

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H85/2000
Core Size	16-Bit
Speed	20MHz
Connectivity	IrDA, SCI
Peripherals	POR, PWM, WDT
Number of I/O	57
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2132rtf20v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Secti	on 24	Power-Down State	681
24.1	Overvie	2W	681
	24.1.1	Register Configuration	685
24.2	Registe	r Descriptions	685
	24.2.1	Standby Control Register (SBYCR)	685
	24.2.2	Low-Power Control Register (LPWRCR)	687
	24.2.3	Timer Control/Status Register (TCSR)	689
	24.2.4	Module Stop Control Register (MSTPCR)	690
24.3	Mediur	n-Speed Mode	691
24.4	Sleep N	10de	692
	24.4.1	Sleep Mode	692
	24.4.2	Clearing Sleep Mode	692
24.5	Module	e Stop Mode	693
	24.5.1	Module Stop Mode	693
	24.5.2	Usage Note	694
24.6	Softwar	re Standby Mode	695
	24.6.1	Software Standby Mode	695
	24.6.2	Clearing Software Standby Mode	695
	24.6.3	Setting Oscillation Settling Time after Clearing Software Standby Mode	696
	24.6.4	Software Standby Mode Application Example	696
	24.6.5	Usage Note	697
24.7	Hardwa	are Standby Mode	697
	24.7.1	Hardware Standby Mode	697
	24.7.2	Hardware Standby Mode Timing	698
24.8	Watch	Mode	699
	24.8.1	Watch Mode	699
	24.8.2	Clearing Watch Mode	699
24.9	Subslee	p Mode	700
	24.9.1	Subsleep Mode	700
	24.9.2	Clearing Subsleep Mode	700
24.10	Subacti	ve Mode	701
	24.10.1	Subactive Mode	701
	24.10.2	Clearing Subactive Mode	701
24.11	Direct 7	Fransition	702
	24.11.1	Overview of Direct Transition	702
24.12	Usage l	Notes	702
Secti	on 25	Electrical Characteristics	703
25.1	Voltage	e of Power Supply and Operating Range	703
25.2	Electric	al Characteristics of H8S/2138 F-ZTAT	706
	25.2.1	Absolute Maximum Ratings	706

Figure 7.4	Correspondence between DTC Vector Address and Register Information	173
Figure 7.5	Location of DTC Register Information in Address Space	175
Figure 7.6	Memory Mapping in Normal Mode	176
Figure 7.7	Memory Mapping in Repeat Mode	177
Figure 7.8	Memory Mapping in Block Transfer Mode	179
Figure 7.9	Memory Mapping in Chain Transfer	180
Figure 7.10	DTC Operation Timing (Normal Mode or Repeat Mode)	181
Figure 7.11	DTC Operation Timing (Block Transfer Mode, with Block Size of 2)	181
Figure 7.12	DTC Operation Timing (Chain Transfer)	182

Section 8 I/O Ports

Figure 8.1	Port 1 Pin Functions	196
Figure 8.2	Port 1 Pin Functions (Mode 1)	199
Figure 8.3	Port 1 Pin Functions (Modes 2 and 3 (EXPE = 1))	199
Figure 8.4	Port 1 Pin Functions (Modes 2 and 3 (EXPE = 0))	200
Figure 8.5	Port 2 Pin Functions	202
Figure 8.6	Port 2 Pin Functions (Mode 1)	205
Figure 8.7	Port 2 Pin Functions (Modes 2 and 3 (EXPE = 1))	206
Figure 8.8	Port 2 Pin Functions (Modes 2 and 3 (EXPE = 0))	206
Figure 8.9	Port 3 Pin Functions	208
Figure 8.10	Port 3 Pin Functions (Modes 1, 2, and 3 (EXPE = 1))	211
Figure 8.11	Port 3 Pin Functions (Modes 2 and 3 (EXPE = 0))	211
Figure 8.12	Port 4 Pin Functions	213
Figure 8.13	Port 5 Pin Functions	218
Figure 8.14	Port 6 Pin Functions	221
Figure 8.15	Port 7 Pin Functions	228
Figure 8.16	Port 8 Pin Functions	230
Figure 8.17	Port 9 Pin Functions	234

Section 9 8-Bit PWM Timers [H8S/2138 Group]

Figure 9.1	Block Diagram of PWM Timer Module	242
Figure 9.2	Example of Additional Pulse Timing	
	(When Upper 4 Bits of PWDR = 1000)	252

Section 10 14-Bit PWM D/A

Figure 10.1	PWM D/A Block Diagram	254
Figure 10.2 (a)	Access to DACNT (CPU Writes H'AA57 to DACNT)	263
Figure 10.2 (b)	Access to DACNT (CPU Reads H'AA57 from DACNT)	264
Figure 10.3	PWM D/A Operation	265
Figure 10.4 (1)	Output Waveform	267
Figure 10.4 (2)	Output Waveform	267

Rev. 4.00 Jun 06, 2006 page xxxvii of liv

Stack Structure: In advanced mode, when the program counter (PC) is pushed onto the stack in a subroutine call, and the PC and condition-code register (CCR) are pushed onto the stack in exception handling, they are stored as shown in figure 2.5. The extended control register (EXR) is not pushed onto the stack. For details, see section 4, Exception Handling.

Figure 2.5 Stack Structure in Advanced Mode

	Oriain of		Vecto	r Address		
Interrupt Source	Interrupt Source	Vector Number	Normal Mode	Advanced Mode	ICR	Priority
CMIA0 (compare-match A) CMIB0 (compare-match B) OVI0 (overflow) Reserved	8-bit timer channel 0	64 65 66 67	H'0080 H'0082 H'0084 H'0086	H'000100 H'000104 H'000108 H'00010C	ICRB3	High
CMIA1 (compare-match A) CMIB1 (compare-match B) OVI1 (overflow) Reserved	8-bit timer channel 1	68 69 70 71	H'0088 H'008A H'008C H'008E	H'000110 H'000114 H'000118 H'00011C	ICRB2	
CMIAY (compare-match A) CMIBY (compare-match B) OVIY (overflow) ICIX (input capture X)	8-bit timer channels Y, X	72 73 74 75	H'0090 H'0092 H'0094 H'0096	H'000120 H'000124 H'000128 H'00012C	ICRB1	_
IBF1 (IDR1 reception completed) IBF2 (IDR2 reception completed) Reserved Reserved	Host interface	76 77 78 79	H'0098 H'009A H'009C H'009E	H'000130 H'000134 H'000138 H'00013C	ICRB0	_
ERI0 (receive error 0) RXI0 (reception completed 0) TXI0 (transmit data empty 0) TEI0 (transmission end 0)	SCI channel 0	80 81 82 83	H'00A0 H'00A2 H'00A4 H'00A6	H'000140 H'000144 H'000148 H'00014C	ICRC7	_
ERI1 (receive error 1) RXI1 (reception completed 1) TXI1 (transmit data empty 1) TEI1 (transmission end 1)	SCI channel 1	84 85 86 87	H'00A8 H'00AA H'00AC H'00AE	H'000150 H'000154 H'000158 H'00015C	ICRC6	_
ERI2 (receive error 2) RXI2 (reception completed 2) TXI2 (transmit data empty 2) TEI2 (transmission end 2)	SCI channel 2	88 89 90 91	H'00B0 H'00B2 H'00B4 H'00B6	H'000160 H'000164 H'000168 H'00016C	ICRC5	_
IICI0 (1-byte transmission/ reception completed) DDCSWI (format switch)	IIC channel 0 (option)	92 93	H'00B8 H'00BA	H'000170 H'000174	ICRC4	
IICI1 (1-byte transmission/ reception completed) Reserved	IIC channel 1 (option)	94 95	H'00BC H'00BE	H'000178 H'00017C	ICRC3	_
Reserved	_	96 to 103	H'00C0 to H'00CE	H'000180 to H'00019C		Low

Figure 5.8 Flowchart of Procedure Up to Interrupt Acceptance in Interrupt Control Mode 0

7.3.10 Number of DTC Execution States

Table 7.8 lists execution phases for a single DTC data transfer, and table 7.9 shows the number of states required for each execution phase.

Table 7.8 DTC Execution Phases

Mode	Vector Read I	Register Information Read/Write J	Data Read K	Data Write L	Internal Operation M
Normal	1	6	1	1	3
Repeat	1	6	1	1	3
Block transfer	1	6	Ν	Ν	3

N: Block size (initial setting of CRAH and CRAL)

8.4 Port 3

8.4.1 Overview

Port 3 is an 8-bit I/O port. Port 3 pins also function as host data bus I/O pins (HDB7 to HDB0) (H8S/2138 Group only), and as data bus I/O pins. Port 3 functions change according to the operating mode. Port 3 has an on-chip MOS input pull-up function that can be controlled by software.

Figure 8.9 shows the port 3 pin configuration.

Figure 8.9 Port 3 Pin Functions

10.2 Register Descriptions

10.2.1 PWM D/A Counter (DACNT)

	DACNTH								_	DACNTL						
Bit (CPU)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BIT (Counter)	7	6	5	4	3	2	1	0	8	9	10	11	12	13	—	_
															—	REGS
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_	R/W

DACNT is a 14-bit readable/writable up-counter that increments on an input clock pulse. The input clock is selected by the clock select bit (CKS) in DACR. The CPU can read and write the DACNT value, but since DACNT is a 16-bit register, data transfers between it and the CPU are performed using a temporary register (TEMP). See section 10.3, Bus Master Interface, for details.

DACNT functions as the time base for both PWM D/A channels. When a channel operates with 14-bit precision, it uses all DACNT bits. When a channel operates with 12-bit precision, it uses the lower 12 (counter) bits and ignores the upper two (counter) bits.

DACNT is initialized to H'0003 by a reset, in the standby modes, watch mode, subactive mode, subsleep mode, and module stop mode, and by the PWME bit.

Bit 1 of DACNTL (CPU) is not used, and is always read as 1.

DACNTL Bit 0—Register Select (REGS): DADRA and DACR, and DADRB and DACNT, are located at the same addresses. The REGS bit specifies which registers can be accessed. The REGS bit can be accessed regardless of whether DADRB or DACNT is selected.

Description	
DADRA and DADRB can be accessed	
DACR and DACNT can be accessed	(Initial value)
	Description DADRA and DADRB can be accessed DACR and DACNT can be accessed

TCSR0

Bit 4—A/D Trigger Enable (ADTE): Enables or disables A/D converter start requests by compare-match A.

Bit 4

ADTE	 Description	
0	A/D converter start requests by compare-match A are disabled	(Initial value)
1	A/D converter start requests by compare-match A are enabled	

TCSR1

Bit 4—Reserved: This bit cannot be modified and is always read as 1.

TCSRX

Bit 4—Input Capture Flag (ICF): Status flag that indicates detection of a rising edge followed by a falling edge in the external reset signal after the ICST bit in TCONRI has been set to 1.

Bit 4

ICF	Description	
0	[Clearing condition]	(Initial value)
	Read ICF when ICF = 1, then write 0 in ICF	
1	[Setting condition]	
	When a rising edge followed by a falling edge is detected in the extend after the ICST bit in TCONRI has been set to 1	ernal reset signal

TCSRY

Bit 4—Input Capture Interrupt Enable (ICIE): Selects enabling or disabling of the interrupt request by ICF (ICIX) when the ICF bit in TCSRX is set to 1.

Bit 4

ICIE	Description	
0	Interrupt request by ICF (ICIX) is disabled	(Initial value)
1	Interrupt request by ICF (ICIX) is enabled	

13.1.3 Input and Output Pins

Table 13.1 lists the timer connection input and output pins.

Table 13.1 Timer Connection Input and Output Pins

Name	Abbreviation	Input/ Output	Function
Vertical synchronization signal input pin	VSYNCI	Input	Vertical synchronization signal input pin or FTIA input pin/TMIY input pin
Horizontal synchronization signal input pin	HSYNCI	Input	Horizontal synchronization signal input pin or TMCI1 input pin
Composite synchronization signal input pin	CSYNCI	Input	Composite synchronization signal input pin or TMRI1 input pin
Spare vertical synchronization signal input pin	VFBACKI	Input	Spare vertical synchronization signal input pin or FTIB input pin
Spare horizontal synchronization signal input pin	HFBACKI	Input	Spare horizontal synchronization signal input pin or FTCI input pin/TMIX input pin
Vertical synchronization signal output pin	VSYNCO	Output	Vertical synchronization signal output pin or FTOA output pin
Horizontal synchronization signal output pin	HSYNCO	Output	Horizontal synchronization signal output pin or TMO1 output pin
Clamp waveform output pin	CLAMPO	Output	Clamp waveform output pin or FTIC input pin
Blanking waveform output pin	CBLANK	Output	Blanking waveform output pin

Bit 1

Bit 0

Bit 2			
TEIE		 Description	
0		Transmit-end interrupt (TEI) request disabled*	(Initial value)
1		Transmit-end interrupt (TEI) request enabled*	
Note:	*	TEI cancellation can be performed by reading 1 from the TDRE clearing it to 0 and clearing the TEND flag to 0, or clearing the	E flag in SSR, then TEIE bit to 0.

Bits 1 and 0—Clock Enable 1 and 0 (CKE1, CKE0): These bits are used to select the SCI clock source and enable or disable clock output from the SCK pin. The combination of the CKE1 and CKE0 bits determines whether the SCK pin functions as an I/O port, the serial clock output pin, or the serial clock input pin.

The setting of the CKE0 bit, however, is only valid for internal clock operation (CKE1 = 0) in asynchronous mode. The CKE0 bit setting is invalid in synchronous mode, and in the case of external clock operation (CKE1 = 1). The setting of bits CKE1 and CKE0 must be carried out before the SCI's operating mode is determined using SMR.

CKE1	CKE0	Description	
0	0	Asynchronous mode	Internal clock/SCK pin functions as I/O port*1
		Synchronous mode	Internal clock/SCK pin functions as serial clock output ^{*1}
	1	Asynchronous mode	Internal clock/SCK pin functions as clock output*2
1		Synchronous mode	Internal clock/SCK pin functions as serial clock output
1	0	Asynchronous mode	External clock/SCK pin functions as clock input*3
		Synchronous mode	External clock/SCK pin functions as serial clock input
	1	Asynchronous mode	External clock/SCK pin functions as clock input*3
		Synchronous mode	External clock/SCK pin functions as serial clock input

For details of clock source selection, see table 15.9 in section 15.3, Operation.

Notes: 1. Initial value

- 2. Outputs a clock of the same frequency as the bit rate.
- 3. Inputs a clock with a frequency 16 times the bit rate.

Bit 5	Bit 4		
MST	TRS	Operating Mode	
0	0	Slave receive mode	(Initial value)
	1	Slave transmit mode	
1	0	Master receive mode	
	1	Master transmit mode	

Bit 5

MST	Description						
0	Slave mode (Initial value)					
	[Clearing conditions]						
	1. When 0 is written by software						
	 When bus arbitration is lost after transmission is started in I²C bus format mas mode 						
1	Master mode						
	[Setting conditions]						
	1. When 1 is written by software (in cases other than clearing condition 2)						
	2. When 1 is written in MST after reading MST = 0 (in case of clearing condition 2)						

Bit 4

TRS	Description
0	Receive mode (Initial value)
	[Clearing conditions]
	1. When 0 is written by software (in cases other than setting condition 3)
	2. When 0 is written in TRS after reading TRS = 1 (in case of clearing condition 3)
	 When bus arbitration is lost after transmission is started in I²C bus format master mode
	4. When the SW bit in DDCSWR changes from 1 to 0
1	Transmit mode
	[Setting conditions]
	1. When 1 is written by software (in cases other than clearing conditions 3 and 4)
	 When 1 is written in TRS after reading TRS = 0 (in case of clearing conditions 3 and 4)
	3. When a 1 is received as the R/\overline{W} bit of the first frame in I ² C bus format slave mode

16.2.9 Module Stop Control Register (MSTPCR)

MSTPCR comprises two 8-bit readable/writable registers, and is used to perform module stop mode control.

When the MSTP4 or MSTP3 bit is set to 1, operation of the corresponding IIC channel is halted at the end of the bus cycle, and a transition is made to module stop mode. For details, see section 24.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

MSTPCRL Bit 4—Module Stop (MSTP4): Specifies IIC channel 0 module stop mode.

MSTPCRL Description 0 IIC channel 0 module stop mode is cleared 1 IIC channel 0 module stop mode is set

MSTPCRL Bit 3—Module Stop (MSTP3): Specifies IIC channel 1 module stop mode.

MSTPCRL Bit 3		
MSTP3	Description	
0	IIC channel 1 module stop mode is cleared	
1	IIC channel 1 module stop mode is set	(Initial value)

are halted.

Figure 21.8 Boot Mode Execution Procedure

21.6.2 User Program Mode

When set to user program mode, the chip can program and erase its flash memory by executing a user program/erase control program. Therefore, on-board reprogramming of the on-chip flash memory can be carried out by providing on-board supply of programming data, and storing a program/erase control program in part of the program area as necessary.

To select user program mode, select a mode that enables the on-chip flash memory (mode 2 or 3). In this mode, on-chip supporting modules other than flash memory operate as they normally would in mode 2 and 3.

The flash memory itself cannot be read while the SWE bit is set to 1 to perform programming or erasing, so the control program that performs programming and erasing should be run in on-chip RAM or external memory.

Figure 21.11 shows the procedure for executing the program/erase control program when transferred to on-chip RAM.

Figure 21.11 User Program Mode Execution Procedure

22.5 Register Descriptions

Bit	7	6	5	4	3	2	1	0
	FWE	SWE	—	_	EV	PV	E	Р
Initial value	1	0	0	0	0	0	0	0
Read/Write	R	R/W	_	_	R/W	R/W	R/W	R/W

22.5.1 Flash Memory Control Register 1 (FLMCR1)

FLMCR1 is an 8-bit register used for flash memory operating mode control. Program-verify mode or erase-verify mode is entered by setting SWE to 1. Program mode is entered by setting SWE to 1, then setting the PSU bit in FLMCR2, and finally setting the P bit. Erase mode is entered by setting SWE to 1, then setting the ESU bit in FLMCR2, and finally setting the E bit. FLMCR1 is initialized to H'80 by a reset, and in hardware standby mode, software standby mode, subactive mode, subsleep mode, and watch mode. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

Writes to the EV and PV bits in FLMCR1 are enabled only when SWE=1; writes to the E bit only when SWE = 1, and ESU = 1; and writes to the P bit only when SWE = 1, and PSU = 1.

Bit 7—Flash Write Enable (FWE): Sets hardware protection against flash memory programming/erasing. This bit cannot be modified and is always read as 1.

Bit 6—Software Write Enable (SWE): Enables or disables flash memory programming. SWE should be set before setting bits ESU, PSU, EV, PV, E, P, and EB7 to EB0, and should not be cleared at the same time as these bits.

Bit 6		
SWE	Description	
0	Writes disabled	(Initial value)
1	Writes enabled	

Bit 5 and 4—Reserved: These bits cannot be modified and are always read as 0.

25.2 Electrical Characteristics of H8S/2138 F-ZTAT

25.2.1 Absolute Maximum Ratings

Table 25.2 lists the absolute maximum ratings.

Table 25.2 Absolute Maximum Ratings

Symbol	Value	Unit
V _{cc}	-0.3 to +7.0	V
V_{in}	–0.3 to V_{cc} +0.3	V
V_{in}	–0.3 to V $_{\rm cc}$ +0.3	V
V_{in}	Lower voltage of –0.3 to $V_{\rm cc}$ +0.3 and $AV_{\rm cc}$ +0.3	V
V_{in}	–0.3 to AV _{cc} +0.3	V
AV_{cc}	-0.3 to +7.0	V
V _{AN}	–0.3 to AV _{cc} +0.3	V
T _{opr}	Regular specifications: -20 to +75	°C
	Wide-range specifications: -40 to +85	°C
T _{opr}	Regular specifications: 0 to +75	°C
	Wide-range specifications: 0 to +85	°C
T_{stg}	-55 to +125	°C
	Symbol V _{cc} V _{in} V _{in} V _{in} V _{in} AV _{cc} V _{AN} T _{opr} T _{opr}	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Caution: Permanent damage to the chip may result if absolute maximum ratings are exceeded.

* Voltage applied to the VCC1 and VCC2 pins.

Mnemonic		Addressing Mode and Instruction Length (Bytes)								d tes))		Condition Code						No. of States ^{*1}	
		Size	xx#	Rn	@ERn	@(d,ERn)	@-ERn/@ERn+	@aa	@(d,PC)	@ @ aa	1	Operation	I	н	N	z	v	с	Normal	Advanced
MAC	MAC @ERn+,@ERm+	Car	not	be	use	d wi	th th	ne H	8S/2	213	8 G	roup and H8S/2134 Group.							[2	2]
CLRMAC	CLRMAC																			
LDMAC	LDMAC ERs,MACH																			
	LDMAC ERs,MACL																			
STMAC	STMAC MACH,ERd																			
	STMAC MACL,ERd																			

Appendix A Instruction Set

Instruction	Mnemonic	Instruction Fetch I	Branch Address Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
SHLL	SHLL.B Rd	1					
	SHLL.B #2,Rd	1					
	SHLL.W Rd	1					
	SHLL.W #2,Rd	1					
	SHLL.L ERd	1					
	SHLL.L #2,ERd	1					
SHLR	SHLR.B Rd	1					
	SHLR.B #2,Rd	1					
	SHLR.W Rd	1					
	SHLR.W #2,Rd	1					
	SHLR.L ERd	1					
	SHLR.L #2,ERd	1					
SLEEP	SLEEP	1					1
STC	STC.B CCR,Rd	1					
	STC.B EXR,Rd	1					
	STC.W CCR,@ERd	2				1	
	STC.W EXR,@ERd	2				1	
	STC.W CCR,@(d:16,ERd)	3				1	
	STC.W EXR,@(d:16,ERd)	3				1	
	STC.W CCR,@(d:32,ERd)	5				1	
	STC.W EXR,@(d:32,ERd)	5				1	
	STC.W CCR,@-ERd	2				1	1
	STC.W EXR,@-ERd	2				1	1
	STC.W CCR,@aa:16	3				1	
	STC.W EXR,@aa:16	3				1	
	STC.W CCR,@aa:32	4				1	
	STC.W EXR,@aa:32	4				1	
STM ^{*4}	STM.L (ERn-ERn+1),@-SP	2		4			1
	STM.L (ERn-ERn+2),@-SP	2		6			1
	STM.L (ERn-ERn+3),@-SP	2		8			1
SUB	SUB.B Rs,Rd	1					
	SUB.W #xx:16,Rd	2					
	SUB.W Rs,Rd	1					
	SUB.L #xx:32,ERd	3					
	SUB.L ERs,ERd	1					