

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	H8S/2000
Core Size	16-Bit
Speed	10MHz
Connectivity	IrDA, SCI
Peripherals	POR, PWM, WDT
Number of I/O	58
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2134avtf10v

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Specifications
Bus controller	 2-state or 3-state access space can be designated for external expansion areas
	• Number of program wait states can be set for external expansion areas
Data transfer	Can be activated by internal interrupt or software
controller (DTC) (H8S/2138 Group)	 Multiple transfers or multiple types of transfer possible for one activation source
	Transfer possible in repeat mode, block transfer mode, etc.
	Request can be sent to CPU for interrupt that activated DTC
16-bit free-running timer module	One 16-bit free-running counter (also usable for external event counting)
(FRI: 1 channel)	Two output compare outputs
	Four input capture inputs (with buffer operation capability)
8-bit timer module	Each channel has:
(2 channels: TMR0, TMR1)	One 8-bit up-counter (also usable for external event counting)
	Two time constant registers
	The two channels can be connected
Timer connection	Input/output and FRT, TMR1, TMRX, TMRY can be interconnected
and 8-bit timer (TMR) module (2 channels: TMRX, TMRY)	 Measurement of input signal or frequency-divided waveform pulse width and cycle (FRT, TMR1)
(Timer connection and TMRX provided	• Output of waveform obtained by modification of input signal edge (FRT, TMR1)
in H8S/2138 Group)	Determination of input signal duty cycle (TMRX)
	 Output of waveform synchronized with input signal (FRT, TMRX, TMRY)
	 Automatic generation of cyclical waveform (FRT, TMRY)
Watchdog timer	Watchdog timer or interval timer function selectable
module (WDT: 2 channels)	Subclock operation capability (channel 1 only)
8-bit PWM timer	Up to 16 outputs
(PVVIM) (H8S/2138 Group)	Pulse duty cycle settable from 0 to 100%
(Resolution: 1/256
	• 1.25 MHz maximum carrier frequency (20-MHz operation)

Figure 2.9 Stack

2.4.3 Control Registers

The control registers are the 24-bit program counter (PC), 8-bit extended control register (EXR), and 8-bit condition-code register (CCR).

(1) **Program Counter (PC)**

This 24-bit counter indicates the address of the next instruction the CPU will execute. The length of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (When an instruction is fetched, the least significant PC bit is regarded as 0.)

(2) Extended Control Register (EXR)

An 8-bit register. In the H8S/2138 Group and H8S/2134 Group, this register does not affect operation.

Bit 7—Trace Bit (T): This bit is reserved. In the H8S/2138 Group and H8S/2134 Group, this bit does not affect operation.

Bits 6 to 3—Reserved: These bits are reserved. They are always read as 1.

Bits 2 to 0—Interrupt Mask Bits (I2 to I0): These bits are reserved. In the H8S/2138 Group and H8S/2134 Group, these bits do not affect operation.

Figure 5.10 Flowchart of Procedure Up to Interrupt Acceptance in Interrupt Control Mode 1

			Expanded Modes		Single-Chip Mode
Port	Description	Pins	Mode 1	Mode 2, Mode 3 (EXPE = 1)	Mode 2, Mode 3 (EXPE = 0)
Port 6	• 8-bit I/O port	P67/IRQ7/KIN7/ CIN7 P66/IRQ6/FTOB/ KIN6/CIN6 P65/FTID/KIN5/ CIN5 P64/FTIC/KIN4/ CIN4 P63/FTIB/KIN3/ CIN3 P62/FTIA/TMIY/ KIN2/CIN2 P61/FTOA/KIN1/ CIN1 P60/FTCI/KIN0/ CIN0	I/O port also fur IRQ6), FRT inp FTOB), 8-bit tin (KIN7 to KIN0), CIN0)	nctioning as external in ut/output (FTCI, FTOA ner Y input (TMIY), ke and expansion A/D co	nterrupt input (IRQ7, A, FTIA, FTIB, FTIC, FTID, y-sense interrupt input onverter input (CIN7 to
Port 7	• 8-bit input port	P77/AN7/DA1 P76/AN6/DA0 P75/AN5 P74/AN4 P73/AN3 P72/AN2 P71/AN1 P70/AN0	Input port also to AN0) and D/	functioning as A/D cor A converter analog ou	iverter analog input (AN7 tput (DA1, DA0)
Port 8	• 7-bit I/O port	P86/IRQ5/SCK1 P85/IRQ4/RxD1 P84/IRQ3/TxD1 P83 P82 P81 P80	I/O port also fu IRQ3) and SCI	nctioning as external in 1 input/output (TxD1, F	nterrupt input (IRQ5, IRQ4, RxD1, SCK1)

9.1.3 Pin Configuration

Table 9.1 shows the PWM output pin.

Table 9.1Pin Configuration

Name	Abbreviation	I/O	Function
PWM output pin 0 to 15	PW0 to PW15	Output	PWM timer pulse output 0 to 15

9.1.4 Register Configuration

Table 9.2 lists the registers of the PWM timer module.

Table 9.2 PWM Timer Module Registers

Name	Abbreviation	R/W	Initial Value	Address ^{*1}
PWM register select	PWSL	R/W	H'20	H'FFD6
PWM data registers 0 to 15	PWDR0 to PWDR15	R/W	H'00	H'FFD7
PWM data polarity register A	PWDPRA	R/W	H'00	H'FFD5
PWM data polarity register B	PWDPRB	R/W	H'00	H'FFD4
PWM output enable register A	PWOERA	R/W	H'00	H'FFD3
PWM output enable register B	PWOERB	R/W	H'00	H'FFD2
Port 1 data direction register	P1DDR	W	H'00	H'FFB0
Port 2 data direction register	P2DDR	W	H'00	H'FFB1
Port 1 data register	P1DR	R/W	H'00	H'FFB2
Port 2 data register	P2DR	R/W	H'00	H'FFB3
Peripheral clock select register	PCSR	R/W	H'00	H'FF82*2
Module stop control register	MSTPCRH	R/W	H'3F	H'FF86
	MSTPCRL	R/W	H'FF	H'FF87

Notes: 1. Lower 16 bits of the address.

2. Some registers in the 8-bit timer are assigned in the same addresses as other registers. In this case, register selection is performed by the FLSHE bit in the serial timer control register (STCR).

		φ = 6 M	IHz		φ = 6.144	MHz		φ = 7.3728	MHz		φ = 8 M	lHz
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	106	-0.44	2	108	0.08	2	130	-0.07	2	141	0.03
150	2	77	0.16	2	79	0.00	2	95	0.00	2	103	0.16
300	1	155	0.16	1	159	0.00	1	191	0.00	1	207	0.16
600	1	77	0.16	1	79	0.00	1	95	0.00	1	103	0.16
1200	0	155	0.16	0	159	0.00	0	191	0.00	0	207	0.16
2400	0	77	0.16	0	79	0.00	0	95	0.00	0	103	0.16
4800	0	38	0.16	0	39	0.00	0	47	0.00	0	51	0.16
9600	0	19	-2.34	0	19	0.00	0	23	0.00	0	25	0.16
19200	0	9	-2.34	0	9	0.00	0	11	0.00	0	12	0.16
31250	0	5	0.00	0	5	2.40	_	_	—	0	7	0.00
38400	0	4	-2.34	0	4	0.00	0	5	0.00	_	—	_

Operating Frequency (MHz)

Operating Frequency φ (MHz)

	¢) = 9.8304	4 MHz		φ = 10 N	ЛНz		φ = 12 N	//Hz		φ = 12.28	8 MHz
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	174	-0.26	2	177	-0.25	2	212	0.03	2	217	0.08
150	2	127	0.00	2	129	0.16	2	155	0.16	2	159	0.00
300	1	255	0.00	2	64	0.16	2	77	0.16	2	79	0.00
600	1	127	0.00	1	129	0.16	1	155	0.16	1	159	0.00
1200	0	255	0.00	1	64	0.16	1	77	0.16	1	79	0.00
2400	0	127	0.00	0	129	0.16	0	155	0.16	0	159	0.00
4800	0	63	0.00	0	64	0.16	0	77	0.16	0	79	0.00
9600	0	31	0.00	0	32	-1.36	0	38	0.16	0	39	0.00
19200	0	15	0.00	0	15	1.73	0	19	-2.34	0	19	0.00
31250	0	9	-1.70	0	9	0.00	0	11	0.00	0	11	2.40
38400	0	7	0.00	0	7	1.73	0	9	-2.34	0	9	0.00

Rev. 4.00 Jun 06, 2006 page 432 of 1004 REJ09B0301-0400

Bit 4	
AASX	Description
0	Second slave address not recognized (Initial value)
	[Clearing conditions]
	1. When 0 is written in AASX after reading AASX = 1
	2. When a start condition is detected
	3. In master mode
1	Second slave address recognized
	[Setting condition]
	When the second slave address is detected in slave receive mode while FSX = 0

Bit 3—Arbitration Lost (AL): This flag indicates that arbitration was lost in master mode. The I^2C bus interface monitors the bus. When two or more master devices attempt to seize the bus at nearly the same time, if the I^2C bus interface detects data differing from the data it sent, it sets AL to 1 to indicate that the bus has been taken by another master.

AL is cleared by reading AL after it has been set to 1, then writing 0 in AL. In addition, AL is reset automatically by write access to ICDR in transmit mode, or read access to ICDR in receive mode.

Bit 3

Description	
Bus arbitration won	(Initial value)
[Clearing conditions]	
1. When ICDR data is written (transmit mode) or read (receive m	iode)
2. When 0 is written in AL after reading AL = 1	
Arbitration lost	
[Setting conditions]	
 If the internal SDA and SDA pin disagree at the rise of SCL in mode 	master transmit
2. If the internal SCL line is high at the fall of SCL in master trans	smit mode
	Description Bus arbitration won [Clearing conditions] 1. When ICDR data is written (transmit mode) or read (receive m 2. When 0 is written in AL after reading AL = 1 Arbitration lost [Setting conditions] 1. If the internal SDA and SDA pin disagree at the rise of SCL in mode 2. If the internal SCL line is high at the fall of SCL in master transmit

Bit 2—Slave Address Recognition Flag (AAS): In I^2C bus format slave receive mode, this flag is set to 1 if the first frame following a start condition matches bits SVA6 to SVA0 in SAR, or if the general call address (H'00) is detected.

16.3.7 Automatic Switching from Formatless Mode to I²C Bus Format

Setting the SW bit to 1 in DDCSWR enables formatless mode to be selected as the IIC0 operating mode. Switching from formatless mode to the I^2C bus format (slave mode) is performed automatically when a falling edge is detected on the SCL pin.

The following four preconditions are necessary for this operation:

- A common data pin (SDA) for formatless and I²C bus format operation
- Separate clock pins for formatless operation (VSYNCI) and I²C bus format operation (SCL)
- A fixed 1 level for the SCL pin during formatless operation (the SCL pin does not output a low level)
- Settings of bits other than TRS in ICCR that allow I^2C bus format operation

Automatic switching is performed from formatless mode to the I²C bus format when the SW bit in DDCSWR is automatically cleared to 0 on detection of a falling edge on the SCL pin. Switching from the I²C bus format to formatless mode is achieved by having software set the SW bit in DDCSWR to 1.

In formatless mode, bits (such as MSL and TRS) that control the I^2C bus interface operating mode must not be modified. When switching from the I^2C bus format to formatless mode, set the TRS bit to 1 or clear it to 0 according to the transmit data (transmission or reception) in formatless mode, then set the SW bit to 1. After automatic switching from formatless mode to the I^2C bus format (slave mode), in order to wait for slave address reception, the TRS bit is automatically cleared to 0.

If a falling edge is detected on the SCL pin during formatless operation, I^2C bus interface operating mode is switched to the I^2C bus format without waiting for a stop condition to be detected.

The value of the BBSY bit cannot be modified directly by this module clear function, but since the stop condition pin waveform is generated according to the state and release timing of the SCL and SDA pins, the BBSY bit may be cleared as a result. Similarly, state switching of other bits and flags may also have an effect.

To prevent problems caused by these factors, the following procedure should be used when initializing the IIC state.

- 1. Execute initialization of the internal state according to the setting of bits CLR3 to CLR0 or ICE bit clearing.
- 2. Execute a stop condition issuance instruction (write 0 to BBSY and SCP) to clear the BBSY bit to 0, and wait for two transfer rate clock cycles.
- 3. Re-execute initialization of the internal state according to the setting of bits CLR3 to CLR0 or ICE bit clearing.
- 4. Initialize (re-set) the IIC registers.

16.4 Usage Notes

- In master mode, if an instruction to generate a start condition is immediately followed by an instruction to generate a stop condition, neither condition will be output correctly. To output consecutive start and stop conditions, after issuing the instruction that generates the start condition, read the relevant ports, check that SCL and SDA are both low, then issue the instruction that generates the stop condition. Note that SCL may not yet have gone low when BBSY is cleared to 0.
- Either of the following two conditions will start the next transfer. Pay attention to these conditions when reading or writing to ICDR.
 - Write access to ICDR when ICE = 1 and TRS = 1 (including automatic transfer from ICDRT to ICDRS)
 - Read access to ICDR when ICE = 1 and TRS = 0 (including automatic transfer from ICDRS to ICDRR)
- Table 16.6 shows the timing of SCL and SDA output in synchronization with the internal clock. Timings on the bus are determined by the rise and fall times of signals affected by the bus load capacitance, series resistance, and parallel resistance.

Section 18 D/A Converter

18.1 Overview

The H8S/2138 Group and H8S/2134 Group have an on-chip D/A converter module with two channels.

18.1.1 Features

Features of the D/A converter module are listed below.

- Eight-bit resolution
- Two-channel output
- Maximum conversion time: 10 µs (with 20-pF load capacitance)
- Output voltage: 0 V to AV_{cc}
- D/A output retention in software standby mode

Bit	7	6	5	4	3	2	1	0
EBR1		—	—	—	_	—	EB9/—*2	EB8/—*2
Initial value	0	0	0	0	0	0	0	0
Read/Write	_	_	_	_	_	_	R/W^{*1*2}	R/W^{*1*2}
Bit	7	6	5	4	3	2	1	0
EBR2	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W*1	R/W	R/W	R/W	R/W	R/W	R/W	R/W

21.5.3 Erase Block Registers 1 and 2 (EBR1, EBR2)

Notes: 1. In normal mode, these bits cannot be modified and are always read as 0.

2. Bits EB8 and EB9 are not present in the 64-kbyte versions; These bits must not be set to 1.

EBR1 and EBR2 are registers that specify the flash memory erase area block by block; bits 1 and 2 in EBR1 (128 kB versions only) and bits 7 to 0 in EBR2 are readable/writable bits. EBR1 and EBR2 are each initialized to H'00 by a reset, in hardware standby mode, software standby mode, subactive mode, subsleep mode, and watch mode, and the SWE bit in FLMCR1 is not set. When a bit in EBR1 or EBR2 is set, the corresponding block can be erased. Other blocks are erase-protected. Set only one bit in EBR1 or EBR2 (more than one bit cannot be set). When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

The flash memory block configuration is shown in table 21.5.

22.10.8 Status Polling

- The FO7 status polling flag indicates the operating status in auto-program or auto-erase mode.
- The FO6 status polling flag indicates a normal or abnormal end in auto-program or auto-erase mode.

Table 22.20 Status Polling Output Truth Table

Internal Operation Pin Names in Progress		Abnormal End	_	Normal End
FO7	0	1	0	1
FO6	0	0	1	1
FO0 to FO5	0	0	0	0

22.10.9 Programmer Mode Transition Time

Commands cannot be accepted during the oscillation stabilization period or the programmer mode setup period. After the programmer mode setup time, a transition is made to memory read mode.

Table 22.21 Command Wait State Transition Time Specifications

Item	Symbol	Min	Max	Unit	
Standby release (oscillation stabilization time)	t _{osc1}	20	—	ms	
Programmer mode setup time	t _{bmv}	10	_	ms	
V _{cc} hold time	t _{dwn}	0		ms	

In order to retain on-chip RAM data, the RAME bit in SYSCR should be cleared to 0 before driving the $\overline{\text{STBY}}$ pin low.

Do not change the state of the mode pins (MD1 and MD0) while the chip is in hardware standby mode.

Hardware standby mode is cleared by means of the $\overline{\text{STBY}}$ pin and the $\overline{\text{RES}}$ pin. When the $\overline{\text{STBY}}$ pin is driven high while the $\overline{\text{RES}}$ pin is low, the reset state is set and clock oscillation is started. Ensure that the $\overline{\text{RES}}$ pin is held low until the clock oscillation settles (at least 8 ms—the oscillation settling time—when using a crystal oscillator). When the $\overline{\text{RES}}$ pin is subsequently driven high, a transition is made to the program execution state via the reset exception handling state.

24.7.2 Hardware Standby Mode Timing

Figure 24.4 shows an example of hardware standby mode timing.

When the $\overline{\text{STBY}}$ pin is driven low after the $\overline{\text{RES}}$ pin has been driven low, a transition is made to hardware standby mode. Hardware standby mode is cleared by driving the $\overline{\text{STBY}}$ pin high, waiting for the oscillation settling time, then changing the $\overline{\text{RES}}$ pin from low to high.

Figure 24.4 Hardware Standby Mode Timing

Renesas

25.3 Electrical Characteristics of H8S/2138 F-ZTAT (A-Mask Version), and Mask ROM Versions of H8S/2138 and H8S/2137

25.3.1 Absolute Maximum Ratings

Table 25.15 lists the absolute maximum ratings.

Table 25.15	Absolute	Maximum	Ratings
-------------	----------	---------	---------

Item	Symbol	Value	Unit
Power supply voltage ^{*1}	V _{cc}	-0.3 to +7.0	V
Power supply voltage ^{*1} (3-V version)	V _{cc}	-0.3 to +4.3	V
Power supply voltage ^{*2} (VCL pin)	V _{CL}	-0.3 to +4.3	V
Input voltage (except ports 6 and 7)	V_{in}	-0.3 to V _{cc} +0.3	V
Input voltage (CIN input not selected for port 6)	V_{in}	–0.3 to V_{cc} +0.3	V
Input voltage (CIN input selected for port 6)	V_{in}	Lower voltage of –0.3 to $V_{\rm cc}$ +0.3 and ${\rm AV}_{\rm cc}$ +0.3	V
Input voltage (port 7)	V_{in}	–0.3 to AV_{cc} +0.3	V
Analog power supply voltage	AV_{cc}	-0.3 to +7.0	V
Analog power supply voltage (3-V version)	AV_{cc}	-0.3 to +4.3	V
Analog input voltage	V _{AN}	–0.3 to AV _{cc} +0.3	V
Operating temperature	T _{opr}	Regular specifications: -20 to +75	°C
		Wide-range specifications: -40 to +85	°C
Operating temperature (flash	T _{opr}	Regular specifications: -20 to +75	°C
memory programming/erasing)		Wide-range specifications: -40 to +85	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution: 1. Permanent damage to the chip may result if absolute maximum ratings are exceeded.

2. Never apply more than 7.0 V to any of the pins of the 5- or 4-V version or 4.3 V to any of the pins of the 3-V version.

Notes: 1. Voltage applied to the VCC1 pin.

Never exceed the maximum rating of V_{cL} in the low-power version (3-V version) because both the VCC1 and V_{cL} pins are connected to the V_{cc} power supply.

2. It is an operating power supply voltage pin on the chip.

Never apply power supply voltage to the V_{cL} pin in the 5- or 4-V version. Always connect an external capacitor between the V_{cL} pin and ground for internal voltage stabilization.

Renesas

- Notes: 1. Set the times according to the program/erase algorithms.
 - Programming time per 128 bytes (Shows the total period for which the P-bit in the flash memory control register (FLMCR1) is set. It does not include the programming verification time.)
 - 3. Block erase time (shows the total period for which the E-bit in FLMCR1 is set. It does not include the erase verification time.)
 - 4. Maximum programming time (tP (max))
 tP (max) = (wait time after P-bit setting (z1) + (z3)) × 6 + wait time after P-bit setting (z2) × ((N) 6)
 - 5. Maximum programming count (N) should be set according to the actual set value of (z1, z2, z3) to allow programming within the maximum programming time (tP (max)). The wait time after P-bit setting (z1, z2, z3) must be changed with the value of the number of writing times (n) as follows.

The number of times for writing n

 $1 \le n \le 6$ $z1 = 30 \ \mu s, \ z3 = 10 \ \mu s$

 $7 \le n \le 1000$ $z^2 = 200 \ \mu s$

6. Maximum erase time (tE (max))

tE (max) = waiting time after E-bit setting (z) \times Maximum erase count (N)

- 7. Maximum erase count (N) should be set according to the actual setting (z) to allow erase within the maximum erase time (tE (max)).
- 8. Minimum number of times for which all characteristics are guaranteed after rewriting (Guarantee range is 1 to minimum value).
- 9. Reference value for 25°C (as a guideline, rewriting should normally function up to this value).
- 10. Data retention characteristic when rewriting is performed within the specification range, including the minimum value.

Instruction	1	2	3	4	5	6	7	8	9
BMI d:8	R:W NEXT	R:W EA							
BGE d:8	R:W NEXT	R:W EA							
BLT d:8	R:W NEXT	R:W EA							
BGT d:8	R:W NEXT	R:W EA							
BLE d:8	R:W NEXT	R:W EA							
BRA d:16 (BT d:16)	R:W 2nd	Internal operation, 1 state	R:W EA						
BRN d:16 (BF d:16)	R:W 2nd	Internal operation, 1 state	R:W EA						
BHI d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BLS d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BCC d:16 (BHS d:16)	R:W 2nd	Internal operation, 1 state	R:W EA						
BCS d:16 (BLO d:16)	R:W 2nd	Internal operation, 1 state	R:W EA						
BNE d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BEQ d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BVC d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BVS d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BPL d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BMI d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BGE d:16	R:W 2nd	Internal operation, 1 state	R:W EA						

Appendix A Instruction Set

Instr	uction	1	2	3	4	5	6	7	8	9
CMP.B #	xx:8,Rd	R:W NEXT								
CMP.B R	s,Rd	R:W NEXT								
CMP.W #	≠xx:16,Rd	R:W 2nd	R:W NEXT							
CMP.W F	Rs,Rd	R:W NEXT								
CMP.L #	xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
CMP.L E	Rs,ERd	R:W NEXT								
DAA Rd		R:W NEXT								
DAS Rd		R:W NEXT								
DEC.B R	d	R:W NEXT								
DEC.W #	1/2,Rd	R:W NEXT								
DEC.L #'	1/2,ERd	R:W NEXT								
DIVXS.B	Rs,Rd	R:W 2nd	R:W NEXT	Internal ope	eration, 11 st	tates				
DIVXS.W	/ Rs,ERd	R:W 2nd	R:W NEXT	Internal ope	eration, 19 st	tates				
DIVXU.B	Rs,Rd	R:W NEXT	Internal ope	eration, 11 st	tates					
DIVXU.W	/ Rs,ERd	R:W NEXT	Internal ope	operation, 19 states						
EEPMO\	/.B	R:W 2nd	R:B EAs*1	R:B EAd*1	R:B EAs*2	W:B EAd*2	R:W NEXT			
EEPMO\	/.W	R:W 2nd	R:B EAs*1	R:B EAd*1	R:B EAs*2	W:B EAd*2	R:W NEXT			
EXTS.W	Rd	R:W NEXT			\leftarrow Repeated	n times $^{*2} \rightarrow$				
EXTS.L E	ERd	R:W NEXT								
EXTU.W	Rd	R:W NEXT								
EXTU.L E	ERd	R:W NEXT								
INC.B Ro	1	R:W NEXT								
INC.W #'	1/2,Rd	R:W NEXT								
INC.L #1	/2,ERd	R:W NEXT								
JMP @E	Rn	R:W NEXT	R:W EA							
JMP @aa	a:24	R:W 2nd	Internal operation, 1 state	R:W EA						
JMP @@aa:8	Advanced	R:W NEXT	R:W:M aa:8	R:W aa:8	Internal operation, 1 state	R:W EA				
JSR @ERn	Advanced	R:W NEXT	R:W EA	W:W:M Stack (H)	W:W Stack (L)					
JSR @aa:24	Advanced	R:W 2nd	Internal operation, 1 state	R:W EA	W:W:M Stack (H)	W:W Stack (L)				
JSR @@aa:8	Advanced	R:W NEXT	R:W:M aa:8	R:W aa:8	W:W:M Stack (H)	W:W Stack (L)	R:W EA			

P9DDR—Port 9 Data Direction Register			H'FFC0				Port 9	
Bit	7	6	5	4	3	2	1	0
	P97DDR	P96DDR	P95DDR	P94DDR	P93DDR	P92DDR	P91DDR	P90DDR
Mode 1								I
Initial value	0	1	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Modes 2 and 3	3							
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Specification of input or output for port 9 pins

P9DR—Port 9 Data Register				H'FFC1				Port 9	
Bit	7	6	5	4	3	2	1	0	
	P97DR	P96DR	P95DR	P94DR	P93DR	P92DR	P91DR	P90DR	
Initial value	0	*	0	0	0	0	0	0	
Read/Write	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	
									-
			-						

Output data for port 9 pins

Note: * Determined by state of pin P96.

IER—IRQ Enable Register					H'FFC2	2	Interrupt Controller		
Bit	7	6	5	4	3	2	1	0	
	IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
IRQ7 to IRQ0 enable									
			0	IRQn int	errupt disa	abled			
			1	IRQn int	errupt ena	bled			
					(n =	= 7 to 0)			

Note: * Only 0 can be written, to clear the flag.