

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	H8S/2000
Core Size	16-Bit
Speed	10MHz
Connectivity	IrDA, SCI
Peripherals	POR, PWM, WDT
Number of I/O	58
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	80-BQFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2134avfa10v

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section 9	8-Bit PWM Timers [H8S/2138 Group]	
Table 9.1	Pin Configuration	 243
Table 9.2	PWM Timer Module Registers	 243
Table 9.3	Resolution, PWM Conversion Period, and Carrier Frequency	
	when $\phi = 20$ MHz	 245

Table 9.4	Duty Cycle of Basic Pulse	251
Table 9.5	Position of Pulses Added to Basic Pulses	252

Section 10 14-Bit PWM D/A

Table 10.1	Input and Output Pins	255
Table 10.2	Register Configuration	255
Table 10.3	Read and Write Access Methods for 16-Bit Registers	263
Table 10.4	Settings and Operation (Examples when $\phi = 10 \text{ MHz}$)	266

Section 11 16-Bit Free-Running Timer

Table 11.1	Input and Output Pins of Free-Running Timer Module	271
Table 11.2	Register Configuration	272
Table 11.3	Buffered Input Capture Edge Selection (Example)	275
Table 11.4	Free-Running Timer Interrupts	296
Table 11.5	Switching of Internal Clock and FRC Operation	302

Section 12 8-Bit Timers

Table 12.1	8-Bit Timer Input and Output Pins	307
Table 12.2	8-Bit Timer Registers	308
Table 12.3	Input Capture Signal Selection	332
Table 12.4	TMR0 and TMR1 8-Bit Timer Interrupt Sources	333
Table 12.5	TMRX 8-Bit Timer Interrupt Source	333
Table 12.6	TMRY 8-Bit Timer Interrupt Sources	333
Table 12.7	Timer Output Priorities	338
Table 12.8	Switching of Internal Clock and TCNT Operation	339

Section 13 Timer Connection [H8S/2138 Group]

Table 13.1	Timer Connection Input and Output Pins	343
Table 13.2	Register Configuration	344
Table 13.3	Examples of TCR Settings	356
Table 13.4	Examples of TCORB (Pulse Width Threshold) Settings	356
Table 13.5	Examples of TCR and TCSR Settings	359
Table 13.6	Examples of TCR, TCSR, TCOR, and OCRDM Settings	361
Table 13.7	Examples of TCORB, TCR, and TCSR Settings	363
Table 13.8	Examples of OCRAR, OCRAF, TOCR, TCORA, TCORB, TCR,	
	and TCSR Settings	365

Rev. 4.00 Jun 06, 2006 page xlviii of liv

Table 21.20	Status Polling Output Truth Table	620
Table 21.21	Command Wait State Transition Time Specifications	620
Table 21.22	Registers Present in F-ZTAT Version but Absent in Mask ROM Version	622
Section 22	ROM (H8S/2138 F-ZTAT A-Mask Version,	
	H8S/2134 F-ZTAT A-Mask Version)	
Table 22.1	ROM Register	624
Table 22.2	Operating Modes and ROM	625
Table 22.3	Flash Memory Pins	632
Table 22.4	Flash Memory Registers	632
Table 22.5	Flash Memory Erase Blocks	638
Table 22.6	Setting On-Board Programming Modes	639
Table 22.7	System Clock Frequencies for which Automatic Adjustment of the Chip's Bit	
	Rate Is Possible	642
Table 22.8	Hardware Protection	651
Table 22.9	Software Protection	652
Table 22.10	Programmer Mode Pin Settings	655
Table 22.11	Settings for Each Operating Mode in Programmer Mode	657
Table 22.12	Programmer Mode Commands	657
Table 22.13	AC Characteristics in Memory Read Mode	658
Table 22.14	AC Characteristics when Entering Another Mode from Memory Read Mode	659
Table 22.15	AC Characteristics in Memory Read Mode	660
Table 22.16	AC Characteristics in Auto-Program Mode	661
Table 22.17	AC Characteristics in Auto-Erase Mode	663
Table 22.18	AC Characteristics in Status Read Mode	664
Table 22.19	Status Read Mode Return Commands	665
Table 22.20	Status Polling Output Truth Table	666
Table 22.21	Command Wait State Transition Time Specifications	666
Table 22.22	Registers Present in F-ZTAT Version but Absent in Mask ROM Version	668
Section 23	Clock Pulse Generator	
Table 23.1	CPG Registers	670
Table 23.2	Damping Resistance Value	672
Table 23.3	Crystal Resonator Parameters	673
Table 23.4	External Clock Input Conditions	675
Table 23.5	External Clock Output Settling Delay Time	676
Table 23.6	Subclock Input Conditions	677
Section 24	Power-Down State	
Table 24.1	H8S/2138 Group and H8S/2134 Group Internal States in Each Mode	682

Rev. 4.00 Jun 06, 2006 page li of liv

Pin Functions in Each Operating Mode 1.3.2

Tables 1.2 and 1.3 show the pin functions of the H8S/2138 Group and H8S/2134 Group in each of the operating modes.

	Pin Name							
Pin No.	Expand	ded Modes	Single-Chip Modes	Flash Memory				
FP-80A TFP-80C	Mode 1	Mode 2 (EXPE = 1) Mode 3 (EXPE = 1)	Mode 2 (EXPE = 0) Mode 3 (EXPE = 0)	Programmer Mode				
1	RES	RES	RES	RES				
2	XTAL XTAL		XTAL	XTAL				
3	EXTAL	EXTAL	EXTAL	EXTAL				
4	MD1	MD1	MD1	VSS				
5	MD0	MD0	MD0	VSS				
6	NMI	NMI	NMI	FA9				
7	STBY	STBY	STBY	VCC				
8	VCC2 (VCL)	VCC2 (VCL)	VCC2 (VCL)	VCC				
9	P52/SCK0/SCL0	P52/SCK0/SCL0	P52/SCK0/SCL0	NC				
10	P51/RxD0 P51/RxD0		P51/RxD0	FA17				
11	P50/TxD0	P50/TxD0	P50/TxD0	NC				
12	VSS	VSS	VSS	VSS				
13	P97/WAIT/SDA0	P97/WAIT/SDA0	P97/SDA0	VCC				
14	φ/P96/EXCL	¢/P96/EXCL	P96/ø/EXCL	NC				
15	AS/IOS	AS/IOS	P95/CS1	FA16				
16	WR	WR	P94/IOW	FA15				
17	RD	RD	P93/IOR	WE				
18	P92/IRQ0	P92/IRQ0	P92/IRQ0	VSS				
19	P91/IRQ1	P91/IRQ1	P91/IRQ1	VCC				
20	P90/IRQ2/ ADTRG	P90/IRQ2/ADTRG	P90/IRQ2/ADTRG/ ECS2	VCC				
21	P60/FTCI/CIN0/ KIN0/TMIX/ HFBACKI	P60/FTCI/CIN0/ KIN0/TMIX/ HFBACKI	P60/FTCI/CIN0/ KIN0/TMIX/ HFBACKI	NC				
22	P61/FTOA/CIN1/ KIN1/VSYNCO	P61/FTOA/CIN1/ KIN1/VSYNCO	P61/FTOA/CIN1/ KIN1/VSYNCO	NC				

Table 1.2 H8S/2138 Group Pin Functions in Each Operating Mode

5.5.2 Interrupt Control Mode 0

Enabling and disabling of IRQ interrupts and on-chip supporting module interrupts can be set by means of the I bit in the CPU's CCR, and ICR. Interrupts are enabled when the I bit is cleared to 0, and disabled when set to 1. Control level 1 interrupt sources have higher priority.

Figure 5.8 shows a flowchart of the interrupt acceptance operation in this case.

- 1. If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller.
- 2. When interrupt requests are sent to the interrupt controller, a control level 1 interrupt, according to the control level set in ICR, has priority for selection, and other interrupt requests are held pending. If a number of interrupt requests with the same control level setting are generated at the same time, the interrupt request with the highest priority according to the priority system shown in table 5.4 is selected.
- 3. The I bit is then referenced. If the I bit is cleared to 0, the interrupt request is accepted. If the I bit is set to 1, only NMI and address break interrupts are accepted, and other interrupt requests are held pending.
- 4. When an interrupt request is accepted, interrupt exception handling starts after execution of the current instruction has been completed.
- 5. The PC and CCR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.
- 6. Next, the I bit in CCR is set to 1. This disables all interrupts except NMI and address break interrupts.
- 7. A vector address is generated for the accepted interrupt, and execution of the interrupt handling routine starts at the address indicated by the contents of that vector address.

6.7 Bus Arbitration

6.7.1 Overview

The H8S/2138 Group and H8S/2134 Group have a bus arbiter that arbitrates bus master operations.

There are two bus masters, the CPU and the DTC, which perform read/write operations when they have possession of the bus. Each bus master requests the bus by means of a bus request signal. The bus arbiter determines priorities at the prescribed timing, and permits use of the bus by means of a bus request acknowledge signal. The selected bus master then takes possession of the bus and begins its operation.

6.7.2 Operation

The bus arbiter detects the bus masters' bus request signals, and if the bus is requested, sends a bus request acknowledge signal to the bus master making the request. If there are bus requests from both bus masters, the bus request acknowledge signal is sent to the one with the higher priority. When a bus master receives the bus request acknowledge signal, it takes possession of the bus until that signal is canceled.

The order of priority of the bus masters is as follows:

(High) DTC > CPU (Low)

Object of Access			On-Chip RAM	On-Chip ROM	Interr Regis	nal I/O sters	Exte	rnal Devices
Bus width			32	16	8	16	8	8
Access stat	es		1	1	2	2	2	3
Execution phase	Vector read	S	_	1	_	—	4	6+2m
	Register information read/write	S	1	_	_	_	_	_
	Byte data read	S _κ	1	1	2	2	2	3+m
	Word data read	S _κ	1	1	4	2	4	6+2m
	Byte data write	S_{L}	1	1	2	2	2	3+m
	Word data write	S_{L}	1	1	4	2	4	6+2m
	Internal operation	S _M	1	1	1	1	1	1

Table 7.9	Number of States	Required for	Each	Execution	Phase
-----------	------------------	---------------------	------	-----------	-------

The number of execution states is calculated from the formula below. Note that Σ means the sum of all transfers activated by one activation event (the number for which the CHNE bit is set to one, plus 1).

Number of execution states = I \cdot S_I + Σ (J \cdot S_J + K \cdot S_K + L \cdot S_L) + M \cdot S_M

For example, when the DTC vector address table is located in on-chip ROM, normal mode is set, and data is transferred from the on-chip ROM to an internal I/O register, the time required for the DTC operation is 13 states. The time from activation to the end of the data write is 10 states.

Port 3 Data Register (P3DR)

Bit	7	6	5	4	3	2	1	0
	P37DR	P36DR	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P3DR is an 8-bit readable/writable register that stores output data for the port 3 pins (P37 to P30). If a port 3 read is performed while P3DDR bits are set to 1, the P3DR values are read directly, regardless of the actual pin states. If a port 3 read is performed while P3DDR bits are cleared to 0, the pin states are read.

P3DR is initialized to H'00 by a reset and in hardware standby mode. It retains its prior state in software standby mode.

Port 3 MOS Pull-Up Control Register (P3PCR)

Bit	7	6	5	4	3	2	1	0
	P37PCR	P36PCR	P35PCR	P34PCR	P33PCR	P32PCR	P31PCR	P30PCR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P3PCR is an 8-bit readable/writable register that controls the port 3 on-chip MOS input pull-ups on a bit-by-bit basis.

In modes 2 and 3 (when EXPE = 0), the MOS input pull-up is turned on when a P3PCR bit is set to 1 while the corresponding P3DDR bit is cleared to 0 (input port setting).

P3PCR is initialized to H'00 by a reset and in hardware standby mode. It retains its prior state in software standby mode.

The MOS input pull-up function cannot be used in slave mode (when the host interface is enabled).

8.8 Port 7

8.8.1 Overview

Port 7 is an 8-bit input port. Port 7 pins also function as the A/D converter analog input pins (AN0 to AN7) and D/A converter analog output pins (DA0, DA1). Port 7 functions are the same in all operating modes.

Figure 8.15 shows the port 7 pin configuration.

Figure 8.15 Port 7 Pin Functions

8.8.2 **Register Configuration**

Table 8.16 shows the port 7 register configuration. Port 7 is an input-only port, and does not have a data direction register or data register.

Table 8.16 Port 7 Registers

Name	Abbreviation	R/W	Initial Value	Address*	
Port 7 input data register	P7PIN	R	Undefined	H'FFBE	
Note: * Lower 16 bits of the address					

inote: Lower to bits of the address.

Bit 2—Transmit End (TEND): Indicates that there is no valid data in TDR when the last bit of the transmit character is sent, and transmission has been ended.

The TEND flag is read-only and cannot be modified.

Bit 2		
TEND	Description	
0	[Clearing conditions]	
	• When 0 is written in TDRE after reading TDRE = 1	
	• When the DTC is activated by a TXI interrupt and writes	data to TDR
1	[Setting conditions]	(Initial value)
	• When the TE bit in SCR is 0	
	• When TDRE = 1 at transmission of the last bit of a 1-byte	e serial transmit character

Bit 1—Multiprocessor Bit (MPB): When reception is performed using a multiprocessor format in asynchronous mode, MPB stores the multiprocessor bit in the receive data.

MPB is a read-only bit, and cannot be modified.

Bit 1			
MPB		 Description	
0		[Clearing condition]	(Initial value)*
		When data with a 0 multiprocessor bit is received	
1		[Setting condition]	
		When data with a 1 multiprocessor bit is received	
Note:	*	Retains its previous state when the RE bit in SCR is cleared to a format.	0 with multiprocessor

Bit 5	Bit 4		
MST	TRS	Operating Mode	
0	0	Slave receive mode	(Initial value)
	1	Slave transmit mode	
1	0	Master receive mode	
	1	Master transmit mode	

Bit 5

MST	Description				
0	Slave mode (Initial value)			
	[Clearing conditions]				
	1. When 0 is written by software				
	 When bus arbitration is lost after transmission is started in I²C bus format master mode 				
1	Master mode				
	[Setting conditions]				
	1. When 1 is written by software (in cases other than clearing condition 2)				
	2. When 1 is written in MST after reading MST = 0 (in case of clearing condition 2)				

Bit 4

TRS	Description	
0	Receive mode	(Initial value)
	[Clearing conditions]	
	1. When 0 is written by software (in cases other than setting condition	n 3)
	2. When 0 is written in TRS after reading TRS = 1 (in case of clearing	3 condition 3)
	 When bus arbitration is lost after transmission is started in I²C bus mode 	format master
	4. When the SW bit in DDCSWR changes from 1 to 0	
1	Transmit mode	
	[Setting conditions]	
	1. When 1 is written by software (in cases other than clearing condition	ons 3 and 4)
	 When 1 is written in TRS after reading TRS = 0 (in case of clearing and 4) 	conditions 3
	3. When a 1 is received as the R/\overline{W} bit of the first frame in I^2C bus for	mat slave mode

Bit 2—Bus Busy (BBSY): The BBSY flag can be read to check whether the I^2C bus (SCL, SDA) is busy or free. In master mode, this bit is also used to issue start and stop conditions.

A high-to-low transition of SDA while SCL is high is recognized as a start condition, setting BBSY to 1. A low-to-high transition of SDA while SCL is high is recognized as a stop condition, clearing BBSY to 0.

To issue a start condition, use a MOV instruction to write 1 in BBSY and 0 in SCP. A retransmit start condition is issued in the same way. To issue a stop condition, use a MOV instruction to write 0 in BBSY and 0 in SCP. It is not possible to write to BBSY in slave mode; the l²C bus interface must be set to master transmit mode before issuing a start condition. MST and TRS should both be set to 1 before writing 1 in BBSY and 0 in SCP.

 Bit 2

 BBSY
 Description

 0
 Bus is free [Clearing condition] When a stop condition is detected

 1
 Bus is busy

[Clearing condition] When a stop condition is detected 1 Bus is busy [Setting condition] When a start condition is detected

(Initial value)

Bit 1—I²C Bus Interface Interrupt Request Flag (IRIC): Indicates that the I²C bus interface has issued an interrupt request to the CPU. IRIC is set to 1 at the end of a data transfer, when a slave address or general call address is detected in slave receive mode, when bus arbitration is lost in master transmit mode, and when a stop condition is detected. IRIC is set at different times depending on the FS bit in SAR and the WAIT bit in ICMR. See section 16.3.6, IRIC Setting Timing and SCL Control. The conditions under which IRIC is set also differ depending on the setting of the ACKE bit in ICCR.

IRIC is cleared by reading IRIC after it has been set to 1, then writing 0 in IRIC.

When the DTC is used, IRIC is cleared automatically and transfer can be performed continuously without CPU intervention.

Bit 1—Input Buffer Full (IBF): Set to 1 when the host processor writes to IDR2. This bit is an internal interrupt source to the slave processor. IBF is cleared to 0 when the slave processor reads IDR2.

The IBF flag setting and clearing conditions are different when the fast A20 gate is used. For details see table 17.8, Fast A20 Gate Output Signals.

Bit 1

IBF	Description	
0	[Clearing condition]	
	When the slave processor reads IDR2	(Initial value)
1	[Setting condition]	
	When the host processor writes to IDR2	

Bit 0—Output Buffer Full (OBF): Set to 1 when the slave processor writes to ODR2. Cleared to 0 when the host processor reads ODR2. The IBF flag setting and clearing conditions are different when the fast A20 gate is used. For details see table 17.8, Fast A20 Gate Output Signals.

Bit 0	
OBF	Description
0	[Clearing condition]
	When the host processor reads ODR2 or the slave writes 0 in the OBF bit (Initial value)
1	[Setting condition]
	When the slave processor writes to ODR2

Table 17.4 shows the conditions for setting and clearing the STR2 flags.

17.3 Operation

17.3.1 Host Interface Operation

The host interface is activated by setting the HI12E bit (bit 0) to 1 in SYSCR2 in single-chip mode, establishing slave mode. Activation of the host interface (entry to slave mode) appropriates the related I/O lines in port 3 (data), port 8 or 9 (control), and port 4 (host interrupt requests) for interface use.

Table 17.5 shows HIF host interface channel selection and pin operation.

HI12E	CS2E	Operation	
0	_	Host interface functions halted	
1 0 Host interface channel 1 only operating			
		Operation of channel 2 halted	
		(No operation as $\overline{\text{CS2}}$ or $\overline{\text{ECS2}}$ input. Pins P43, P81, and P90 operate as I/O ports.)	
	1	Host interface channel 1 and 2 functions operating	

 Table 17.5
 Host Interface Channel Selection and Pin Operation

For host read/write timing, see section 25.6.4, Timing of On-Chip Supporting Modules.

17.3.2 Control States

Table 17.6 indicates the slave operations carried out in response to host interface signals from the host processor.

Bits 6 to 2—Reserved: These bits cannot be modified and are always read as 0.

Bits 1 and 0—Mode Select 1 and 0 (MDS1, MDS0): These bits indicate values that reflects the input levels of mode pins MD1 and MD0 (the current operating mode). Bits MDS1 and MDS0 correspond to pins MD1 and MD0, respectively. These are read-only bits, and cannot be modified. When MDCR is read, the input levels of mode pins MD1 and MD0 are latched in these bits.

21.3 Operation

The on-chip ROM is connected to the CPU by a 16-bit data bus, and both byte and word data is accessed in one state. Even addresses are connected to the upper 8 bits, and odd addresses to the lower 8 bits. Word data must start at an even address.

The mode pins (MD1 and MD0) and the EXPE bit in MDCR can be set to enable or disable the on-chip ROM, as shown in table 21.2.

In normal mode, the maximum amount of ROM that can be used is 56 kbytes.

Operating Mode						
MCU Operating	CPU Operating		Mode Pins		MDCR	
Mode	Mode	Description	MD1	MD0	EXPE	On-Chip ROM
Mode 1	Normal	Expanded mode with on-chip ROM disabled	0	1	1	Disabled
Mode 2	Advanced	Single-chip mode	1	0	0	Enabled*
	Advanced	Expanded mode with on-chip ROM enabled			1	_
Mode 3	Normal	Single-chip mode		1	0	Enabled
	Normal	Expanded mode with on-chip ROM enabled			1	⁻ (max. 56 kbytes)

Table 21.2 Operating Modes and ROM

Note: * 128 kbytes in the H8S/2138 and H8S/2134, 96 kbytes in the H8S/2133, 64 kbytes in the H8S/2137 and H8S/2132, and 32 kbytes in the H8S/2130.

Renesas

Bit 3—Flash Memory Control Register Enable (FLSHE): Setting the FLSHE bit to 1 enables read/write access to the flash memory control registers. If FLSHE is cleared to 0, the flash memory control registers are deselected. In this case, the flash memory control register contents are retained

Bit 3

FLSHE	Description	
0	Flash memory control registers deselected	(Initial value)
1	Flash memory control registers selected	

Bit 2—Reserved: Do not write 1 to this bit.

Bits 1 and 0—Internal Clock Select 1 and 0 (ICKS1, ICKS0): These bits control 8-bit timer operation. See section 12, 8-Bit Timers, for details.

21.6 **On-Board Programming Modes**

When pins are set to on-board programming mode, program/erase/verify operations can be performed on the on-chip flash memory. There are two on-board programming modes: boot mode and user program mode. The pin settings for transition to each of these modes are shown in table 21.6. For a diagram of the transitions to the various flash memory modes, see figure 21.3.

Only advanced mode setting is possible for boot mode.

In the case of user program mode, established in advanced mode or normal mode, depending on the setting of the MD0 pin. In normal mode, only programming of a 56-kbyte area of flash memory is possible.

Table 21.6	Setting On-Board Programming Modes

Mode Name	CPU Operating Mode	MD1	MD0	P92	P91	P90	
Boot mode	Advanced mode	0	0	1*	1*	1*	-
User program mode	Advanced mode	1	0	—	_	—	-
	Normal mode		1	—	_		

Can be used as I/O ports after boot mode is initiated. Note:

Renesas

SCR—System Control Register			H'FFC4							
Bit	7	6	5		4	3		2	1	0
	CS2E	IOSE	INTM	1 IN	тмо	XRS	ЯΤ	NMIEG	HIE	RAME
nitial value	0	0	0		0	1		0	0	1
Read/Write	R/W	R/W	R	F	R/W	R		R/W	R/W	R/W
Read/Write	R/W	R/W	R	t control	External 0 Re 1 Re selection	R MI edg 0 Fa 1 Ri reset reset ger mode	Hos 0 1 sing e erate 1 anc	R/W R/ Ext interface e and H'(FF used for a X and Y) of registers, control reg Addresse and H'(Ff used for a registers a keyboard pull-up co lect edge ed by watche d by an exter 10	R/W AM Enable O On-chip R I On-chip R sh'(FF)FF0 S H'(FF)FFT0 D)FFFC to H'(f) cccess to 8-bi data registers and timer cor gisters s H'(FF)FFF0 D)FFFC to H'(f) cccess to host and control re controller and ntrol registers dog timer ove ernal reset	R/W AAM is disabled AAM is enabled AAM is enabled AAM is enabled at to H'(FF)FFF7 FF)FFFF are t timer (channel and control annection to H'(FF)FFF7 FF)FFFF are t interface data agisters, and d MOS input s
			Bit 5 INTM1	Bit 4 INTM0	Interi control	upt mode			Description	I
			0	0	0		Inte	rrupts contr	olled by I bit	(Initial value)
				1	1		Inte	rrupts contr	olled by I and	UI bits, and IC
			1	0	2		Car	not be used	t in the LSI	
		 IOS en	able	1	3		Joan	not be used		
		0 T	ne AS/IOS p	in functio	ons as th	e addre	ess st	robe pin		
		(L 1 Т	ow output w	inen acc	essing ar	e I/O st	nal are	ea) pin		
		(L	ow output w	hen acc	essing a	specifie	ed ad	dress from H	H'(FF)F000 to	H'(FF)FE4F)*
		Note: *	In the H85	6/2138 F	-ZTAT A- F)F7FF	mask v	rsio	n, the addre	ss range is fr	om
	CS2 enab	le HICR			,					
	Bit 7	Bit 0		Desc	Description					
	CS2E 0	FGA20E 0	CS2 pin function halted							
		1	(CS2 fixed	high inte	ernally)					
	1	0	CS2 pin fu	nction se	elected fo	r P81/C	CS2 p	in		
		1	CS2 pin fu	nction se	elected fo	r P90/Ē	CS2	pin		

Renesas

C.2 Port 2 Block Diagrams

Figure C.2 Port 2 Block Diagram (Pins P20 to P23)

Figure C.8 Port 4 Block Diagram (Pin P42)