

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	20MHz
Connectivity	IrDA, SCI
Peripherals	POR, PWM, WDT
Number of I/O	58
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	80-BQFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2134fa20v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Rev. 4.00 Jun 06, 2006 page xv of liv

	16.1.3	Input/Output Pins	458
	16.1.4	Register Configuration	459
16.2	Registe	r Descriptions	460
	16.2.1	I ² C Bus Data Register (ICDR)	460
	16.2.2	Slave Address Register (SAR)	463
	16.2.3	Second Slave Address Register (SARX)	464
	16.2.4	I ² C Bus Mode Register (ICMR)	465
	16.2.5	I ² C Bus Control Register (ICCR)	468
	16.2.6	I ² C Bus Status Register (ICSR)	475
	16.2.7	Serial Timer Control Register (STCR)	480
	16.2.8	DDC Switch Register (DDCSWR)	481
	16.2.9	Module Stop Control Register (MSTPCR)	484
16.3	Operati	on	485
	16.3.1	I ² C Bus Data Format	485
	16.3.2	Master Transmit Operation	487
	16.3.3	Master Receive Operation	489
	16.3.4	Slave Receive Operation	492
	16.3.5	Slave Transmit Operation	495
	16.3.6	IRIC Setting Timing and SCL Control	496
	16.3.7	Automatic Switching from Formatless Mode to I ² C Bus Format	498
	16.3.8	Operation Using the DTC	499
	16.3.9	Noise Canceler	500
	16.3.10	Sample Flowcharts	500
	16.3.11	Initialization of Internal State	505
16.4	Usage I	Notes	506
Secti	on 17	Host Interface [H8S/2138 Group]	523
17.1	Overvi	ew	523
	17.1.1	Features	523
	17.1.2	Block Diagram	524
	17.1.3	Input and Output Pins	525
	17.1.4	Register Configuration	526
17.2	Registe	er Descriptions	527
	17.2.1	System Control Register (SYSCR)	527
	17.2.2	System Control Register 2 (SYSCR2)	528
	17.2.3	Host Interface Control Register (HICR)	529
	17.2.4	Input Data Register 1 (IDR1)	530
	17.2.5	Output Data Register 1 (ODR1)	530
	17.2.6	Status Register 1 (STR1)	531
	17.2.7	Input Data Register 2 (IDR2)	532
	17.2.8	Output Data Register 2 (ODR2)	533

Rev. 4.00 Jun 06, 2006 page xxvii of liv

Figure 25.9	Interrupt Input Timing	802
Figure 25.10	Basic Bus Timing (Two-State Access)	803
Figure 25.11	Basic Bus Timing (Three-State Access)	804
Figure 25.12	Basic Bus Timing (Three-State Access with One Wait State)	805
Figure 25.13	Burst ROM Access Timing (Two-State Access)	806
Figure 25.14	Burst ROM Access Timing (One-State Access)	807
Figure 25.15	I/O Port Input/Output Timing	807
Figure 25.16	FRT Input/Output Timing	808
Figure 25.17	FRT Clock Input Timing	808
Figure 25.18	8-Bit Timer Output Timing	808
Figure 25.19	8-Bit Timer Clock Input Timing	809
Figure 25.20	8-Bit Timer Reset Input Timing	809
Figure 25.21	PWM, PWMX Output Timing	809
Figure 25.22	SCK Clock Input Timing	809
Figure 25.23	SCI Input/Output Timing (Synchronous Mode)	810
Figure 25.24	A/D Converter External Trigger Input Timing	810
Figure 25.25	Host Interface Timing	811
Figure 25.26	I ² C Bus Interface Input/Output Timing (Option)	812
Appendix A	Instruction Set	
Figure A.1	Address Bus, \overline{RD} and \overline{WR} Timing (8-Bit Bus, Three-State Access,	
-		0.40
	No Wait States)	863
Annendix C	No Wait States)	863
Appendix C	No Wait States) I/O Port Block Diagrams Port 1 Block Diagram	863 965
Appendix C Figure C.1	No Wait States) I/O Port Block Diagrams Port 1 Block Diagram (Pins P20 to P23)	863 965 966
Appendix C Figure C.1 Figure C.2	No Wait States) I/O Port Block Diagrams Port 1 Block Diagram Port 2 Block Diagram (Pins P20 to P23) Port 2 Block Diagram (Pins P24 to P26)	863 965 966 967
Appendix C Figure C.1 Figure C.2 Figure C.3	No Wait States) I/O Port Block Diagrams Port 1 Block Diagram (Pins P20 to P23) Port 2 Block Diagram (Pins P24 to P26) Port 2 Block Diagram (Pin P27)	863965966967968
Appendix C Figure C.1 Figure C.2 Figure C.3 Figure C.4 Figure C.5	No Wait States) I/O Port Block Diagrams Port 1 Block Diagram (Pins P20 to P23) Port 2 Block Diagram (Pins P24 to P26) Port 2 Block Diagram (Pin P27) Port 3 Block Diagram	 863 965 966 967 968 969
Appendix C Figure C.1 Figure C.2 Figure C.3 Figure C.4 Figure C.5 Figure C.6	No Wait States) I/O Port Block Diagrams Port 1 Block Diagram (Pins P20 to P23) Port 2 Block Diagram (Pins P24 to P26) Port 2 Block Diagram (Pin P27) Port 3 Block Diagram Port 4 Block Diagram (Pin P40).	 863 965 966 967 968 969 970
Appendix C Figure C.1 Figure C.2 Figure C.3 Figure C.4 Figure C.5 Figure C.6 Figure C.7	No Wait States)	 863 965 966 967 968 969 970 971
Appendix C Figure C.1 Figure C.2 Figure C.3 Figure C.4 Figure C.5 Figure C.6 Figure C.7 Figure C.8	No Wait States) I/O Port Block Diagrams Port 1 Block Diagram (Pins P20 to P23) Port 2 Block Diagram (Pins P24 to P26) Port 2 Block Diagram (Pin P27) Port 3 Block Diagram Port 4 Block Diagram (Pin P40) Port 4 Block Diagram (Pin P41) Port 4 Block Diagram (Pin P42)	 863 965 966 967 968 969 970 971 972
Appendix C Figure C.1 Figure C.2 Figure C.3 Figure C.4 Figure C.5 Figure C.6 Figure C.7 Figure C.8 Figure C.9	No Wait States) I/O Port Block Diagrams Port 1 Block Diagram (Pins P20 to P23) Port 2 Block Diagram (Pins P24 to P26) Port 2 Block Diagram (Pin P27) Port 3 Block Diagram Port 4 Block Diagram (Pin P40) Port 4 Block Diagram (Pin P41) Port 4 Block Diagram (Pin P42) Port 4 Block Diagram (Pin P43)	 863 965 966 967 968 969 970 971 972 973
Appendix C Figure C.1 Figure C.2 Figure C.3 Figure C.4 Figure C.5 Figure C.6 Figure C.7 Figure C.8 Figure C.9 Figure C.10	No Wait States) I/O Port Block Diagrams Port 1 Block Diagram (Pins P20 to P23) Port 2 Block Diagram (Pins P24 to P26) Port 2 Block Diagram (Pin P27) Port 3 Block Diagram (Pin P40) Port 4 Block Diagram (Pin P40) Port 4 Block Diagram (Pin P41) Port 4 Block Diagram (Pin P42) Port 4 Block Diagram (Pin P43) Port 4 Block Diagram (Pin P44)	 863 965 966 967 968 969 970 971 972 973 974
Appendix C Figure C.1 Figure C.2 Figure C.3 Figure C.4 Figure C.5 Figure C.5 Figure C.7 Figure C.7 Figure C.8 Figure C.9 Figure C.10 Figure C.11	No Wait States)	 863 965 966 967 968 969 970 971 972 973 974 975
Appendix C Figure C.1 Figure C.2 Figure C.3 Figure C.4 Figure C.5 Figure C.6 Figure C.7 Figure C.7 Figure C.8 Figure C.9 Figure C.10 Figure C.11 Figure C.12	No Wait States)	 863 965 966 967 968 969 970 971 972 973 974 975 976
Appendix C Figure C.1 Figure C.2 Figure C.3 Figure C.4 Figure C.5 Figure C.6 Figure C.7 Figure C.7 Figure C.8 Figure C.9 Figure C.10 Figure C.11 Figure C.12 Figure C.13	No Wait States)	 863 965 966 967 968 969 970 971 972 973 974 975 976 977
Appendix C Figure C.1 Figure C.2 Figure C.3 Figure C.4 Figure C.5 Figure C.6 Figure C.7 Figure C.7 Figure C.8 Figure C.9 Figure C.10 Figure C.11 Figure C.12 Figure C.13 Figure C.14	No Wait States)	 863 965 966 967 968 969 970 971 972 973 974 975 976 977 978
Appendix C Figure C.1 Figure C.2 Figure C.3 Figure C.4 Figure C.5 Figure C.5 Figure C.7 Figure C.7 Figure C.7 Figure C.9 Figure C.10 Figure C.11 Figure C.13 Figure C.14 Figure C.15	No Wait States)	 863 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
Appendix C Figure C.1 Figure C.2 Figure C.3 Figure C.4 Figure C.5 Figure C.6 Figure C.7 Figure C.7 Figure C.8 Figure C.9 Figure C.10 Figure C.11 Figure C.12 Figure C.13 Figure C.14 Figure C.15 Figure C.16	No Wait States)	 863 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980

Rev. 4.00 Jun 06, 2006 page xliv of liv

	Pin Name						
Pin No.	Exp	anded Modes	Single-Chip Modes	Flash Memory			
FP-80A TFP-80C	Mode 1	Mode 2 (EXPE = 1) Mode 3 (EXPE = 1)	Mode 2 (EXPE = 0) Mode 3 (EXPE = 0)	Programmer Mode			
45	P46/PWX0	P46/PWX0	P46/PWX0	NC			
46	P47/PWX1	P47/PWX1	P47/PWX1	NC			
47	VCC1	VCC1	VCC1	VCC			
48	A15	A15/P27/PW15/ CBLANK	P27/PW15/ CBLANK	CE			
49	A14	A14/P26/PW14	P26/PW14	FA14			
50	A13	A13/P25/PW13	P25/PW13	FA13			
51	A12	A12/P24/PW12	P24/PW12	FA12			
52	A11	A11/P23/PW11	P23/PW11	FA11			
53	A10	A10/P22/PW10	P22/PW10	FA10			
54	A9	A9/P21/PW9	P21/PW9	ŌĒ			
55	A8	A8/P20/PW8	P20/PW8	FA8			
56	VSS	VSS	VSS	VSS			
57	A7	A7/P17/PW7	P17/PW7	FA7			
58	A6	A6/P16/PW6	P16/PW6	FA6			
59	A5	A5/P15/PW5	P15/PW5	FA5			
60	A4	A4/P14/PW4	P14/PW4	FA4			
61	A3	A3/P13/PW3	P13/PW3	FA3			
62	A2	A2/P12/PW2	P12/PW2	FA2			
63	A1	A1/P11/PW1	P11/PW1	FA1			
64	A0	A0/P10/PW0	P10/PW0	FA0			
65	D0	D0	P30/HDB0	FO0			
66	D1	D1	P31/HDB1	FO1			
67	D2	D2	P32/HDB2	FO2			
68	D3	D3	P33/HDB3	FO3			
69	D4	D4	P34/HDB4	FO4			
70	D5	D5	P35/HDB5	FO5			
71	D6	D6	P36/HDB6	FO6			
72	D7	D7	P37/HDB7	FO7			
73	VSS	VSS	VSS	VSS			
74	P80	P80	P80/HA0	NC			

Figure 3.3 H8S/2133 Memory Map in Each Operating Mode

	Instruction Instruction Instruction Instruction Internal Vector Internal Instruction fetch fetch fetch fetch operation Stack save fetch operation fetch
φ	
Address bus	H10310 H10312 H10316 H10318 SP-2 SP-4 H10036 H10036
	NOP NOP NOP Interrupt exception handling
Break request signal	
	H'0310 NOP H'0312 NOP H'0314 NOP H'0316 NOP H'0316 NOP H'0316 NOP
Program are	a in on-chip memory, 2-state execution instruction at specified break address
	Instruction Instruction Instruction Instruction Internal Instruction Internal Instruction Internal Instruction fetch , fetch , fetch , operation , Stack save , fetch , operation , fetch , operation , Stack save , fetch , operation , fetch , operation , Stack save , fetch , operation , fetch , operation , Stack save , fetch , operation , fetch , operation , Stack save , fetch , operation , fetch , operation , Stack save , fetch , operation , fetch , operation , fetch , operation , Stack save , fetch , operation , fetch , operation , fetch , operation , Stack save , fetch , operation , fetch , operation , fetch , operation , Stack save , fetch , operation , fetch , operation , fetch , operation , Stack save , fetch , operation , operation , fetch , operation , operation , fetch , operation
φ	
Address bus	H'0310 H'0312 H'0314 H'0316 H'0318 SP-2 SP-4 H'0036
	NOP MOV.W Interrupt exception handling
Break request signal	execution execution
	H'0310 NOP H'0312 MOV.W #xx:16,Rd H'0316 NOP H'0318 NOP
Program are	a in external memory (2-state access, 16-bit-bus access), ution instruction at specified break address
	Instruction Instruction Internal Vector Internal fetch fetch fetch operation Stack save fetch operation
φ	
Address bus	H'0310 H'0312 H'0314 SP-2 SP-4 H'0036 X
	NOP Interrupt exception handling execution
Break request signal	

Figure 5.6 Examples of Address Break Timing

Rev. 4.00 Jun 06, 2006 page 120 of 1004 REJ09B0301-0400

6.1.3 Pin Configuration

Table 6.1 summarizes the pins of the bus controller.

Table 6.1	Bus (Controller	Pins
-----------	-------	------------	------

Name	Symbol	I/O	Function
Address strobe	ĀS	Output	Strobe signal indicating that address output on address bus is enabled (when IOSE bit is 0)
I/O select	IOS	Output	I/O select signal (when IOSE bit is 1)
Read	RD	Output	Strobe signal indicating that external space is being read
Write	WR	Output	Strobe signal indicating that external space is being written to, and that data bus is enabled
Wait	WAIT	Input	Wait request signal when external 3-state access space is accessed

6.1.4 Register Configuration

Table 6.2 summarizes the registers of the bus controller.

Table 6.2Bus Controller Registers

Name	Abbreviation	R/W	Initial Value	Address*
Bus control register	BCR	R/W	H'D7	H'FFC6
Wait state control register	WSCR	R/W	H'33	H'FFC7

Note: * Lower 16 bits of the address.

6.3.4 I/O Select Signal

In the H8S/2138 Group and H8S/2134 Group, an I/O select signal (\overline{IOS}) can be output, with the signal output going low when the designated external space is accessed.

Figure 6.2 shows an example of $\overline{\text{IOS}}$ signal output timing.

Figure 6.2 **IOS** Signal Output Timing

Enabling or disabling of \overline{IOS} signal output is controlled by the setting of the IOSE bit in SYSCR. In expanded mode, this pin operates as the \overline{AS} output pin after a reset, and therefore the IOSE bit in SYSCR must be set to 1 in order to use this pin as the \overline{IOS} signal output. See section 8, I/O Ports, for details.

The range of addresses for which the $\overline{\text{IOS}}$ signal is output can be set with bits IOS1 and IOS0 in BCR. The $\overline{\text{IOS}}$ signal address ranges are shown in table 6.4.

IOS1	IOS0	IOS Signal Output Range	
0	0	H'(FF)F000 to H'(FF)F03F	
	1	H'(FF)F000 to H'(FF)F0FF	
1	0	H'(FF)F000 to H'(FF)F3FF	
	1	H'(FF)F000 to H'(FF)FE4F*	(Initial value)
Note:	 In the H8S/21 H'(FF)F7FF. 	38 F-ZTAT A-mask version, the address range	e is from H'(FF)F000 to

Table 6.4 IOS Signal Output Range Settings

9.1.2 Block Diagram

Figure 9.1 Block Diagram of PWM Timer Module

9.3 Operation

9.3.1 Correspondence between PWM Data Register Contents and Output Waveform

The upper 4 bits of PWDR specify the duty cycle of the basic pulse as 0/16 to 15/16 with a resolution of 1/16, as shown in table 9.4.

Table 9.4 Duty Cycle o	f .	Basic	Puls	se
------------------------	-----	-------	------	----

Upper 4 Bits	Basic Pulse Waveform (Internal)				
0000	0 1 2 3 4 5 6 7 8 9 A B C D E F 0				
0001					
0010					
0011					
0100					
0101					
0110					
0111					
:					
1000					
1001					
1010					
1011					
1100					
1101					
1110					
1111					

12.4 Interrupt Sources

The TMR0, TMR1, and TMRY 8-bit timers can generate three types of interrupt: compare-match A and B (CMIA and CMIB), and overflow (OVI). TMRX can generate only an ICIX interrupt. An interrupt is requested when the corresponding interrupt enable bit is set in TCR or TCSR. Independent signals are sent to the interrupt controller for each interrupt. It is also possible to activate the DTC by means of CMIA and CMIB interrupts from TMR0, TMR1, and TMRY.

An overview of 8-bit timer interrupt sources is given in tables 12.4 to 12.6.

Interrupt source	Description	DTC Activation	Interrupt Priority
CMIA	Requested by CMFA	Possible	High
CMIB	Requested by CMFB	Possible	- •
OVI	Requested by OVF	Not possible	Low

Table 12.4 TMR0 and TMR1 8-Bit Timer Interrupt Sources

Table 12.5 TMRX 8-Bit Timer Interrupt Source

Interrupt source	Description	DTC Activation
ICIX	Requested by ICF	Not possible

Table 12.6 TMRY 8-Bit Timer Interrupt Sources

Interrupt source	Description	DTC Activation	Interrupt Priority
CMIA	Requested by CMFA	Possible	High
CMIB	Requested by CMFB	Possible	-
OVI	Requested by OVF	Not possible	Low

Section 14 Watchdog Timer (WDT)

14.1 Overview

The H8S/2138 Group and H8S/2134 Group have an on-chip watchdog timer with two channels (WDT0, WDT1) for monitoring system operation. The WDT outputs an overflow signal if a system crash prevents the CPU from writing to the timer counter, allowing it to overflow. At the same time, the WDT can also generate an internal reset signal or internal NMI interrupt signal.

When this watchdog function is not needed, the WDT can be used as an interval timer. In interval timer mode, an interval timer interrupt is generated each time the counter overflows.

14.1.1 Features

WDT features are listed below.

- Switchable between watchdog timer mode and interval timer mode
 - WOVI interrupt generation in interval timer mode
- Internal reset or internal interrupt generated when the timer counter overflows
 Choice of internal reset or NMI interrupt generation in watchdog timer mode
- Choice of 8 (WDT0) or 16 (WDT1) counter input clocks
 - Maximum WDT interval: system clock period × 131072 × 256
 - Subclock can be selected for the WDT1 input counter
 - Maximum interval when the subclock is selected: subclock period $\times\,256\times256$

ICDR is an 8-bit readable/writable register that is used as a transmit data register when transmitting and a receive data register when receiving. ICDR is divided internally into a shift register (ICDRS), receive buffer (ICDRR), and transmit buffer (ICDRT). ICDRS cannot be read or written by the CPU, ICDRR is read-only, and ICDRT is write-only. Data transfers among the three registers are performed automatically in coordination with changes in the bus state, and affect the status of internal flags such as TDRE and RDRF.

If IIC is in transmit mode and the next data is in ICDRT (the TDRE flag is 0) following transmission/reception of one frame of data using ICDRS, data is transferred automatically from ICDRT to ICDRS. If IIC is in receive mode and no previous data remains in ICDRR (the RDRF flag is 0) following transmission/reception of one frame of data using ICDRS, data is transferred automatically from ICDRS to ICDRR.

If the number of bits in a frame, excluding the acknowledge bit, is less than 8, transmit data and receive data are stored differently. Transmit data should be written justified toward the MSB side when MLS = 0, and toward the LSB side when MLS = 1. Receive data bits read from the LSB side should be treated as valid when MLS = 0, and bits read from the MSB side when MLS = 1.

ICDR is assigned to the same address as SARX, and can be written and read only when the ICE bit is set to 1 in ICCR.

The value of ICDR is undefined after a reset.

The TDRE and RDRF flags are set and cleared under the conditions shown below. Setting the TDRE and RDRF flags affects the status of the interrupt flags.

Bit 5—I²C Bus Interface Continuous Transmission/Reception Interrupt Request Flag (**IRTR):** Indicates that the I²C bus interface has issued an interrupt request to the CPU, and the source is completion of reception/transmission of one frame in continuous transmission/reception for which DTC activation is possible. When the IRTR flag is set to 1, the IRIC flag is also set to 1 at the same time.

IRTR flag setting is performed when the TDRE or RDRF flag is set to 1. IRTR is cleared by reading IRTR after it has been set to 1, then writing 0 in IRTR. IRTR is also cleared automatically when the IRIC flag is cleared to 0.

Bit 5								
IRTR	 Description							
0	Waiting for transfer, or transfer in progress	(Initial value)						
	[Clearing conditions]							
	1. When 0 is written in IRTR after reading IRTR = 1							
	2. When the IRIC flag is cleared to 0							
1	Continuous transfer state							
	[Setting conditions]							
	In I ² C bus interface slave mode							
	When the TDRE or RDRF flag is set to 1 when AASX = 1							
	In other modes							
	When the TDRE or RDRF flag is set to 1							

Bit 4—Second Slave Address Recognition Flag (AASX): In I^2C bus format slave receive mode, this flag is set to 1 if the first frame following a start condition matches bits SVAX6 to SVAX0 in SARX.

AASX is cleared by reading AASX after it has been set to 1, then writing 0 in AASX. AASX is also cleared automatically when a start condition is detected.

18.2 Register Descriptions

Bit	7	6	5	4	3	2	1	0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

18.2.1 D/A Data Registers 0 and 1 (DADR0, DADR1)

D/A data registers 0 and 1 (DADR0 and DADR1) are 8-bit readable/writable registers that store data to be converted. When analog output is enabled, the value in the D/A data register is converted and output continuously at the analog output pin.

The D/A data registers are initialized to H'00 by a reset and in hardware standby mode.

18.2.2 D/A Control Register (DACR)

Bit	7	6	5	4	3	2	1	0
	DAOE1	DAOE0	DAE	—	—	—	—	—
Initial value	0	0	0	1	1	1	1	1
Read/Write	R/W	R/W	R/W	_	_	_	_	_

DACR is an 8-bit readable/writable register that controls the operation of the D/A converter module.

DACR is initialized to H'1F by a reset and in hardware standby mode.

Bit 7-D/A Output Enable 1 (DAOE1): Controls D/A conversion and analog output.

Bit 7		
DAOE1	Description	
0	Analog output DA1 is disabled	(Initial value)
1	D/A conversion is enabled on channel 1. Analog output DA1 is enable	ed

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Analog power supply voltage ^{*1}	AV_{cc}	4.5	—	5.5	V	Operating
		2.0		5.5	V	Idle/not used
RAM standby voltage	V_{RAM}	2.0			V	

Notes: 1. Do not leave the AVCC, and AVSS pins open even if the A/D converter and D/A converter are not used.
Even if the A/D converter and D/A converter are not used, apply a value in the range 2.0 V to 5.5 V to AVCC by connection to the power supply (V_{cc}), or some other method.
2. P67 to P60 include supporting module inputs multiplexed on those pins.

3. IRQ2 includes the ADTRG signal multiplexed on that pin.

 P52/SCK0/SCL0 and P97/SDA0 are NMOS push-pull outputs in H8S/2138. An external pull-up resistor is necessary to provide high-level output from SCL0 and SDA0 (ICE = 1).

P52/SCK0 and P97 (ICE = 0) high levels are driven by NMOS in H8S/2138.

- 5. When ICE = 0. Low-level output when the bus drive function is selected is determined separately.
- 6. The upper limit of the port 6 applied voltage is V_{cc} +0.3 V when CIN input is not selected, and the lower of V_{cc} +0.3 V and AV_{cc} +0.3 V when CIN input is selected. When a pin is in output mode, the output voltage is equivalent to the applied voltage.
- 7. Current dissipation values are for V_{IH} min = V_{cc} –0.5 V and V_{iL} max = 0.5 V with all output pins unloaded and the on-chip pull-up MOSs in the off state.
- 8. The values are for $V_{RAM} \le V_{CC} < 4.5V$, V_{H} min = $V_{CC} \times 0.9$, and V_{IL} max = 0.3 V.
- For flash memory program/erase operations, the applicable range is T_a = 0 to +75°C (regular specifications) or T_a = 0 to +85°C (wide-range specifications).

Table 25.12 A/D Conversion Characteristics (CIN7 to CIN0 Input: 134/266-State Conversion)

- Condition A: $V_{cc} = 5.0 V \pm 10\%$, $AV_{cc} = 5.0 V \pm 10\%$, $V_{ss} = AV_{ss} = 0 V$, $\phi = 2$ MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}$ C (regular specifications), $T_a = -40$ to $+85^{\circ}$ C (wide-range specifications)
- Condition B: $V_{cc} = 4.0 \text{ V}$ to 5.5 V, $AV_{cc} = 4.0 \text{ V}$ to 5.5 V, $V_{ss} = AV_{ss} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)
- Condition C: $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $AV_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = AV_{ss} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20$ to $+75^{\circ}\text{C}$

	Condition A				Condition B			Condition C			
		20 MI	Ηz		16 MH	Ηz		10 Mł	Ηz	-	
Item	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
Resolution	10	10	10	10	10	10	10	10	10	Bits	
Conversion time*5	—	—	6.7	_	—	8.4	_	—	13.4	μs	
Analog input capacitance	—	_	20	_	_	20	_	_	20	pF	
Permissible signal- source impedance	—	—	10 ^{*3} 5 ^{*4}	_	—	10 ^{*3} 5 ^{*4}	_	—	10 ^{*1} 5 ^{*2}	kΩ	
Nonlinearity error	—	—	±5.0	_	—	±5.0	_	—	±11.0	LSB	
Offset error	_	_	±5.5	_	_	±5.5	_	_	±11.5	LSB	
Full-scale error	—	—	±5.5	—	_	±5.5	_	—	±11.5	LSB	
Quantization error	—	_	±0.5	_	—	±0.5	_	_	±0.5	LSB	
Absolute accuracy	—	—	±6.0	—	—	±6.0	_	—	±12.0	LSB	

Notes: 1. When 4.0 V \leq AV_{cc} \leq 5.5 V

2. When 3.0 V \leq AV_{cc} < 4.0 V

3. When conversion time \geq 11. 17 μs (CKS = 1 and $\varphi \leq$ 12 MHz, or CKS = 0)

4. When conversion time < 11. 17 μ s (CKS = 1 and ϕ > 12 MHz)

5. In single mode and ϕ = maximum operating frequency.

25.3.4 A/D Conversion Characteristics

Tables 25.24 and 25.25 list the A/D conversion characteristics.

Table 25.24 A/D Conversion Characteristics (AN7 to AN0 Input: 134/266-State Conversion)

- Condition A: $V_{cc} = 5.0 \text{ V} \pm 10\%$, $AV_{cc} = 5.0 \text{ V} \pm 10\%$, $V_{ss} = AV_{ss} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20$ to $+75^{\circ}$ C (regular specifications), $T_a = -40$ to $+85^{\circ}$ C (wide-range specifications)
- Condition B: $V_{cc} = 4.0 \text{ V}$ to 5.5 V, $AV_{cc} = 4.0 \text{ V}$ to 5.5 V, $V_{ss} = AV_{ss} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)
- Condition C: $V_{cc} = 2.7 \text{ V}$ to 3.6 V, $AV_{cc} = 2.7 \text{ V}$ to 3.6 V, $V_{ss} = AV_{ss} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20$ to $+75^{\circ}\text{C}$

	Condition A 20 MHz				Condition B 16 MHz			Condition C			
								10 MHz			
Item	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
Resolution	10	10	10	10	10	10	10	10	10	Bits	
Conversion time ^{*3}		_	6.7		_	8.4	_	_	13.4	μs	
Analog input capacitance	—	—	20	—	—	20	—	—	20	pF	
Permissible signal- source impedance	_	—	10 ^{*1} 5 ^{*2}		—	10 ^{*1} 5 ^{*2}		_	5	kΩ	
Nonlinearity error	_	—	±3.0		—	±3.0	_	—	±7.0	LSB	
Offset error	_	_	±3.5	_	_	±3.5	_	_	±7.5	LSB	
Full-scale error	_	_	±3.5	_	_	±3.5	_	_	±7.5	LSB	
Quantization error	_	—	±0.5	—	—	±0.5	_	—	±0.5	LSB	
Absolute accuracy	_	_	±4.0	_	_	±4.0		_	±8.0	LSB	

Notes: 1. When conversion time \geq 11. 17 μs (CKS = 1 and $\varphi \leq$ 12 MHz, or CKS = 0)

2. When conversion time < 11. 17 μs (CKS = 1 and ϕ > 12 MHz)

3. In single mode and ϕ = maximum operating frequency.

Read/Write

R/W

R/W

R/W

RDR1—Receiv RDR2—Receiv RDR0—Receiv	ve Data R ve Data R ve Data R	egister 1 egister 2 egister 0			5	SCI1 SCI2 SCI0			
Bit	7	6	5	4	3	2	1	0	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R	R	R	R	R	R	R	R	
			St	tores seria	l receive d	ata			
TDR1—Trans	mit Data	Register 1	l	H'FF8B					SCI1
TDR2—Trans	mit Data	Register 2	2		H'FFA.	3		5	SCI2
TDR0—Trans	mit Data	Register ()		H'FFD	В		5	SCI0
Bit	7	6	5	4	3	2	1	0	
Initial value	1	1	1	1	1	1	1	1	

R/W

Stores serial transmit data

R/W

R/W

R/W

R/W

Rev. 4.00 Jun 06, 2006 page 916 of 1004 REJ09B0301-0400

C.3 Port 3 Block Diagram

Figure C.5 Port 3 Block Diagram