

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	ARM1136JF-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	532MHz
Co-Processors/DSP	Multimedia; GPU, IPU, VFP
RAM Controllers	LPDDR, DDR2
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, KPP, LCD
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.0V, 2.5V, 2.7V, 3.0V, 3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	Secure Fusebox, Secure JTAG
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcimx356avm5b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The i.MX35 core is intended to operate at a maximum frequency of 532 MHz to support the required multimedia use cases. Furthermore, an image processing unit (IPU) is integrated into the AP domain to offload the ARM11 core from performing functions such as color space conversion, image rotation and scaling, graphics overlay, and pre- and post-processing.

The functionality of AP Domain peripherals includes the user interface; the connectivity, display, security, and memory interfaces; and 128 Kbytes of multipurpose SRAM.

2.2 Shared Domain Overview

The shared domain is composed of the shared peripherals, a smart DMA engine (SDMA) and a number of miscellaneous modules. For maximum flexibility, some peripherals are directly accessible by the SDMA engine.

The i.MX35 has a hierarchical memory architecture including L1 caches and a unified L2 cache. This reduces the bandwidth demands for the external bus and external memory. The external memory subsystem supports a flexible external memory system, including support for SDRAM (SDR, DDR2 and mobile DDR) and NAND Flash.

2.3 Advanced Power Management Overview

To address the continuing need to reduce power consumption, the following techniques are incorporated in the i.MX35:

- Clock gating
- Power gating
- Power-optimized synthesis
- Well biasing

The insertion of gating into the clock paths allows unused portions of the chip to be disabled. Because static CMOS logic consumes only leakage power, significant power savings can be realized.

"Well biasing" is applying a voltage that is greater than V_{DD} to the nwells, and one that is lower than V_{SS} to the pwells. The effect of applying this well back bias voltage reduces the subthreshold channel leakage. For the 90-nm digital process, it is estimated that the subthreshold leakage is reduced by a factor of ten over the nominal leakage. Additionally, the supply voltage for internal logic can be reduced from 1.4 V to 1.22 V.

2.4 ARM11 Microprocessor Core

The CPU of the i.MX35 is the ARM1136JF-S core, based on the ARM v6 architecture. This core supports the ARM Thumb[®] instruction sets, features Jazelle[®] technology (which enables direct execution of Java byte codes) and a range of SIMD DSP instructions that operate on 16-bit or 8-bit data values in 32-bit registers.

The ARM1136JF-S processor core features are as follows:

- Integer unit with integral $EmbeddedICE^{TM}$ logic
- Eight-stage pipeline

- Branch prediction with return stack
- Low-interrupt latency
- Instruction and data memory management units (MMUs), managed using micro TLB structures backed by a unified main TLB
- Instruction and data L1 caches, including a non-blocking data cache with hit-under-miss
- Virtually indexed/physically addressed L1 caches
- 64-bit interface to both L1 caches
- Write buffer (bypassable)
- High-speed Advanced Micro Bus Architecture (AMBA)TM L2 interface
- Vector floating point co-processor (VFP) for 3D graphics and hardware acceleration of other floating-point applications
- ETM^{TM} and JTAG-based debug support

Table 3 summarizes information about the i.MX35 core.

Table 3. i.MX35 Core

Core	Core	Brief Description	Integrated Memory
Acronym	Name		Features
ARM11 or ARM1136	ARM1136 Platform	The ARM1136 [™] platform consists of the ARM1136JF-S core, the ETM real-time debug modules, a 6 × 5 multi-layer AHB crossbar switch (MAX), and a vector floating processor (VFP). The i.MX35 provides a high-performance ARM11 microprocessor core and highly integrated system functions. The ARM Application Processor (AP) and other subsystems address the needs of the personal, wireless, and portable product market with integrated peripherals, advanced processor core, and power management capabilities.	 16-Kbyte instruction cache 16-Kbyte data cache 128-Kbyte L2 cache 32-Kbyte ROM 128-Kbyte RAM

2.5 Module Inventory

Table 4 shows an alphabetical listing of the modules in the MCIMX35. For extended descriptions of the modules, see the MCIMX35 reference manual.

Block Mnemonic	Block Name	Domain ¹	Subsystem	Brief Description
1-WIRE	1-Wire interface	ARM	ARM1136 platform peripherals	1-Wire provides the communication line to a 1-Kbit add-only memory. the interface can send or receive 1 bit at a time.
ASRC	Asynchronous sample rate converter	SDMA	Connectivity peripherals	The ASRC is designed to convert the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. It supports a concurrent sample rate conversion of about –120 dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates.

Table 4. Digital and Analog Modules

Block Mnemonic	Block Name	Domain ¹	Subsystem	Brief Description
I ² C(3)	I ² C module	ARM	ARM1136 platform peripherals	Inter-integrated circuit (I ² C) is an industry-standard, bidirectional serial bus that provides a simple, efficient method of data exchange, minimizing the interconnection between devices. I ² C is suitable for applications requiring occasional communications over a short distance among many devices. The interface operates at up to 100 kbps with maximum bus loading and timing. The I ² C system is a true multiple-master bus, with arbitration and collision detection that prevent data corruption if multiple devices attempt to control the bus simultaneously. This feature supports complex applications with multiprocessor control and can be used for rapid testing and alignment of end products through external connections to an assembly-line computer.
IIM	IC identification module	ARM	Security modules	The IIM provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, and various control signals requiring a fixed value.
IOMUX	External signals and pin multiplexing	ARM	Pins	 Each I/O multiplexer provides a flexible, scalable multiplexing solution with the following features: Up to eight output sources multiplexed per pin Up to four destinations for each input pin Unselected input paths held at constant levels for reduced power consumption
IPUv1	Image processing unit	ARM	Multimedia peripherals	 The IPU supports video and graphics processing functions. It also provides the interface for image sensors and displays. The IPU performs the following main functions: Preprocessing of data from the sensor or from the external system memory Postprocessing of data from the external system memory Post-filtering of data from the system memory with support of the MPEG-4 (both deblocking and deringing) and H.264 post-filtering algorithms Displaying video and graphics on a synchronous (dumb or memory-less) display Displaying video and graphics on an asynchronous (smart) display Transferring data between IPU sub-modules and to/from the system memory with flexible pixel reformatting
KPP	Keypin port	ARM	Connectivity peripherals	Can be used for either keypin matrix scanning or general purpose I/O.
MLB	Media local bus	ARM	Connectivity peripherals	The MLB is designed to interface to an automotive MOST ring.
OSCAUD	OSC audio reference oscillator	Analog	Clock	The OSCAUDIO oscillator provides a stable frequency reference for the PLLs. This oscillator is designed to work in conjunction with an external 24.576-MHz crystal.

4 Electrical Characteristics

The following sections provide the device-level and module-level electrical characteristics for the i.MX35 processor.

4.1 i.MX35 Chip-Level Conditions

This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference to the individual tables and sections.

Characteristics	Table/Location
Absolute Maximum Ratings	Table 7 on page 13
i.MX35 Operating Ranges	Table 8 on page 14
Interface Frequency	Table 9 on page 15

Table 6. i.MX35 Chip-Level Conditions

Stresses beyond those listed in Table 7 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in Table 8 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Table 7. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Supply voltage (core)	VDD _{max} ¹	-0.5	1.47	V
Supply voltage (I/O)	NVCC _{max}	-0.5	3.6	V
Input voltage range	V _{Imax}	-0.5	3.6	V
Storage temperature	T _{storage}	-40	125	°C
ESD damage immunity:	V _{esd}			V
Human Body Model (HBM)		—	2000 ²	
Charge Device Model (CDM)		—	500 ³	

¹ VDD is also known as QVCC.

² HBM ESD classification level according to the AEC-Q100-002 standard

³ Corner pins max. 750 V

Figure 2 shows the power-up sequence and timing.

Figure 2. i.MX35 Power-Up Sequence and Timing

4.3.2 Powering Down

The power-up sequence in reverse order is recommended for powering down. However, all power supplies can be shut down at the same time.

4.4 Reset Timing

There are two ways of resetting the i.MX35 using external pins:

- Power On Reset (using the POR_B pin)
- System Reset (using the RESET_IN_B pin)

4.4.1 Power On Reset

POR_B is normally connected to a power management integrated circuit (PMIC). The PMIC asserts POR_B while the power supplies are turned on and negates POR_B after the power up sequence is finished. See Figure 2.

4.9.5 EMI Electrical Specifications

This section provides electrical parametrics and timing for the EMI module.

4.9.5.1 NAND Flash Controller Interface (NFC)

The i.MX35 NFC supports normal timing mode, using two flash clock cycles for one access of $\overline{\text{RE}}$ and $\overline{\text{WE}}$. AC timings are provided as multiplications of the clock cycle and fixed delay. Figure 11, Figure 12, Figure 13, and Figure 14 depict the relative timing requirements among different signals of the NFC at module level for normal mode. Table 32 lists the timing parameters.

ID	Parameter	Symbol	Min.	Max.	Unit
SD7	Address hold time	tAH	1.8		ns
SD8	SDRAM access time	tAC		6.47	ns
SD9	Data out hold time ¹	tOH	1.2		ns
SD10	Active to read/write command period	tRC	10		clock

Table 35. DDR/SDR SDRAM Read Cycle Timing Parameters (continued)

¹ Timing parameters are relevant only to SDR SDRAM. For the specific DDR SDRAM data related timing parameters, see Table 44 and Table 45.

NOTE

SDR SDRAM CLK parameters are measured from the 50% point—that is, high is defined as 50% of signal value and low is defined as 50% of signal value. SD1 + SD2 does not exceed 7.5 ns for 133 MHz.

The timing parameters are similar to the ones used in SDRAM data sheets—that is, Table 35 indicates SDRAM requirements. All output signals are driven by the ESDCTL at the negative edge of SDCLK and the parameters are measured at maximum memory frequency.

Figure 32. DDR2 SDRAM Write Cycle Timing Diagram

ID	DADAMETED	Symbol	DDR2-	11	
	PARAMETER		Min	Max	Unit
DDR17	DQ and DQM setup time to DQS (single-ended strobe)	tDS1(base)	0.5	—	ns
DDR18	DQ and DQM hold time to DQS (single-ended strobe)	tDH1(base)	0.5	—	ns
DDR19	Write cycle DQS falling edge to SDCLK output setup time.	tDSS	0.2	—	tCK
DDR20	Write cycle DQS falling edge to SDCLK output hold time.	t DSH	0.2	—	tCK
DDR21	DQS latching rising transitions to associated clock edges	tDQSS	-0.25	0.25	tCK
DDR22	DQS high level width	t DQSH	0.35	—	tCK
DDR23	DQS low level width	tDQSL	0.35	—	tCK

Table 41. DDR2 SDRAM Write Cycle Parameters

NOTE

These values are for DQ/DM slew rate of 1 V/ns and DQS slew rate of 1 V/ns. For different values use the derating table.

The timing described in Figure 45 is that of a Motorola sensor. Some other sensors may have slightly different timing. The CSI can be programmed to support rising/falling-edge triggered SENSB_VSYNC; active-high/low SENSB_HSYNC; and rising/falling-edge triggered SENSB_PIX_CLK.

4.9.12.3 Electrical Characteristics

Figure 46 depicts the sensor interface timing, and Table 54 lists the timing parameters.

Figure 46. Sensor Interface Timing Diagram

ID	Parameter	Symbol	Min.	Max.	Units
IP1	Sensor input clock frequency	Fmck	0.01	133	MHz
IP2	Data and control setup time	Tsu	5		ns
IP3	Data and control holdup time	Thd	3		ns
IP4	Sensor output (pixel) clock frequency	Fpck	0.01	133	MHz

Table 54. Sensor Interface Timing Parameters

4.9.13 IPU–Display Interfaces

This section describes the following types of display interfaces:

- Section 4.9.13.1, "Synchronous Interfaces"
- Section 4.9.13.2, "Interface to Sharp HR-TFT Panels"
- Section 4.9.13.3, "Synchronous Interface to Dual-Port Smart Displays"
- Section 4.9.13.4, "Asynchronous Interfaces"
- Section 4.9.13.5, "Serial Interfaces, Functional Description"

ID	Parameter	Symbol	Value	Units
IP9	Horizontal blank interval 1	Thbi1	BGXP × Tdpcp	ns
IP10	Horizontal blank interval 2	Thbi2	$(SCREEN_WIDTH - BGXP - FW) \times Tdpcp$	ns
IP11	HSYNC delay	Thsd	H_SYNC_DELAY × Tdpcp	ns
IP12	Screen height	Tsh	(SCREEN_HEIGHT + 1) × Tsw	ns
IP13	VSYNC width	Tvsw	if V_SYNC_WIDTH_L = 0 than (V_SYNC_WIDTH + 1) × Tdpcp else (V_SYNC_WIDTH + 1) × Tsw	ns
IP14	Vertical blank interval 1	Tvbi1	BGYP × Tsw	ns
IP15	Vertical blank interval 2	Tvbi2	(SCREEN_HEIGHT – BGYP – FH) × Tsw	ns

Table 55. Synchronous Display Interface Timing Parameters—Pixel Level (continued)

¹ Display interface clock period immediate value

Display interface clock period average value.

 $\overline{T}dicp = T_{HSP_CLK} \cdot \frac{DISP3_IF_CLK_PER_WR}{HSP_CLK_PERIOD}$

Figure 50 depicts the synchronous display interface timing for access level, and Table 56 lists the timing parameters. The DISP3_IF_CLK_DOWN_WR and DISP3_IF_CLK_UP_WR parameters are set via the DI_DISP3_TIME_CONF Register.

timing images are based on active low control signals (signal polarity is controlled via the DI_DISP_SIG_POL register).

Figure 58. Asynchronous Parallel System 80 Interface (Type 1) Timing Diagram

4.9.17 Parallel ATA Module AC Electrical Specifications

The parallel ATA module can work on PIO/multiword DMA/ultra-DMA transfer modes (not available for the MCIMX351). Each transfer mode has a different data transfer rate, Ultra DMA mode 4 data transfer rate is up to 100 MBps.

The parallel ATA module interface consists of a total of 29 pins. Some pins have different functions in different transfer modes. There are various requirements for timing relationships among the function pins, in compliance with the ATA/ATAPI-6 specification, and these requirements are configurable by the ATA module registers.

4.9.17.1 General Timing Requirements

Table 67 and Figure 74 define the AC characteristics of the interface signals on all data transfer modes.

ID	Parameter	Symbol	Min.	Max.	Unit
SI1	Rising edge slew rate for any signal on the ATA interface ¹	S _{rise} ¹		1.25	V/ns
SI2	Falling edge slew rate for any signal on the ATA interface ¹	S _{fall} ¹		1.25	V/ns
SI3	Host interface signal capacitance at the host connector	C _{host}	_	20	pF

Table 67. AC Characteristics of All Interface Signals

SRISE and SFALL meet this requirement when measured at the sender's connector from 10–90% of full signal amplitude with all capacitive loads from 15 pF through 40 pF, where all signals have the same capacitive load value.

ATA Interface Signals

Figure 74. ATA Interface Signals Timing Diagram

4.9.17.2 ATA Electrical Specifications (ATA Bus, Bus Buffers)

This section discusses ATA parameters. For a detailed description, refer to the ATA-6 specification.

Level shifters are required for 3.3-V or 5.0-V compatibility on the ATA interface.

The use of bus buffers introduces delays on the bus and introduces skew between signal lines. These factors make it difficult to operate the bus at the highest speed (UDMA-5) when bus buffers are used. Use of bus buffers is not recommended if fast UDMA mode is required.

The ATA specification imposes a slew rate limit on the ATA bus. According to this limit, any signal driven on the bus should have a slew rate between 0.4 and 1.2 V/ns with a 40 pF load. Few vendors of bus buffers specify the slew rate of the outgoing signals.

When bus buffers are used the ata_data bus buffer is bidirectional, and uses the direction control signal ata_buffer_en. When ata_buffer_en is asserted, the bus should drive from host to device. When

ID	Parameter	Min.	Max.	Unit		
	Internal Clock Operation					
SS1	(Tx/Rx) CK clock period	81.4		ns		
SS2	(Tx/Rx) CK clock high period	36.0	_	ns		
SS3	(Tx/Rx) CK clock rise time	_	6	ns		
SS4	(Tx/Rx) CK clock low period	36.0	_	ns		
SS5	(Tx/Rx) CK clock fall time	_	6	ns		
SS6	(Tx) CK high to FS (bl) high	_	15.0	ns		
SS8	(Tx) CK high to FS (bl) low	_	15.0	ns		
SS10	(Tx) CK high to FS (wl) high	_	15.0	ns		
SS12	(Tx) CK high to FS (wl) low	—	15.0	ns		
SS14	(Tx/Rx) Internal FS rise time	—	6	ns		
SS15	(Tx/Rx) Internal FS fall time	_	6	ns		
SS16	(Tx) CK high to STXD valid from high impedance	—	15.0	ns		
SS17	(Tx) CK high to STXD high/low	—	15.0	ns		
SS18	(Tx) CK high to STXD high impedance	—	15.0	ns		
SS19	STXD rise/fall time	—	6	ns		
	Synchronous Internal Clock Operation					
SS42	SRXD setup before (Tx) CK falling	10.0		ns		
SS43	SRXD hold after (Tx) CK falling	0	_	ns		
SS52	Loading	_	25	pF		

Table 78. SSI Transmitter with Internal Clock Timing Parameters

Figure 104. USB Transmit Waveform in VP_VM Bidirectional Mode

Figure 105. USB Receive Waveform in VP_VM Bidirectional Mode

Table 91 describes the port timing specification in VP_VM bidirectional mode.

Table 91. USB Port Timing Specification in VP_VM Bidirectional Mode

No.	Parameter	Signal Name	Direction	Min.	Max.	Unit	Condition/ Reference Signal
US18	Tx rise/fall time	USB_DAT_VP	Out		5.0	ns	50 pF
US19	Tx rise/fall time	USB_SE0_VM	Out		5.0	ns	50 pF
US20	Tx rise/fall time	USB_TXOE_B	Out	_	5.0	ns	50 pF
US21	Tx duty cycle	USB_DAT_VP	Out	49.0	51.0	%	_
US22	Tx overlap	USB_SE0_VM	Out	-3.0	+3.0	ns	USB_DAT_VP
US26	Rx rise/fall time	USB_DAT_VP	In	_	3.0	ns	35 pF
US27	Rx rise/fall time	USB_SE0_VM	In	_	3.0	ns	35 pF

5.2 MAPBGA Signal Assignments

Table 94 and Table 95 list MAPBGA signals, alphabetized by signal name, for silicon revisions 2.0 and 2.1, respectively. Table 96 and Table 97 show the signal assignment on the i.MX35 ball map for silicon revisions 2.0 and 2.1, respectively. The ball map for silicon revision 2.1 is different than the ballmap for silicon revision 2.0. The layout for each revision is not compatible, so it is important that the correct ballmap be used to implement the layout.

Signal ID	Ball Location
A0	A5
A1	D7
A10	F15
A11	D5
A12	F6
A13	B3
A14	D14
A15	D15
A16	D13
A17	D12
A18	E11
A19	D11
A2	E7
A20	D10
A21	E10
A22	D9
A23	E9
A24	D8
A25	E8
A3	C6
A4	D6
A5	B5
A6	C5
A7	A4
A8	B4
A9	A3
ATA_BUFF_EN ¹	T5
ATA_CS0 ¹	V7
ATA_CS1 ¹	T7
ATA_DA0 ¹	R4
ATA_DA1 ¹	V1
ATA_DA2 ¹	R5
ATA_DATA0 ¹	Y5
ATA_DATA1 ¹	W5
ATA_DATA10 ¹	V3
ATA_DATA11 ¹	Y2
ATA_DATA12 ¹	U3

Table	94.	Silicon	Revision	2.0	Signal	Ball	Мар	Locations
		•••						

Signal ID	Ball Location
ATA DATA7 ¹	Y3
ATA DATA8 ¹	U4
ATA_DATA9 ¹	W3
ATA_DIOR ¹	Y6
ATA_DIOW ¹	W6
ATA_DMACK ¹	V6
ATA_DMARQ ¹	Т3
ATA_INTRQ ¹	V2
ATA_IORDY ¹	U6
ATA_RESET_B ¹	T6
BCLK	E14
BOOT_MODE0	W10
BOOT_MODE1	U9
CAPTURE	V12
CAS	E16
CLK_MODE0	Y10
CLK_MODE1	T10
CLKO	V10
COMPARE	T12
CONTRAST ¹	L16
CS0	F17
CS1	E19
CS2	B20
CS3	C19
CS4	E18
CS5	F19
CSI_D10 ¹	V16
CSI_D11 ¹	T15
CSI_D12 ¹	W16
CSI_D13 ¹	V15
CSI_D14 ¹	U14
CSI_D15 ¹	Y16
CSI_D8 ¹	U15
CSI_D9 ¹	W17
CSI_HSYNC ¹	V14
CSI_MCLK ¹	W15
CSI_PIXCLK ¹	Y15

Signal ID	Ball Location
ATA_DATA13 ¹	W2
ATA_DATA14 ¹	W1
ATA_DATA15 ¹	T4
ATA_DATA2 ¹	V5
ATA_DATA3	U5
ATA_DATA4	Y4
ATA_DATA5	W4
ATA_DATA6	V4
CTS2	G5
D0	A2
D1	D4
D10	D2
D11	E6
D12	E3
D13	F5
D14	D1
D15	E2
D2	B2
 D3	 E5
D3 CLS ¹	L17
$D3 DBDY^1$	120
D3 EPSHIET ¹	115
D3 HSYNC ¹	L 18
D3 BEV ¹	M17
	M18
	M19
D4	10113 C3
	R1
	נט
	02
D0	
	B19
DQM2	D16
EB0	F18
EB1	F16
ECB	D19
EXI_ARMCLK	V8
EXTAL_AUDIO	W20
EXTAL24M	T20
FEC_COL	P3
FEC_CRS	N5
FEC_MDC	R1

Table 94 Silicor	n Revision 2 ()	Signal Ball Ma	n I ocations	(continued)
		orginal Ball Ina	D ECOULIONO	(continuou)

Signal ID	Ball Location
CSI_VSYNC ¹	T14
CSPI1_MISO	V9
CSPI1_MOSI	W9
CSPI1_SCLK	W8
CSPI1_SPI_RDY	T8
CSPI1_SS0	Y8
CSPI1_SS1	U8
CTS1	R3
FEC_TDATA0	P5
FEC_TDATA1	M4
FEC_TDATA2	M5
FEC_TDATA3	L6
FEC_TX_CLK	P4
FEC_TX_EN	T1
FEC_TX_ERR	N4
FSR	K5
FST	J1
FUSE_VDD	P13
FUSE_VSS	M11
GPIO1_0	T11
GPIO1_1	Y11
GPIO2_0	U11
GPIO3_0	V11
HCKR	K2
HCKT	J5
I2C1_CLK	M20
I2C1_DAT	N17
I2C2_CLK	L3
I2C2_DAT	M1
LBA	D20
LD0 ¹	F20
LD1 ¹	G18
LD10 ¹	H20
LD11 ¹	J18
LD12 ¹	J16
LD13 ¹	J19
LD14 ¹	J17
LD15 ¹	J20
LD16 ¹	K14
LD17 ¹	K19
LD18 ¹	K18
LD19 ¹	K20
LD2 ¹	G17
LD20 ¹	K16
LD21 ¹	K17
LD22 ¹	K15

Signal ID	Ball Location
FEC_MDIO	P1
FEC_RDATA0	P2
FEC_RDATA1	N2
FEC_RDATA2	M3
FEC_RDATA3	N1
FEC_RX_CLK	R2
FEC_RX_DV	T2
FEC_RX_ERR	N3
MA10	C4
MGND	N11
MLB_CLK	W13
MLB_DAT	Y13
MLB_SIG	W12
MVDD	P11
NF_CE0	G3
NFALE	F2
NFCLE	E1
NFRB	F3
NFRE_B	F1
NFWE_B	G2
NFWP_B	F4
NGND ATA	M9
NGND ATA	P9
NGND ATA	L10
NGND CRM	L11
NGND CSI	N10
NGND EMI1	H8
NGND EMI1	H10
NGND EMI1	J10
NGND EMI2	J11
NGND EMI3	J12
NGND EMI3	K12
NGND JTAG	M13
	K11
NGND I CDC	12
NGND MISC	M7
NGND MISC	K8
NGND MIR	M10
NGND NFC	KQ
	N12
	NA
	PA
	P7
14400_031	

Table 94. Silicor	n Revision 2.0) Signal	Ball Map	Locations	(continued)
-------------------	----------------	----------	-----------------	-----------	-------------

Signal ID	Ball Location
LD23 ¹	L19
LD3 ¹	G16
LD4 ¹	G19
LD5 ¹	H16
LD6 ¹	H18
LD7 ¹	G20
LD8 ¹	H17
LD9 ¹	H19
NVCC_EMI2	G12
NVCC_EMI2	F13
NVCC_EMI2	F14
NVCC_EMI3	G14
NVCC_JTAG	P16
NVCC_LCDC	H14
NVCC_LCDC	J14
NVCC_LCDC	L14
NVCC_LCDC	M14
NVCC_MISC	K6
NVCC_MISC	K7
NVCC_MISC	L8
NVCC_MLB	R10
NVCC_NFC	G6
NVCC_NFC	H6
NVCC_NFC	H7
NVCC_SDIO	P14
OE	E20
OSC_AUDIO_VDD	V20
OSC_AUDIO_VSS	U19
OSC24M_VDD	T19
OSC24M_VSS	T18
PGND	M12
PHY1_VDDA	M15
PHY1_VDDA	N20
PHY1_VSSA	N16
PHY1_VSSA	P20
PHY2_VDD	R13
PHY2_VSS	P12
POR_B	W11
POWER_FAIL	Y9
PVDD	N13
RAS	E15
RESET_IN_B	U10
RTCK	U18
RTS1	U1
RTS2	G1
RW	C20

Ball Location Signal ID NVCC_EMI1 G7 NVCC_EMI1 G8 NVCC_EMI1 G9 H9 NVCC_EMI1 NVCC_EMI1 F10 G10 NVCC_EMI1 NVCC_EMI1 F11 NVCC_EMI1 G11 V18 SD1_CLK SD1_CMD Y19 SD1_DATA0 R14 SD1_DATA1 U16 SD1_DATA2 W18 SD1_DATA3 V17 **SD10** A15 SD11 B15 SD12 C13 SD13 B14 SD14 A14 SD15 B13 **SD16** C12 SD17 C11 **SD18** A12 **SD19** B12 SD2 B18 W14 SD2_CLK U13 SD2_CMD SD2_DATA0 V13 T13 SD2_DATA1 SD2_DATA2 Y14 SD2_DATA3 U12 SD20 B11 SD21 A11 SD22 C10 SD23 B10 SD24 A9 SD25 C9 SD26 B9 SD27 A8 SD28 B8 SD29 C8 SD3 C16 SD30 A7 SD31 B7 SD4 A18 SD5 C15

Ball Location Signal ID RXD1 U2 RXD2 H3 SCK4 L4 SCK5 L5 SCKR K3 J4 SCKT SD0 C17 SD1 A19 SDCLK E12 SDCLK_B E13 SDQS0 B17 SDQS1 A13 SDQS2 A10 SDQS3 C7 SDWE G15 SJC_MOD U17 SRXD4 L1 SRXD5 K4 STXD4 M2 STXD5 K1 STXFS4 L2 STXFS5 J6 TCK R17 P15 TDI TDO R15 TEST_MODE Y7 TMS R16 TRSTB T16 TTM_PIN M16 TX0 G4 TX1 H1 TX2 RX3 H5 TX3_RX2 J2 TX4_RX1 H4 TX5_RX0 JЗ TXD1 R6 TXD2 H2 USBOTG_OC U7 USBOTG_PWR W7 USBPHY1_DM N19 USBPHY1_DP P19 USBPHY1_RREF R19 USBPHY1_UID N18 USBPHY1_UPLLGND N14 USBPHY1_UPLLVDD N15 USBPHY1_UPLLVDD P17

Table 94. Silicon Revision 2.0 Signal Ball Map Locations (continued)

Signal ID	Ball Location
SD6	A17
SD7	B16
SD8	C14
SD9	A16
SDBA0	A6
SDBA1	B6
SDCKE0	D18
SDCKE1	E17
VDD	L7
VDD	N7
VDD	R7
VDD	F8
VDD	R8
VDD	F9
VDD	F12
VDD	R12
VDD	G13
VDD	H15
VDD	J15
VSS	A1
VSS	Y1
VSS	J8
VSS	M8
VSS	N8
VSS	J9

Table 94. Silicon Revision 2.0 Signal Ball Map Locations (continued)

Signal ID	Ball Location
USBPHY1_VBUS	P18
USBPHY1_VDDA_BIAS	R20
USBPHY1_VSSA_BIAS	R18
USBPHY2_DM	Y17
USBPHY2_DP	Y18
VDD	M6
VDD	F7
VDD	J7
VSS	L9
VSS	N9
VSS	K10
VSS	P10
VSS	H11
VSS	H12
VSS	H13
VSS	J13
VSS	K13
VSS	L13
VSS	T17
VSS	A20
VSS	Y20
VSTBY	T9
WDOG_RST	Y12
XTAL_AUDIO	V19
XTAL24M	U20

¹ Not available for the MCIMX351.