

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	H8S/2000
Core Size	16-Bit
Speed	20MHz
Connectivity	IrDA, SCI
Peripherals	POR, PWM, WDT
Number of I/O	58
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2134atf20v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Specifications
14-bit PWM timer	Up to 2 outputs
(PWMX)	Resolution: 1/16384
	• 312.5 kHz maximum carrier frequency (20-MHz operation)
Serial communication	Asynchronous mode or synchronous mode selectable
interface (SCI: 2 channels, SCI0 and SCI1)	Multiprocessor communication function
SCI with IrDA:	Asynchronous mode or synchronous mode selectable
1 channel (SCI2)	Multiprocessor communication function
	Compatible with IrDA specification version 1.0
	TxD and RxD encoding/decoding in IrDA format
Host interface (HIF)	8-bit host interface (ISA) port
(H8S/2138 Group)	Three host interrupt requests (HIRQ11, HIRQ1, HIRQ12)
	Normal and fast A20 gate output
	 Two register sets (each comprising two data registers and two status registers)
Keyboard controller	• Matrix keyboard control using keyboard scan with wakeup interrupt and sense port configuration
A/D converter	Resolution: 10 bits
	Input:
	 — 8 channels (dedicated analog pins)
	 — 8 channels (same pins as keyboard sense port)
	 High-speed conversion: 6.7 µs minimum conversion time (20-MHz operation)
	Single or scan mode selectable
	Sample-and-hold function
	A/D conversion can be activated by external trigger or timer trigger
D/A converter	Resolution: 8 bits
	Output: 2 channels
I/O ports	• 58 input/output pins (including 24 with LED drive capability)
	• 8 input-only pins

Bit	7	6	5	4	3	2	1	0
	CHNE	DISEL	—	_	_	_	_	—
Initial value	Unde- fined							
Read/Write	_			_		_		_

7.2.2 DTC Mode Register B (MRB)

MRB is an 8-bit register that controls the DTC operating mode.

Bit 7—DTC Chain Transfer Enable (CHNE): Specifies chain transfer. In chain transfer, multiple data transfers can be performed consecutively in response to a single transfer request. With data transfer for which CHNE is set to 1, there is no determination of the end of the specified number of transfers, clearing of the interrupt source flag, or clearing of DTCER.

Bit 7

CHNE	Description
0	End of DTC data transfer (activation waiting state is entered)
1	DTC chain transfer (new register information is read, then data is transferred)

Bit 6—DTC Interrupt Select (DISEL): Specifies whether interrupt requests to the CPU are disabled or enabled after a data transfer.

Bit 6

DISEL	Description
0	After a data transfer ends, the CPU interrupt is disabled unless the transfer counter is 0 (the DTC clears the interrupt source flag of the activating interrupt to 0)
1	After a data transfer ends, the CPU interrupt is enabled (the DTC does not clear the interrupt source flag of the activating interrupt to 0)

Bits 5 to 0—Reserved: In the H8S/2138 Group these bits have no effect on DTC operation, and should always be written with 0.

7.3.9 Operation Timing

Figures 7.10 to 7.12 show examples of DTC operation timing.

Figure 7.10 DTC Operation Timing (Normal Mode or Repeat Mode)

Figure 7.11 DTC Operation Timing (Block Transfer Mode, with Block Size of 2)

12.6.2 Contention between TCNT Write and Increment

If a timer counter clock pulse is generated during the T2 state of a TCNT write cycle, the write takes priority and the counter is not incremented. Figure 12.14 shows this operation.

Figure 12.14 Contention between TCNT Write and Increment

Table 12.8 Switching of Internal Clock and TCNT Operation

Figure 16.5 I²C Bus Data Format (Serial Format)

Figure 16.6 I²C Bus Timing

17.1.4 Register Configuration

Table 17.2 lists the host interface registers. Host interface registers HICR, IDR1, IDR2, ODR1, ODR2, STR1, and STR2 can only be accessed when the HIE bit is set to 1 in SYSCR.

Table 17.2 Host Interface Registers

		F	R/W	Initial	Slave	Mas	ster Add	lress [*]
Name	Abbreviation	Slave	Host	Value	Address*3	CS1	CS2	HA0
System control register	SYSCR	R/W*1	_	H'09	H'FFC4	—	_	_
System control register 2	SYSCR2	R/W	—	H'00	H'FF83	—	—	—
Host interface control register	HICR	R/W	—	H'F8	H'FFF0	—	—	—
Input data register 1	IDR1	R	W	—	H'FFF4	0	1	0/1*5
Output data register 1	ODR1	R/W	R	_	H'FFF5	0	1	0
Status register 1	STR1	R/(W)*2	R	H'00	H'FFF6	0	1	1
Input data register 2	IDR2	R	W	_	H'FFFC	1	0	0/1*5
Output data register 2	ODR2	R/W	R	—	H'FFFD	1	0	0
Status register 2	STR2	R/(W)*2	R	H'00	H'FFFE	1	0	1
Module stop	MSTPCRH	R/W	_	H'3F	H'FF86	_	_	
control register	MSTPCRL	R/W	_	H'FF	H'FF87	_	_	_

Notes: 1. Bits 5 and 3 are read-only bits.

- 2. The user-defined bits (bits 7 to 4 and 2) are read/write accessible from the slave processor.
- 3. Address when accessed from the slave processor. The lower 16 bits of the address are shown.
- 4. Pin inputs used in access from the host processor.
- 5. The HA0 input discriminates between writing of commands and data.

17.2 Register Descriptions

Bit	7	6	5	4	3	2	1	0
	CS2E	IOSE	INTM1	INTM0	XRST	NMIEG	HIE	RAME
Initial value	0	0	0	0	1	0	0	1
Read/Write	R/W	R/W	R	R/W	R	R/W	R/W	R/W

17.2.1 System Control Register (SYSCR)

SYSCR is an 8-bit readable/writable register which controls H8S/2138 Group chip operations. Of the host interface registers, HICR, IDR1, ODR1, STR1, IDR2, ODR2, and STR2 can only be accessed when the HIE bit is set to 1. The host interface CS2 and ECS2 pins are controlled by the CS2E bit in SYSCR and the FGA20E bit in HICR. See section 3.2.2, System Control Register (SYSCR), and section 5.2.1, System Control Register (SYSCR), for information on other SYSCR bits. SYSCR is initialized to H'09 by a reset and in hardware standby mode.

Bit 7—CS2 Enable Bit (CS2E): Used together with the FGA20E bit in HICR to select the pin that performs the $\overline{CS2}$ function.

SYSCR Bit 7	HICR Bit 0		
CS2E	FGA20E	Description	
0	0	CS2 pin function halted (CS2 fixed high internally)	(Initial value)
	1		
1	0	CS2 pin function selected for P81/CS2 pin	
	1	CS2 pin function selected for P90/ECS2 pin	

Bit 1—Host Interface Enable (HIE): Enables or disables CPU access to the host interface registers. When enabled, the host interface registers (HICR, IDR1, ODR1, STR1, IDR2, ODR2, and STR2) can be accessed.

 Bit 1

 HIE
 Description

 0
 Host interface register (HICR, IDR1, ODR1, STR1, IDR2, ODR2, STR2), CPU access is disabled (Initial value)

 1
 Host interface register (HICR, IDR1, ODR1, STR1, IDR2, ODR2, STR2), CPU access is enabled

Renesas

Figure 22.14 Flash Memory State Transitions

(2) Control Signal Timing

Table 25.7 shows the control signal timing. The only external interrupts that can operate on the subclock ($\phi = 32.768$ kHz) are NMI and IRQ0, IRQ1, IRQ2, IRQ6, and IRQ7.

Table 25.7 Control Signal Timing

Condition A: $V_{cc} = 5.0 \text{ V} \pm 10\%$, $V_{ss} = 0 \text{ V}$, $\phi = 32.768 \text{ kHz}$, 2 MHz to maximum operating frequency, $T_a = -20 \text{ to} + 75^{\circ}\text{C}$ (regular specifications), $T_a = -40 \text{ to} + 85^{\circ}\text{C}$ (wide-range specifications)

- Condition B: $V_{cc} = 4.0 \text{ V}$ to 5.5 V, $V_{ss} = 0 \text{ V}$, $\phi = 32.768 \text{ kHz}$, 2 MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}$ C (regular specifications), $T_a = -40$ to $+85^{\circ}$ C (wide-range specifications)
- Condition C: $V_{cc} = 3.0$ V to 5.5 V, $V_{ss} = 0$ V, $\phi = 32.768$ kHz, 2 MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}$ C

		Cond	dition A	Con	dition B	Con	dition C		
		20	MHz	16	6 MHz	10	MHz		Test
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
RES setup time	t _{ress}	200	_	200	—	300	_	ns	Figure 25.8
RES pulse width	t _{resw}	20	_	20	_	20	_	t _{cyc}	
NMI setup time (NMI)	t _{nmis}	150	—	150	—	250	_	ns	Figure 25.9
NMI hold time (NMI)	t _{nmin}	10	_	10	_	10	_		
NMI pulse width (exiting software standby mode)	t _{nmiw}	200	_	200	_	200	_	ns	_
IRQ setup time (IRQ7 to IRQ0)	t _{irqs}	150	—	150	—	250	_	ns	_
IRQ hold time (IRQ7 to IRQ0)	t _{irqh}	10	_	10	_	10	_	ns	_
IRQ pulse width (IRQ7, IRQ6, IRQ2 to IRQ0) (exiting software standby mode)	t _{irqw}	200	_	200	—	200	_	ns	_

Table 25.41 Permissible Output Currents

Conditions: $V_{cc} = 4.0 \text{ V}$ to 5.5 V, $V_{ss} = 0 \text{ V}$, $Ta = -20 \text{ to } +75^{\circ}\text{C}$ (regular specifications), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide-range specifications)

ltem		Symbol	Min	Тур	Мах	Unit
Permissible output	Ports 1, 2, 3	I _{ol}		_	10	mA
low current (per pin)	Other output pins		_	—	2	mA
Permissible output	Total of ports 1 to 3	\sum I _{ol}		—	80	mA
low current (total)	Total of all output pins, including the above		_	—	120	mA
Permissible output high current (per pin)	All output pins	— І _{он}	—	—	2	mA
Permissible output high current (total)	Total of all output pins	$\Sigma - \mathbf{I}_{\mathrm{OH}}$	—	—	40	mA

Conditions: $V_{cc} = 2.7 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$, $T_a = -20 \text{ to } +75^{\circ}\text{C}$

ltem		Symbol	Min	Тур	Мах	Unit
Permissible output	Ports 1, 2, 3	I _{ol}			2	mA
low current (per pin)	Other output pins		_	_	1	mA
Permissible output	Total of ports 1 to 3	$\Sigma {\rm I}_{_{ m OL}}$	—		40	mA
low current (total)	Total of all output pins, including the above		_	—	60	mA
Permissible output high current (per pin)	All output pins	– І _{он}	—	_	2	mA
Permissible output high current (total)	Total of all output pins	$\Sigma - \mathbf{I}_{\text{OH}}$	_	—	30	mA

Notes: 1. To protect chip reliability, do not exceed the output current values in table 25.41.

2. When driving a Darlington pair or LED, always insert a current-limiting resistor in the output line, as show in figures 25.1 and 25.2.

25.5.3 AC Characteristics

Clock timing, control signal timing, bus timing, and timing of on-chip supporting modules list the following.

Figure 25.4 shows the test conditions for the AC characteristics.

Instruc-	Mnemonic	5								Instruct	ion Format				
tion		əzic	1st E	3yte	2nd B	yte	3rd By	/te	4th Byte	5th Byte	6th Byte	7th Byte	8th Byte	9th Byte	10th Byte
BOR	BOR #xx:3,Rd	в	7	4	0 IMM	p									
	BOR #xx:3,@ERd	ш	7	ပ	0 erd	0	2	4	0 IMMI 0						
	BOR #xx:3,@aa:8	В	7	ш	ab		7	4							
	BOR #xx:3,@aa:16	В	9	A	-	0		ab	S	7 4	0 IMM 0				
	BOR #xx:3,@aa:32	В	9	A	e	0			σ	bs		7 4	0 IMMI 0		
BSET	BSET #xx:3,Rd	в	7	0	0 IMM	p									
	BSET #xx:3,@ERd	В	7	۵	0 erd	0	7	0							
	BSET #xx:3,@aa:8	в	7	ш	ab		7	0	0 MMI 0						
	BSET #xx:3,@aa:16	В	9	A	-	8		ab	s	7 0	0 IMM 0				
	BSET #xx:3,@aa:32	ш	9	A	e	8			σ	sq		7 0	0 IMM 0		
	BSET Rn,Rd	в	9	0	E	P									
	BSET Rn,@ERd	в	7	۵	0 erd	0	9	0	o E						
	BSET Rn,@aa:8	ш	7	ш	ab		9	0	o E						
	BSET Rn,@aa:16	۵	9	A	~	8		ab	s	0 9	0 E				
	BSET Rn,@aa:32	ш	9	A	e	8			ອ	sq		9	o E		
BSR	BSR d:8	Ι	2	5	dis	0									
	BSR d:16	I	5	ပ	0	0		dis	đ						
BST	BST #xx:3,Rd	В	9	7	0 IMM	rd									
	BST #xx:3, @ERd	В	7	۵	0 erd	0	9	7							
	BST #xx:3,@aa:8	В	7	ш	ab	(0	9	~							
	BST #xx:3,@aa:16	В	9	A	-	8		ab	s	6 7	0 MMM 0				
	BST #xx:3,@aa:32	В	9	A	3	8			а	sq		6 7	0 IMM 0		
BTST	BTST #xx:3,Rd	В	7	3	0 IMM	p									
	BTST #xx:3,@ERd	В	7	ပ	0 erd	0	7	3							
	BTST #xx:3,@aa:8	В	7	ш	ab	(0	7	e	0 MMI 0						
	BTST #xx:3,@aa:16	В	9	A	-	0		ab	s	7 3	0 IMM 0				
	BTST #xx:3,@aa:32	В	9	A	ю	0			а	sq		7 3	0 IMM 0		
	BTST Rn,Rd	В	9	e	E	p									
	BTST Rn,@ERd	В	7	υ	0 erd	0	 9	e	o E						

Instruction	Mnemonic		Instruction Fetch	Branch Address Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
BXOR	BXOR #xx:3,Rd		1	-		_		
	BXOR #xx:3,@E	Rd	2			1		
	BXOR #xx:3,@a	a:8	2			1		
	BXOR #xx:3,@a	a:16	3			1		
	BXOR #xx:3,@a	a:32	4			1		
CLRMAC	CLRMAC		Cannot be us	ed with the H	18S/2138 Grou	p and H8S/21	34 Group.	
CMP	CMP.B #xx:8,Rd		1					
	CMP.B Rs,Rd		1					
	CMP.W #xx:16,F	۲d	2					
	CMP.W Rs,Rd		1					
	CMP.L #xx:32,E	Rd	3					
	CMP.L ERs,ERd	I	1					
DAA	DAA Rd		1					
DAS	DAS Rd		1					
DEC	DEC.B Rd		1					
	DEC.W #1/2,Rd		1					
	DEC.L #1/2,ERd		1					
DIVXS	DIVXS.B Rs,Rd		2					11
	DIVXS.W Rs,ER	d	2					19
DIVXU	DIVXU.B Rs,Rd		1					11
	DIVXU.W Rs,ER	d	1					19
EEPMOV	EEPMOV.B		2			2n+2*2		
	EEPMOV.W		2			2n+2*2		
EXTS	EXTS.W Rd		1					
	EXTS.L ERd		1					
EXTU	EXTU.W Rd		1					
	EXTU.L ERd		1					
INC	INC.B Rd		1					
	INC.W #1/2,Rd		1					
	INC.L #1/2,ERd		1					
JMP	JMP @ERn		2					
	JMP @aa:24		2					1
	JMP @@aa:8	Normal	2	1				1
		Advanced	2	2				1

Lower Address	Register Name	H8S/2138 Group Register Conditions	Selection	H8S/2134 Group Register Selection Conditions	Module Name
H'FFF0	HICR	MSTP2 = 0, HIE = 1 in SYSCR		_	HIF
	TCRX	MSTP8 = 0, HIE = 0 in SYSCR	TMRX/Y = 0 in TCONRS		TMRX
	TCRY		TMRX/Y = 1 in TCONRS	MSTP8 = 0, HIE = 0 in SYSCR	TMRY
H'FFF1	KMIMR	MSTP2 = 0, HIE = 1 in SYSCR		MSTP2 = 0, HIE = 1 in SYSCR	Interrupt controller
	TCSRX	MSTP8 = 0, HIE = 0 in SYSCR	TMRX/Y = 0 in TCONRS	_	TMRX
	TCSRY		TMRX/Y = 1 in TCONRS	MSTP8 = 0, HIE = 0 in SYSCR	TMRY
H'FFF2	KMPCR	MSTP2 = 0, HIE = 1 in SYSCR		MSTP2 = 0, HIE = 1 in SYSCR	Ports
	TICRR	MSTP8 = 0, HIE = 0 in SYSCR	TMRX/Y = 0 in TCONRS	_	TMRX
	TCORAY		TMRX/Y = 1 in TCONRS	MSTP8 = 0, HIE = 0 in SYSCR	TMRY
H'FFF3	TICRF	MSTP8 = 0, HIE = 0 in SYSCR	TMRX/Y = 0 in TCONRS	_	TMRX
	TCORBY		TMRX/Y = 1 in TCONRS	MSTP8 = 0, HIE = 0 in SYSCR	TMRY
H'FFF4	IDR1	MSTP2 = 0, HIE = 1 in SYSCR		—	HIF
	TCNTX	MSTP8 = 0, HIE = 0 in SYSCR	TMRX/Y = 0 in TCONRS		TMRX
	TCNTY		TMRX/Y = 1 in TCONRS	MSTP8 = 0, HIE = 0 in SYSCR	TMRY
H'FFF5	ODR1	MSTP2 = 0, HIE = 1 in SYSCR		_	HIF
	TCORC	MSTP8 = 0, HIE = 0 in SYSCR	TMRX/Y = 0 in TCONRS		TMRX
	TISR		TMRX/Y = 1 in TCONRS	MSTP8 = 0, HIE = 0 in SYSCR	TMRY
H'FFF6	STR1	MSTP2 = 0, HIE = 1 in SYSCR		_	HIF
	TCORAX	MSTP8 = 0, HIE = 0 in SYSCR	TMRX/Y = 0		TMRX
H'FFF7	TCORBX		in TCONRS		
H'FFF8	DADR0	MSTP10 = 0		MSTP10 = 0	D/A
H'FFF9	DADR1				
H'FFFA	DACR				

ISCRH—IRQ Sense Control Register H ISCRL—IRQ Sense Control Register L				H'FEEC H'FEED			Interrupt Controller Interrupt Controller		
ISCRH									
Bit	15	14	13	12	11	10	9	8	
	IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ISCRL			IRQ7 to	IRQ4 sen	se control	A and B			
Bit	7	6	5	4	3	2	1	0	
	IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
IRQ3 to IRQ0 sense control A an									

ISCRH bits 7 to 0 ISCRL bits 7 to 0		Description
IRQ7SCB to IRQ0SCB	IRQ7SCA to IRQ0SCA	Description
0	0	Interrupt request generated at IRQ7 to IRQ0 input at low level
	1	Interrupt request generated at falling edge of IRQ7 to IRQ0 input
1	0	Interrupt request generated at rising edge of IRQ7 to IRQ0 input
	1	Interrupt request generated at both falling and rising edges of IRQ7 to IRQ0 input

TOCR—Timer Output Compare Control Register H'FF97

Input capture D mode select

- 0 ICRD set to normal operating mode
- 1 ICRD set to operating mode using OCRDM

Renesas

P8DDR—Port 8 Data Direction Register					H'FFBI)		Port 8		
Bit	7	6	5	4	3	3 2		0		
	_	P86DDR	P85DDR	P84DDR	P83DDR	P82DDR	P81DDR	P80DDR		
Initial value	Initial value 1		0	0	0	0	0	0		
Read/Write	_	W	W	W	W	W	W	W		
	Specification of input or output for port 8 pins									
P7PIN—Port 7 Input Data Register					H'FFBF	2		Port 7		
Bit	7	6	5	4	3	2	1	0		
	P77PIN	P76PIN	P75PIN	P74PIN	P73PIN	P72PIN	P71PIN	P70PIN		
Initial value	*	*	*	*	*	*	*	*		
Read/Write	R	R	R	R	R	R	R	R		
Port 7 pin states										
Note: * Dete	ermined by	y state of p	oins P77 to	970.						
PSDR_Part & Data Register H'FFRF Par							Port f			

0211 10100	2 2.08	,				-		1 011	
Bit	7	6	5	4	3	2	1	0	
	—	P86DR	P85DR	P84DR	P83DR	P82DR	P81DR	P80DR	
Initial value	1	0	0	0	0	0	0	0	
Read/Write	—	R/W							
	Output data for port 8 pins								

C.7 Port 7 Block Diagrams

Figure C.21 Port 7 Block Diagram (Pins P70 to P75)

Figure C.22 Port 7 Block Diagram (Pins P76, P77)

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Watch Mode	Sleep Mode	Sub- sleep Mode	Subactive Mode	Program Execution State
Port 96 φ EXCL	1	Clock output	т _	[DDR = 1] H [DDR = 0] T	EXCL input	[DDR = 1] clock output	EXCL input	EXCL input	Clock output/ EXCL input/
	2, 3 (EXPE = 1)	Т							mparport
	2, 3 (EXPE = 0)					נטבא = טן ו			
Port 95 to 93	1	Н	Т	Н	Н	Н	н	$\overline{\text{AS}}, \overline{\text{WR}}, \overline{\text{RD}}$	$\overline{\text{AS}}, \overline{\text{WR}}, \overline{\text{RD}}$
AS, WR, RD	2, 3 (EXPE = 1)	Т	_						
	2, 3 (EXPE = 0)	_		keep	keep	keep	keep	I/O port	I/O port
Port 92 to 90	1	Т	Т	keep	keep	keep	keep	I/O port	I/O port
	2, 3 (EXPE = 1)	-							
	2, 3 (EXPE = 0)	_							

Legend:

- H: High
- L: Low
- T: High-impedance state

keep: Input ports are in the high-impedance state (when DDR = 0 and PCR = 1, MOS input pullups remain on).

Output ports maintain their previous state.

Depending on the pins, the on-chip supporting modules may be initialized and the I/O port function determined by DDR and DR used.

- DDR: Data direction register
- Note: * In the case of address output, the last address accessed is retained.

H8S/2138 Group, H8S/2134 Group, H8S/2138F-ZTAT[™], H8S/2134F-ZTAT[™], H8S/2132F-ZTAT[™]

Hardware Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

REJ09B0301-0400