC C_E MI1	NVC C_E MI2	VDD	NVC C_E MI3	SDW E	LD3	LD2	LD1	LD4	LD7	G
Н	TX1	TXD 2	RXD 2	TX4_ RX1	TX2_ RX3	NVC C_N FC	NVC C_N FC	NGN D_E MI1	NVC C_E MI1	NGN D_E MI1	VSS	VSS	VSS	NVC C_L CDC	VDD	LD5	LD8	LD6	LD9	LD10	н
J	FST	TX3_ RX2	TX5_ RX0	SCK T	HCK T	STX FS5	VDD	VSS	VSS	NGN D_E MI1	NGN D_E MI2	NGN D_E MI3	VSS	NVC C_L CDC	VDD	LD12	LD14	LD11	LD13	LD15	J
К	STX D5	HCK R	SCK R	SRX D5	FSR	NVC C_MI SC	NVC C_MI SC	NGN D_MI SC	NGN D_N FC	VSS	NGN D_L CDC	NGN D_E MI3	VSS	LD16	LD22	LD20	LD21	LD18	LD17	LD19	к
L	SRX D4	STX FS4	I2C2 _CL K	SCK 4	SCK 5	FEC _TD ATA3	VDD	NVC C_MI SC	VSS	NGN D_A TA	NGN D_C RM	NGN D_L CDC	VSS	NVC C_L CDC	D3_ FPS HIFT	CON TRA ST	D3_ CLS	D3_ HSY NC	LD23	D3_ DRD Y	L
М	I2C2 _DAT	STX D4	FEC _RD ATA2	FEC _TD ATA1	FEC _TD ATA2	VDD	NGN D_MI SC	VSS	NGN D_A TA	NGN D_M LB	FUS E_V SS	PGN D	NGN D_JT AG	NVC C_L CDC	PHY 1_V DDA	TTM _PIN	D3_ REV	D3_ SPL	D3_ VSY NC	l2C1 _CL K	М
Ν	FEC _RD ATA3	FEC _RD ATA1	FEC _RX _ER R	FEC _TX_ ERR	FEC _CR S	NVC C_A TA	VDD	VSS	VSS	NGN D_C SI	MGN D	NGN D_S DIO	PVD D	USB PHY 1_U PLL GND	USB PHY 1_U PLLV DD	PHY 1_V SSA	I2C1 _DAT	USB PHY 1_UI D	USB PHY 1_D M	PHY 1_V DDA	N
Ρ	FEC _MDI O	FEC _RD ATA0	FEC _CO L	FEC _TX_ CLK	FEC _TD ATA0	NVC C_A TA	NVC C_A TA	NVC C_A TA	NGN D_A TA	VSS	MVD D	PHY 2_V SS	FUS E_V DD	NVC C_S DIO	TDI	NVC C_JT AG	USB PHY 1_U PLLV DD	USB PHY 1_V BUS	USB PHY 1_D P	PHY 1_V SSA	Ρ
R	FEC _MD C	FEC _RX _CL K	CTS 1	ATA_ DA0	ATA_ DA2	TXD 1	VDD	VDD	NVC C_C RM	NVC C_M LB	NVC C_C SI	VDD	PHY 2_V DD	SD1 _DAT A0	TDO	TMS	тск	USB PHY 1_V SSA _BIA S	USB PHY 1_R REF	USB PHY 1_V DDA _BIA S	R
т	FEC _TX_ EN	FEC _RX _DV	ATA_ DMA RQ	ATA_ DATA 15	ATA_ BUF F_E N	ATA_ RES ET_ B	ATA_ CS1	CSPI 1_S PI_R DY	VST BY	CLK _MO DE1	GPI 01_ 0	COM PAR E	SD2 _DAT A1	CSI_ VSY NC	CSI_ D11	TRS TB	VSS	OSC 24M _VS S	OSC 24M _VD D	EXT AL24 M	т
U	RTS 1	RXD 1	ATA_ DATA 12	ATA_ DATA 8	ATA_ DATA 3	ATA_ IOR DY	USB OTG _OC	CSPI 1_S S1	BOO T_M ODE 1	RES ET_I N_B	GPI O2_ 0	SD2 _DAT A3	SD2 _CM D	CSI_ D14	CSI_ D8	SD1 _DAT A1	SJC _MO D	RTC K	OSC _AU DIO_ VSS	XTAL 24M	U

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Ρ	FEC _MDI O	FEC _RD ATA0	FEC _CO L	FEC _TX_ CLK	FEC _TDA TA0	NVC C_AT A	NVC C_AT A	NVC C_AT A	GND	GND	MVD D	PHY 2_VS S	FUS E_V DD	NVC C_S DIO	TDI	NVC C_JT AG	USB PHY 1_UP LLVD D	USB PHY 1_VB US	USB PHY 1_DP	PHY 1_VS SA	Р
R	FEC _MD C	FEC _RX_ CLK	CTS 1	ATA_ DA0	ATA_ DA2	TXD 1	VDD 3	VDD 3	NVC C_C RM	NVC C_M LB	NVC C_C SI	VDD 4	PHY 2_VD D	SD1_ DATA 0	TDO	TMS	тск	USB PHY 1_VS SA_ BIAS	USB PHY 1_R REF	USB PHY 1_VD DA_ BIAS	R
т	FEC _TX_ EN	FEC _RX_ DV	ATA_ DMA RQ	ATA_ DATA 15	ATA_ BUF F_E N	ATA_ RES ET_B	ATA_ CS1	CSPI 1_SP I_RD Y	VST BY	CLK_ MOD E1	GPIO 1_0	COM PAR E	SD2_ DATA 1	CSI_ VSY NC	CSI_ D11	TRS TB	GND	OSC 24M_ VSS	OSC 24M_ VDD	EXTA L24M	т
U	RTS 1	RXD 1	ATA_ DATA 12	ATA_ DATA 8	ATA_ DATA 3	ATA_ IORD Y	USB OTG _OC	CSPI 1_SS 1	BOO T_M ODE 1	RES ET_I N_B	GPIO 2_0	SD2_ DATA 3	SD2_ CMD	CSI_ D14	CSI_ D8	SD1_ DATA 1	SJC_ MOD	RTC K	OSC _AU DIO_ VSS	XTAL 24M	U
V	ATA_ DA1	ATA_ INTR Q	ATA_ DATA 10	ATA_ DATA 6	ATA_ DATA 2	ATA_ DMA CK	ATA_ CS0	EXT_ ARM CLK	CSPI 1_MI SO	CLK O	GPIO 3_0	CAP TUR E	SD2_ DATA 0	CSI_ HSY NC	CSI_ D13	CSI_ D10	SD1_ DATA 3	SD1_ CLK	XTAL _AU DIO	OSC _AU DIO_ VDD	V
W	ATA_ DATA 14	ATA_ DATA 13	ATA_ DATA 9	ATA_ DATA 5	ATA_ DATA 1	ATA_ DIO W	USB OTG _PW R	CSPI 1_SC LK	CSPI 1_M OSI	BOO T_M ODE 0	POR _B	MLB _SIG	MLB _CLK	SD2_ CLK	CSI_ MCL K	CSI_ D12	CSI_ D9	SD1_ DATA 2	DE_ B	EXTA L_AU DIO	w
Y	GND	ATA_ DATA 11	ATA_ DATA 7	ATA_ DATA 4	ATA_ DATA 0	ATA_ DIOR	TES T_M ODE	CSPI 1_SS 0	POW ER_ FAIL	CLK_ MOD E0	GPIO 1_1	WDO G_R ST	MLB _DAT	SD2_ DATA 2	CSI_ PIXC LK	CSI_ D15	USB PHY 2_D M	USB PHY 2_DP	SD1_ CMD	GND	Y
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

Table 97. Silicon Revision 2.1 Ball Map—17 x 17, 0.8 mm Pitch (continued)

6 Product Documentation

All related product documentation for the i.MX35 processor is located at http://www.freescale.com/imx.