

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM1136JF-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Multimedia; GPU, IPU, VFP
RAM Controllers	LPDDR, DDR2
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, KPP, LCD
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.0V, 2.5V, 2.7V, 3.0V, 3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	Secure Fusebox, Secure JTAG
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx356avm4b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4 Electrical Characteristics

The following sections provide the device-level and module-level electrical characteristics for the i.MX35 processor.

4.1 i.MX35 Chip-Level Conditions

This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference to the individual tables and sections.

Characteristics	Table/Location
Absolute Maximum Ratings	Table 7 on page 13
i.MX35 Operating Ranges	Table 8 on page 14
Interface Frequency	Table 9 on page 15

Table 6. i.MX35 Chip-Level Conditions

Stresses beyond those listed in Table 7 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in Table 8 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Table 7. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Supply voltage (core)	VDD _{max} ¹	-0.5	1.47	V
Supply voltage (I/O)	NVCC _{max}	-0.5	3.6	V
Input voltage range	V _{Imax}	-0.5	3.6	V
Storage temperature	T _{storage}	-40	125	°C
ESD damage immunity:	V _{esd}			V
Human Body Model (HBM)		—	2000 ²	
Charge Device Model (CDM)		—	500 ³	

¹ VDD is also known as QVCC.

² HBM ESD classification level according to the AEC-Q100-002 standard

³ Corner pins max. 750 V

Figure 2 shows the power-up sequence and timing.

Figure 2. i.MX35 Power-Up Sequence and Timing

4.3.2 Powering Down

The power-up sequence in reverse order is recommended for powering down. However, all power supplies can be shut down at the same time.

4.4 Reset Timing

There are two ways of resetting the i.MX35 using external pins:

- Power On Reset (using the POR_B pin)
- System Reset (using the RESET_IN_B pin)

4.4.1 Power On Reset

POR_B is normally connected to a power management integrated circuit (PMIC). The PMIC asserts POR_B while the power supplies are turned on and negates POR_B after the power up sequence is finished. See Figure 2.

Pin	DC Electrical Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Unit
DDR2	High-level output voltage	Voh	_	NVCC - 0.28	_	—	V
	Low-level output voltage	Vol	_		—	0.28	V
Pin DDR2	Output min. source current	loh	_	-13.4	—		mA
	Output min. sink current	lol	_	13.4	—	_	mA
	DC input logic high	VIH(dc)	_	NVCC ÷ 2 + 0.125	_	NVCC + 0.3	V
	DC input logic low	VIL(dc)	_	–0.3 V	—	NVCC ÷ 2 – 0.125	V
	DC input signal voltage (for differential signal)	Vin(dc)	_	-0.3	—	NVCC + 0.3	V
	DC differential input voltage	Vid(dc)	_	0.25	—	NVCC + 0.6	V
	Termination voltage	Vtt	_	NVCC ÷ 2 – 0.04	NV CC ÷ 2	NVCC ÷ 2 + 0.04	V
	Input current (no pull-up/down)	IIN	_	—	—	±1	μA
	Tri-state I/O supply current	lcc – N VCC	_	_	—	±1	μA
Mobile DDR	High-level output voltage	_	Iон = –1mA Iон = specified drive	NVCC - 0.08 0.8 × NVCC	—	—	V
	Low-level output voltage	_	IoL = 1mA IoL = specified drive	—	—	0.08 0.2 × NVCC	V
	High-level output current (Voh = 0.8 × NVCCV)	_	Standard drive High drive Max. drive	-3.6 -7.2 -10.8	—	_	mA
	Low-level output current (Vol = $0.2 \times NVCCV$)	—	Standard Drive High Drive Max. Drive	3.6 7.2 10.8	_	_	mA
	High-Level DC CMOS input voltage	VIH	_	0.7 × NVCC	—	NVCC + 0.3	V
	Low-Level DC CMOS input voltage	VIL	_	-0.3		$0.2 \times NVCC$	V
	Differential receiver VTH+	VTH+	—	—	—	100	mV
	Differential receiver VTH-	VTH-	—	-100	—		mV
	Input current (no pull-up/down)	IIN	VI = 0 VI = NVCC	—	—	±1	μA
	Tri-state I/O supply current	lcc – N VCC	VI = NVCC or 0	—	—	±1	μA

Table 14. I/O Pin DC Electrical Characteristics (continued)

ID	Parameter	Min.	Max.	Unit
WE1	BCLK cycle time ²	14.5		ns
WE2	BCLK low-level width ²	7	_	ns
WE3	BCLK high-level width ²	7	—	ns
WE4	Address valid to Clock rise/fall	15	21	ns
WE5	Clock rise/fall to address invalid	22	25	ns
WE6	Clock rise/fall to CSx_B valid	15	19	ns
WE7	Clock rise/fall to CSx_B invalid	3.6	5	ns
WE8	Clock rise/fall to RW_B valid	8	12	ns
WE9	Clock rise/fall to RW_B invalid	3	8	ns
WE10	Clock rise/fall to OE_B valid	7	12	ns
WE11	Clock rise/fall to OE_B invalid	3.8	5.5	ns
WE12	Clock rise/fall to EBy_B valid	6	11.5	ns
WE13	Clock rise/fall to EBy_B invalid	6	10	ns
WE14	Clock rise/fall to LBA_B valid	17.5	20	ns
WE15	Clock rise/fall to LBA_B invalid	0	1	ns
WE16	Clock rise/fall to Output Data valid	5	10	ns
WE17	Clock rise to Output Data invalid	0	2.5	ns
WE18	Input Data Valid to Clock rise ³	1	—	ns
WE19	Input Data Valid to Clock rise, FCE=0 (in the case there is ECB_B asserted during access)	(BCLK/2) + 3.01	—	ns
WE19	Input Data Valid to Clock rise, FCE=0 (in the case there is NO ECB_B asserted during access)	6.9	—	ns
WE20	Clock rise to Input Data invalid ³	1	—	ns
WE22	ECB_B setup time ³	5	—	ns
WE24	ECB_B hold time ³	0	—	ns
WE26	DTACK_B setup time	5.4	—	ns
WE27	DTACK_B hold time	-3.2	—	ns

Table 33. WEIM Bus Timing Parameters¹

¹ "High" is defined as 80% of signal value, and "low" is defined as 20% of signal value.

² BCLK parameters are measured from the 50% point. For example, "high" is defined as 50% of signal value and "low" is defined as 50% of signal value.

³ Parameters W18, W20, W22, and W24 are tested when FCE=1. i.MX35 does not support FCE=0.

NOTE

Test conditions: load capacitance, 25 pF. Recommended drive strength for all controls, address, and BCLK is set to maximum drive.

ID	Parameter	Symbol	Min.	Max.	Unit
SD7	Address hold time	tAH	1.8		ns
SD8	SDRAM access time	tAC		6.47	ns
SD9	Data out hold time ¹	tOH	1.2		ns
SD10	Active to read/write command period	tRC	10		clock

Table 35. DDR/SDR SDRAM Read Cycle Timing Parameters (continued)

¹ Timing parameters are relevant only to SDR SDRAM. For the specific DDR SDRAM data related timing parameters, see Table 44 and Table 45.

NOTE

SDR SDRAM CLK parameters are measured from the 50% point—that is, high is defined as 50% of signal value and low is defined as 50% of signal value. SD1 + SD2 does not exceed 7.5 ns for 133 MHz.

The timing parameters are similar to the ones used in SDRAM data sheets—that is, Table 35 indicates SDRAM requirements. All output signals are driven by the ESDCTL at the negative edge of SDCLK and the parameters are measured at maximum memory frequency.

NOTE

Test conditions are: pin voltage 1.7 V–1.95 V, capacitance 15 pF for all pins (both DDR and non-DDR pins), drive strength is high (7.2 mA). "High" is defined as 80% of signal value and "low" is defined as 20% of signal value.

SDR SDRAM CLK parameters are measured from the 50% point—that is, "high" is defined as 50% of signal value, and "low" is defined as 50% of signal value. tCH + tCL will not exceed 7.5 ns for 133 MHz. DDR SDRAM CLK parameters are measured at the crossing point of SDCLK and SDCLK (inverted clock).

The timing parameters are similar to the ones used in SDRAM data sheets. Table 36 indicates SDRAM requirements. All output signals are driven by the ESDCTL at the negative edge of SDCLK, and the parameters are measured at maximum memory frequency.

Figure 29. SDRAM Refresh Timing Diagram

Table 37	. SDRAM	Refresh	Timing	Parameters
----------	---------	---------	--------	------------

ID	Parameter	Symbol	Min.	Max.	Unit
SD1	SDRAM clock high-level width	tCH	3.4	4.1	ns
SD2	SDRAM clock low-level width	tCL	3.4	4.1	ns
SD3	SDRAM clock cycle time	tCK	7.5	—	ns
SD6	Address setup time	tAS	1.8	—	ns

Figure 32. DDR2 SDRAM Write Cycle Timing Diagram

ID	DADAMETED	Ourseland	DDR2-	11	
	PARAMETER	Symbol	Min	Max	Unit
DDR17	DQ and DQM setup time to DQS (single-ended strobe)	tDS1(base)	0.5	—	ns
DDR18	DQ and DQM hold time to DQS (single-ended strobe)	tDH1(base)	0.5	—	ns
DDR19	Write cycle DQS falling edge to SDCLK output setup time.	tDSS	0.2	—	tCK
DDR20	Write cycle DQS falling edge to SDCLK output hold time.	t DSH	0.2	—	tCK
DDR21	DQS latching rising transitions to associated clock edges	tDQSS	-0.25	0.25	tCK
DDR22	DQS high level width	t DQSH	0.35	—	tCK
DDR23	DQS low level width	tDQSL	0.35	—	tCK

Table 41. DDR2 SDRAM Write Cycle Parameters

NOTE

These values are for DQ/DM slew rate of 1 V/ns and DQS slew rate of 1 V/ns. For different values use the derating table.

4.9.13.1 Synchronous Interfaces

This section discusses the interfaces to active matrix TFT LCD panels, Sharp HR-TFT, and dual-port smart displays.

4.9.13.1.4 Interface to Active Matrix TFT LCD Panels, Functional Description

Figure 47 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure, signals are shown with negative polarity. The sequence of events for active matrix interface timing is as follows:

- DISPB_D3_CLK latches data into the panel on its negative edge (when positive polarity is selected). In active mode, DISPB_D3_CLK runs continuously.
- DISPB_D3_HSYNC causes the panel to start a new line.
- DISPB_D3_VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse.
- DISPB_D3_DRDY acts like an output enable signal to the CRT display. This output enables the data to be shifted to the display. When disabled, the data is invalid and the trace is off.

	DISPB_D3_VSYNC	LINE 1 LINE 2 LINE 3 LINE 4 LINE n - 1 LINE n	_
$\left(\right)$	DISPB_D3_HSYNC		-)
	DISPB_D3_DRDY		
	DISPB_D3_CLK	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
C	DISPB_D3_DATA		Z

Figure 47. Interface Timing Diagram for TFT (Active Matrix) Panels

4.9.13.1.5 Interface to Active Matrix TFT LCD Panels, Electrical Characteristics

Figure 48 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and the data. All figure parameters shown are programmable. The timing images correspond to inverse polarity

of the DISPB_D3_CLK signal and active-low polarity of the DISPB_D3_HSYNC, DISPB_D3_VSYNC and DISPB_D3_DRDY signals.

Figure 49 depicts the vertical timing (timing of one frame). All figure parameters shown are programmable.

Table 55 shows timing parameters of signals presented in Figure 48 and Figure 49.

Table 55.	Synchronous	Display Interfac	e Timing Paran	neters—Pixel Level
	oynomonouo	Biopiay intornat	o inning i aran	

ID	Parameter	Symbol	Value	Units
IP5	Display interface clock period	Tdicp	Tdicp ¹	ns
IP6	Display pixel clock period	Tdpcp	(DISP3_IF_CLK_CNT_D + 1) × Tdicp	ns
IP7	Screen width	Tsw	(SCREEN_WIDTH + 1) × Tdpcp	ns
IP8	HSYNC width	Thsw	(H_SYNC_WIDTH + 1) × Tdpcp	ns

Section 4.9.13.1.5, "Interface to Active Matrix TFT LCD Panels, Electrical Characteristics." The timing images correspond to straight polarity of the Sharp signals.

Example is drawn with FW + 1 = 320 pixel/line, FH + 1 = 240 lines. SPL pulse width is fixed and aligned to the first data of the line. REV toggles every HSYNC period.

Table 57. S	Sharp Sy	nchronous/	Display	Interface	Timing	Parameters-	-Pixel Level
-------------	----------	------------	---------	-----------	--------	-------------	--------------

ID	Parameter	Symbol	Value	Units
IP21	SPL rise time	Tsplr	(BGXP – 1) × Tdpcp	ns
IP22	CLS rise time	Tclsr	CLS_RISE_DELAY × Tdpcp	ns
IP23	CLS fall time	Tclsf	CLS_FALL_DELAY × Tdpcp	ns
IP24	CLS rise and PS fall time	Tpsf	PS_FALL_DELAY × Tdpcp	ns
IP25	PS rise time	Tpsr	PS_RISE_DELAY × Tdpcp	ns
IP26	REV toggle time	Trev	REV_TOGGLE_DELAY × Tdpcp	ns

4.9.13.3.7 Interface to a TV Encoder, Electrical Characteristics

The timing characteristics of the TV encoder interface are identical to the synchronous display characteristics. See Section 4.9.13.1.5, "Interface to Active Matrix TFT LCD Panels, Electrical Characteristics."

4.9.13.4 Asynchronous Interfaces

This section discusses the asynchronous parallel and serial interfaces.

4.9.13.4.8 Parallel Interfaces, Functional Description

The IPU supports the following asynchronous parallel interfaces:

- System 80 interface
 - Type 1 (sampling with the chip select signal) with and without byte enable signals.
 - Type 2 (sampling with the read and write signals) with and without byte enable signals.
- System 68k interface
 - Type 1 (sampling with the chip select signal) with or without byte enable signals.
 - Type 2 (sampling with the read and write signals) with or without byte enable signals.

For each of four system interfaces, there are three burst modes:

- 1. Burst mode without a separate clock—The burst length is defined by the corresponding parameters of the IDMAC (when data is transferred from the system memory) or by the HBURST signal (when the MCU directly accesses the display via the slave AHB bus). For system 80 and system 68k type 1 interfaces, data is sampled by the CS signal and other control signals change only when transfer direction is changed during the burst. For type 2 interfaces, data is sampled by the WR/RD signals (system 80) or by the ENABLE signal (system 68k), and the CS signal stays active during the whole burst.
- 2. Burst mode with the separate clock DISPB_BCLK—In this mode, data is sampled with the DISPB_BCLK clock. The CS signal stays active during whole burst transfer. Other controls are changed simultaneously with data when the bus state (read, write or wait) is altered. The CS signals and other controls move to non-active state after burst has been completed.
- 3. Single access mode—In this mode, slave AHB and DMA burst are broken to single accesses. The data is sampled with CS or other controls according to the interface type as described above. All controls (including CS) become non-active for one display interface clock after each access. This mode corresponds to the ATI single access mode.

Both system 80 and system 68k interfaces are supported for all described modes as depicted in Figure 53, Figure 54, Figure 55, and Figure 56. These timing images correspond to active-low DISPB_D*n*_CS, DISPB_D*n*_WR and DISPB_D*n*_RD signals.

Table 58. Asynchronous Parallel Interface Timing Parameters—Access Level
--

ID	Parameter	Symbol	Min.	Typ. ¹	Max.	Units
IP27	Read system cycle time	Tcycr	Tdicpr – 1.5	Tdicpr ²	Tdicpr + 1.5	ns
IP28	Write system cycle time	Tcycw	Tdicpw – 1.5	Tdicpw ³	Tdicpw + 1.5	ns
IP29	Read low pulse width	Trl	Tdicdr – Tdicur – 1.5	Tdicdr ⁴ – Tdicur ⁵	Tdicdr – Tdicur + 1.5	ns
IP30	Read high pulse width	Trh	Tdicpr – Tdicdr + Tdicur – 1.5	Tdicpr – Tdicdr + Tdicur	Tdicpr – Tdicdr + Tdicur + 1.5	ns
IP31	Write low pulse width	Twl	Tdicdw – Tdicuw – 1.5	Tdicdw ⁶ – Tdicuw ⁷	Tdicdw – Tdicuw + 1.5	ns
IP32	Write high pulse width	Twh	Tdicpw – Tdicdw + Tdicuw – 1.5	Tdicpw – Tdicdw + Tdicuw	Tdicpw – Tdicdw + Tdicuw + 1.5	ns
IP33	Controls setup time for read	Tdcsr	Tdicur – 1.5	Tdicur	_	ns
IP34	Controls hold time for read	Tdchr	Tdicpr – Tdicdr – 1.5	Tdicpr – Tdicdr		ns

⁹ Data read point:

 $Tdrp = T_{HSP_CLK} \cdot ceil \left[\frac{DISP\#_READ_EN}{HSP_CLK_PERIOD} \right]$

¹⁰ Loopback delay Tlbd is the cumulative propagation delay of read controls and read data. It includes an IPU output delay, a device-level output delay, board delays, a device-level input delay, and an IPU input delay. This value is device specific.

The following parameters are programmed via the DI_DISP#_TIME_CONF_1, DI_DISP#_TIME_CONF_2, and DI_HSP_CLK_PER registers:

- DISP#_IF_CLK_PER_WR
- DISP#_IF_CLK_PER_RD
- HSP_CLK_PERIOD
- DISP#_IF_CLK_DOWN_WR
- DISP#_IF_CLK_UP_WR
- DISP#_IF_CLK_DOWN_RD
- DISP#_IF_CLK_UP_RD
- DISP#_READ_EN

4.9.14 Memory Stick Host Controller (MSHC)

Figure 67, Figure 68, and Figure 69 depict the MSHC timings, and Table 60 and Table 61 list the timing parameters.

Figure 67. MSHC_CLK Timing Diagram

ID	Parameter	Min.	Max.	Unit			
	Internal Clock Operation						
SS1	(Tx/Rx) CK clock period	81.4		ns			
SS2	(Tx/Rx) CK clock high period	36.0	_	ns			
SS3	(Tx/Rx) CK clock rise time	_	6	ns			
SS4	(Tx/Rx) CK clock low period	36.0	_	ns			
SS5	(Tx/Rx) CK clock fall time	_	6	ns			
SS6	(Tx) CK high to FS (bl) high	_	15.0	ns			
SS8	(Tx) CK high to FS (bl) low	_	15.0	ns			
SS10	(Tx) CK high to FS (wl) high	_	15.0	ns			
SS12	(Tx) CK high to FS (wl) low	—	15.0	ns			
SS14	(Tx/Rx) Internal FS rise time	—	6	ns			
SS15	(Tx/Rx) Internal FS fall time	_	6	ns			
SS16	(Tx) CK high to STXD valid from high impedance	—	15.0	ns			
SS17	(Tx) CK high to STXD high/low	—	15.0	ns			
SS18	(Tx) CK high to STXD high impedance	—	15.0	ns			
SS19	STXD rise/fall time	—	6	ns			
	Synchronous Internal Clock Operation						
SS42	SRXD setup before (Tx) CK falling	10.0		ns			
SS43	SRXD hold after (Tx) CK falling	0	_	ns			
SS52	Loading	_	25	pF			

Table 78. SSI Transmitter with Internal Clock Timing Parameters

ID	Parameter	Min.	Max.	Unit			
	Internal Clock Operation						
SS1	(Tx/Rx) CK clock period	81.4	—	ns			
SS2	(Tx/Rx) CK clock high period	36.0	—	ns			
SS3	(Tx/Rx) CK clock rise time	_	6	ns			
SS4	(Tx/Rx) CK clock low period	36.0	—	ns			
SS5	(Tx/Rx) CK clock fall time	_	6	ns			
SS7	(Rx) CK high to FS (bl) high	_	15.0	ns			
SS9	(Rx) CK high to FS (bl) low	_	15.0	ns			
SS11	(Rx) CK high to FS (wl) high	_	15.0	ns			
SS13	(Rx) CK high to FS (wl) low	_	15.0	ns			
SS20	SRXD setup time before (Rx) CK low	10.0	—	ns			
SS21	SRXD hold time after (Rx) CK low	0	—	ns			
Oversampling Clock Operation							
SS47	Oversampling clock period	15.04	—	ns			
SS48	Oversampling clock high period	6	—	ns			
SS49	Oversampling clock rise time	—	3	ns			
SS50	Oversampling clock low period	6	—	ns			
SS51	Oversampling clock fall time	—	3	ns			

Table 79. SSI Receiver with Internal Clock Timing Parameters

ID	Parameter	Symbol	Min.	Max.	Units
UA3	Transmit bit time in IrDA mode	t _{TIRbit}	1/F _{baud_rate} 1 – T _{ref_clk} 2	1/F _{baud_rate} + T _{ref_clk}	_
UA4	Transmit IR pulse duration	t _{TIRpulse}	$(3/16) \times (1/F_{baud_rate}) - T_{ref_clk}$	$(3/16) \times (1/F_{baud_rate}) + T_{ref_clk}$	_

Table 64. II DA MOUE Transmit Timing Farameter	Table 84.	IrDA Mode	Transmit	Timing	Parameter
--	-----------	-----------	----------	--------	-----------

¹ F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

² T_{ref clk}: The period of UART reference clock *ref_clk* (*ipg_perclk* after RFDIV divider).

4.9.23.2.14 UART IrDA Mode Receiver

Figure 99 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 85 lists the receive timing characteristics.

Figure 99. UART IrDA Mode Receive Timing Diagram

Table 85.	IrDA Mode	Receive	Timing	Parameters
-----------	-----------	---------	--------	------------

ID	Parameter	Symbol	Min.	Max.	Units
UA5	Receive bit time ¹ in IrDA mode	t _{RIRbit}	1/F _{baud_rate} ² – 1/(16 × F _{baud_rate})	1/F _{baud_rate} + 1/(16 × F _{baud_rate})	
UA6	Receive IR pulse duration	t _{RIRpulse}	1.41 us	(5/16) × (1/ F_{baud_rate})	_

The UART receiver can tolerate $1/(16 \times F_{baud_rate})$ tolerance in each bit. But accumulation tolerance in one frame must not exceed $3/(16 \times F_{baud_rate})$.

² F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency) ÷ 16.

4.9.24 USB Electrical Specifications

In order to support four different serial interfaces, the USB serial transceiver can be configured to operate in one of four modes:

- DAT_SE0 bidirectional, 3-wire mode
- DAT_SE0 unidirectional, 6-wire mode
- VP_VM bidirectional, 4-wire mode
- VP_VM unidirectional, 6-wire mode

1

Table 87 describes the port timing specification in DAT_SE0 bidirectional mode.

No.	Parameter	Signal Name	Direction	Min.	Max.	Unit	Conditions/Reference Signal
US1	Tx rise/fall time	USB_DAT_VP	Out	_	5.0	ns	50 pF
US2	Tx rise/fall time	USB_SE0_VM	Out	_	5.0	ns	50 pF
US3	Tx rise/fall time	USB_TXOE_B	Out	_	5.0	ns	50 pF
US4	Tx duty cycle	USB_DAT_VP	Out	49.0	51.0	%	_
US7	Rx rise/fall time	USB_DAT_VP	In	_	3.0	ns	35 pF
US8	Rx rise/fall time	USB_SE0_VM	In	—	3.0	ns	35 pF

Table 87. Port Timing Specification in DAT_SE0 Bidirectional Mode

4.9.24.2 DAT_SE0 Unidirectional Mode

Table 88 defines the signals for DAT_SE0 unidirectional mode. Figure 102 and Figure 103 show the transmit and receive waveforms respectively.

Name	Direction	Signal Description
USB_TXOE_B	Out	Transmit enable, active low
USB_DAT_VP	Out	Tx data when USB_TXOE_B is low
USB_SE0_VM	Out	SE0 drive when USB_TXOE_B is low
USB_VP1	In	Buffered data on DP when USB_TXOE_B is high
USB_VM1	In	Buffered data on DM when USB_TXOE_B is high
USB_RCV	In	Differential Rx data when USB_TXOE_B is high

Table 88. Signal Definitions—DAT_SE0 Unidirectional Mode

Signal ID	Ball Location
ATA_DATA13 ¹	W2
ATA_DATA14 ¹	W1
ATA_DATA15 ¹	T4
ATA_DATA2 ¹	V5
ATA_DATA3	U5
ATA_DATA4	Y4
ATA_DATA5	W4
ATA_DATA6	V4
CTS2	G5
D0	A2
D1	D4
D10	D2
D11	E6
D12	E3
D13	F5
D14	D1
D15	E2
D2	B2
D3	E5
D3_CLS ¹	L17
 D3 DRDY ¹	L20
D3 FPSHIFT ¹	L15
D3 HSYNC ¹	L18
D3 BEV ¹	M17
D3 SPL ¹	M18
D3 VSYNC ¹	M19
D4	C3
D5	B1
D6	D3
D7	C2
	C1
D9	F4
	R19
	D17
	D16
	C18
FR0	F18
EB0 FR1	F16
ECR	
	 \/Ω
	00 W20
	VV20
	12U
	P3
	CVI
FEC_MDC	K1

Table 94 Silicor	Nevision 2 ()	Signal Ball Mai	o Locations ((continued)
		orginal Ball map		(oonanaoa)

Signal ID	Ball Location
CSI_VSYNC ¹	T14
CSPI1_MISO	V9
CSPI1_MOSI	W9
CSPI1_SCLK	W8
CSPI1_SPI_RDY	Т8
CSPI1_SS0	Y8
CSPI1_SS1	U8
CTS1	R3
FEC_TDATA0	P5
FEC_TDATA1	M4
FEC_TDATA2	M5
FEC_TDATA3	L6
FEC_TX_CLK	P4
FEC_TX_EN	T1
FEC_TX_ERR	N4
FSR	K5
FST	J1
FUSE_VDD	P13
FUSE_VSS	M11
GPIO1_0	T11
GPIO1_1	Y11
GPIO2_0	U11
GPIO3_0	V11
HCKR	K2
HCKT	J5
I2C1_CLK	M20
I2C1_DAT	N17
I2C2_CLK	L3
I2C2_DAT	M1
LBA	D20
LD0 ¹	F20
LD1 ¹	G18
LD10 ¹	H20
LD11 ¹	J18
LD12 ¹	J16
LD13 ¹	J19
LD14 ¹	J17
LD15 ¹	J20
LD16 ¹	K14
LD17 ¹	K19
LD18 ¹	K18
LD19 ¹	K20
LD2 ¹	G17
LD20 ¹	K16
LD21 ¹	K17
LD22 ¹	K15

Signal ID	Ball Location
FEC_MDIO	P1
FEC_RDATA0	P2
FEC_RDATA1	N2
FEC_RDATA2	M3
FEC_RDATA3	N1
FEC_RX_CLK	R2
FEC_RX_DV	T2
FEC_RX_ERR	N3
MA10	C4
MGND	N11
MLB_CLK	W13
MLB_DAT	Y13
MLB_SIG	W12
MVDD	P11
NF_CE0	G3
NFALE	F2
NFCLE	E1
NFRB	F3
NFRE_B	F1
NFWE_B	G2
NFWP_B	F4
NGND ATA	M9
NGND ATA	P9
NGND ATA	L10
NGND CRM	L11
NGND CSI	N10
NGND EMI1	H8
NGND EMI1	H10
NGND EMI1	J10
NGND EMI2	J11
NGND EMI3	J12
NGND EMI3	K12
NGND JTAG	M13
	K11
NGND I CDC	12
NGND MISC	M7
NGND MISC	K8
NGND MIR	M10
NGND NFC	KQ
	N12
	NA
	PA
	P7
14400_031	

Table 94. Silicor	n Revision 2.0) Signal	Ball Map	Locations	(continued)
-------------------	----------------	----------	-----------------	-----------	-------------

Signal ID	Ball Location
LD23 ¹	L19
LD3 ¹	G16
LD4 ¹	G19
LD5 ¹	H16
LD6 ¹	H18
LD7 ¹	G20
LD8 ¹	H17
LD9 ¹	H19
NVCC_EMI2	G12
NVCC_EMI2	F13
NVCC_EMI2	F14
NVCC_EMI3	G14
NVCC_JTAG	P16
NVCC_LCDC	H14
NVCC_LCDC	J14
NVCC_LCDC	L14
NVCC_LCDC	M14
NVCC_MISC	K6
NVCC_MISC	K7
NVCC_MISC	L8
NVCC_MLB	R10
NVCC_NFC	G6
NVCC_NFC	H6
NVCC_NFC	H7
NVCC_SDIO	P14
OE	E20
OSC_AUDIO_VDD	V20
OSC_AUDIO_VSS	U19
OSC24M_VDD	T19
OSC24M_VSS	T18
PGND	M12
PHY1_VDDA	M15
PHY1_VDDA	N20
PHY1_VSSA	N16
PHY1_VSSA	P20
PHY2_VDD	R13
PHY2_VSS	P12
POR_B	W11
POWER_FAIL	Y9
PVDD	N13
RAS	E15
RESET_IN_B	U10
RTCK	U18
RTS1	U1
RTS2	G1
RW	C20

Signal ID	Ball Location
VDD	L7
VDD	N7
VDD	R7
VDD	F8
VDD	R8
VDD	F9
VDD	F12
VDD	R12
VDD	G13
VDD	H15
VDD	J15
VSS	A1
VSS	Y1
VSS	J8
VSS	M8
VSS	N8
VSS	J9

Table 95. Silicon Revision 2.1 Signal Ball Map Locations (continued)

Signal ID	Ball Location
VSS	L9
VSS	N9
VSS	K10
VSS	P10
VSS	H11
VSS	H12
NVCC_EMI2	H13
VSS	J13
VSS	K13
VSS	L13
VSS	T17
VSS	A20
VSS	Y20
VSTBY	Т9
WDOG_RST	Y12
XTAL_AUDIO	V19
XTAL24M	U20

¹ Not available for the MCIMX351.