

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	H8S/2000
Core Size	16-Bit
Speed	10MHz
Connectivity	Host Interface, I ² C, IrDA, SCI
Peripherals	POR, PWM, WDT
Number of I/O	58
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	80-BQFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2138avfa10v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	16.1.3	Input/Output Pins	458
	16.1.4	Register Configuration	459
16.2	Registe	r Descriptions	460
	16.2.1	I ² C Bus Data Register (ICDR)	460
	16.2.2	Slave Address Register (SAR)	463
	16.2.3	Second Slave Address Register (SARX)	464
	16.2.4	I ² C Bus Mode Register (ICMR)	465
	16.2.5	I ² C Bus Control Register (ICCR)	468
	16.2.6	I ² C Bus Status Register (ICSR)	475
	16.2.7	Serial Timer Control Register (STCR)	480
	16.2.8	DDC Switch Register (DDCSWR)	481
	16.2.9	Module Stop Control Register (MSTPCR)	484
16.3	Operati	on	485
	16.3.1	I ² C Bus Data Format	485
	16.3.2	Master Transmit Operation	487
	16.3.3	Master Receive Operation	489
	16.3.4	Slave Receive Operation	492
	16.3.5	Slave Transmit Operation	495
	16.3.6	IRIC Setting Timing and SCL Control	496
	16.3.7	Automatic Switching from Formatless Mode to I ² C Bus Format	498
	16.3.8	Operation Using the DTC	499
	16.3.9	Noise Canceler	500
	16.3.10	Sample Flowcharts	500
	16.3.11	Initialization of Internal State	505
16.4	Usage I	Notes	506
Secti	on 17	Host Interface [H8S/2138 Group]	523
17.1	Overvi	ew	523
	17.1.1	Features	523
	17.1.2	Block Diagram	524
		Input and Output Pins	
	17.1.4	Register Configuration	526
17.2	Registe	er Descriptions	527
	17.2.1		
	17.2.2	System Control Register 2 (SYSCR2)	528
	17.2.3	Host Interface Control Register (HICR)	
	17.2.4	Input Data Register 1 (IDR1)	
	17.2.5	Output Data Register 1 (ODR1)	530
	17.2.6	Status Register 1 (STR1)	531
	17.2.7	Input Data Register 2 (IDR2)	532
	17.2.8	Output Data Register 2 (ODR2)	533

Rev. 4.00 Jun 06, 2006 page xxvii of liv

(3) Condition-Code Register (CCR)

This 8-bit register contains internal CPU status information, including an interrupt mask bit (I) and half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags.

Bit 7—Interrupt Mask Bit (I): Masks interrupts other than NMI when set to 1. (NMI is accepted regardless of the I bit setting.) The I bit is set to 1 by hardware at the start of an exception-handling sequence. For details, refer to section 5, Interrupt Controller.

Bit 6—User Bit or Interrupt Mask Bit (UI): Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions. This bit can also be used as an interrupt mask bit. For details, refer to section 5, Interrupt Controller.

Bit 5—Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and cleared to 0 otherwise. When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 11, and cleared to 0 otherwise. When the ADD.L, SUB.L, CMP.L, or NEG.L instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 27, and cleared to 0 otherwise.

Bit 4—User Bit (U): Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions.

Bit 3—Negative Flag (N): Stores the value of the most significant bit (sign bit) of data.

Bit 2—Zero Flag (Z): Set to 1 to indicate zero data, and cleared to 0 to indicate non-zero data.

Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to 0 otherwise.

Bit 0—Carry Flag (C): Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:

- Add instructions, to indicate a carry
- Subtract instructions, to indicate a borrow
- Shift and rotate instructions, to store the carry

The carry flag is also used as a bit accumulator by bit-manipulation instructions.

Some instructions leave some or all of the flag bits unchanged. For the action of each instruction on the flag bits, refer to appendix A.1, Instruction.

Renesas

2.7 Addressing Modes and Effective Address Calculation

2.7.1 Addressing Mode

The CPU supports the eight addressing modes listed in table 2.4. Each instruction uses a subset of these addressing modes. Arithmetic and logic instructions can use the register direct and immediate modes. Data transfer instructions can use all addressing modes except program-counter relative and memory indirect. Bit-manipulation instructions use register direct, register indirect, or absolute addressing mode to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a bit number in the operand.

Addressing Mode	Symbol
Register direct	Rn
Register indirect	@ERn
Register indirect with displacement	@(d:16,ERn)/@(d:32,ERn)
Register indirect with post-increment Register indirect with pre-decrement	@ERn+ @-ERn
Absolute address	@aa:8/@aa:16/@aa:24/@aa:32
Immediate	#xx:8/#xx:16/#xx:32
Program-counter relative	@(d:8,PC)/@(d:16,PC)
Memory indirect	@@aa:8
	Register direct Register indirect Register indirect with displacement Register indirect with post-increment Register indirect with pre-decrement Absolute address Immediate Program-counter relative

Table 2.4Addressing Modes

Register Direct—Rn: The register field of the instruction code specifies an 8-, 16-, or 32-bit general register containing the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7 can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.

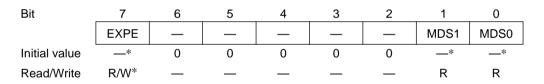
Register Indirect—@**ERn:** The register field of the instruction code specifies an address register (ERn) which contains the address of the operand in memory. If the address is a program instruction address, the lower 24 bits are valid and the upper 8 bits are all assumed to be 0 (H'00).

Register Indirect with Displacement—@(d:16, ERn) or @(d:32, ERn): A 16-bit or 32-bit displacement contained in the instruction is added to an address register (ERn) specified by the register field of the instruction, and the sum gives the address of a memory operand. A 16-bit displacement is sign-extended when added.

Renesas

3.1.2 Register Configuration

The H8S/2138 Group and H8S/2134 Group have a mode control register (MDCR) that indicates the inputs at the mode pins (MD1 and MD0), a system control register (SYSCR) and bus control register (BCR) that control the operation of the MCU, and a serial timer control register (STCR) that controls the operation of the supporting modules. Table 3.2 summarizes these registers.


Table 3.2MCU Registers

Name	Abbreviation	R/W	Initial Value	Address*
Mode control register	MDCR	R/W	Undetermined	H'FFC5
System control register	SYSCR	R/W	H'09	H'FFC4
Bus control register	BCR	R/W	H'D7	H'FFC6
Serial timer control register	STCR	R/W	H'00	H'FFC3

Note: * Lower 16 bits of the address.

3.2 Register Descriptions

3.2.1 Mode Control Register (MDCR)

Note: * Determined by pins MD1 and MD0.

MDCR is an 8-bit read-only register that indicates the operating mode setting and the current operating mode of the MCU.

The EXPE bit is initialized in coordination with the mode pin states by a reset and in hardware standby mode.

6.5 Burst ROM Interface

6.5.1 Overview

With the H8S/2138 Group and H8S/2134 Group, external space area 0 can be designated as burst ROM space, and burst ROM interfacing can be performed.

External space can be designated as burst ROM space by means of the BRSTRM bit in BCR. Consecutive burst accesses of a maximum of 4 words or 8 words can be performed for CPU instruction fetches only. One or two states can be selected for burst access.

6.5.2 Basic Timing

The number of states in the initial cycle (full access) of the burst ROM interface is in accordance with the setting of the AST bit. Also, when the AST bit is set to 1, wait state insertion is possible. One or two states can be selected for the burst cycle, according to the setting of the BRSTS1 bit in BCR. Wait states cannot be inserted.

When the BRSTS0 bit in BCR is cleared to 0, burst access of up to 4 words is performed; when the BRSTS0 bit is set to 1, burst access of up to 8 words is performed.

The basic access timing for burst ROM space is shown in figures 6.8 (a) and (b). The timing shown in figure 6.8 (a) is for the case where the AST and BRSTS1 bits are both set to 1, and that in figure 6.8 (b) is for the case where both these bits are cleared to 0.

Bit	7	6	5	4	3	2	1	0
	CHNE	DISEL	—	—	_		_	—
Initial value	Unde- fined							
Read/Write	_	_		_	_	_		_

7.2.2 DTC Mode Register B (MRB)

MRB is an 8-bit register that controls the DTC operating mode.

Bit 7—DTC Chain Transfer Enable (CHNE): Specifies chain transfer. In chain transfer, multiple data transfers can be performed consecutively in response to a single transfer request. With data transfer for which CHNE is set to 1, there is no determination of the end of the specified number of transfers, clearing of the interrupt source flag, or clearing of DTCER.

Bit 7

CHNE	 Description
0	End of DTC data transfer (activation waiting state is entered)
1	DTC chain transfer (new register information is read, then data is transferred)

Bit 6—DTC Interrupt Select (DISEL): Specifies whether interrupt requests to the CPU are disabled or enabled after a data transfer.

Bit 6

DISEL	Description
0	After a data transfer ends, the CPU interrupt is disabled unless the transfer counter is 0 (the DTC clears the interrupt source flag of the activating interrupt to 0)
1	After a data transfer ends, the CPU interrupt is enabled (the DTC does not clear the interrupt source flag of the activating interrupt to 0)

Bits 5 to 0—Reserved: In the H8S/2138 Group these bits have no effect on DTC operation, and should always be written with 0.

9.2 Register Descriptions

9.2.1 PWM Register Select (PWSL)

Bit	7	6 5		4	3	2	2 1	
	PWCKE	PWCKS	—	—	RS3	RS2	RS1	RS0
Initial value	0	0	1	0	0	0	0	0
Read/Write	R/W	R/W	—	—	R/W	R/W	R/W	R/W

PWSL is an 8-bit readable/writable register used to select the PWM timer input clock and the PWM data register.

PWSL is initialized to H'20 by a reset, and in the standby modes, watch mode, subactive mode, subsleep mode, and module stop mode.

Bits 7 and 6—PWM Clock Enable, PWM Clock Select (PWCKE, PWCKS): These bits, together with bits PWCKA and PWCKB in PCSR, select the internal clock input to TCNT in the PWM timer.

P	PWSL	F	PCSR		
Bit 7	Bit 6	Bit 2	Bit 1		
PWCKE	PWCKS PWCKB PWCKA		Description		
0	_		_	Clock input is disabled	(Initial value)
1	0		_	$\boldsymbol{\phi}$ (system clock) is selected	
	1	0	0	φ/2 is selected	
			1	φ/4 is selected	
		1	0	φ/8 is selected	
			1	φ/16 is selected	

The PWM resolution, PWM conversion period, and carrier frequency depend on the selected internal clock, and can be found from the following equations.

Resolution (minimum pulse width) = 1/internal clock frequency PWM conversion period = resolution \times 256 Carrier frequency = 16/PWM conversion period

Thus, with a 20-MHz system clock (ϕ), the resolution, PWM conversion period, and carrier frequency are as shown below.

10.1.3 Pin Configuration

Table 10.1 lists the pins used by the PWM D/A module.

Table 10.1 Input and Output Pins

Name	Abbr.	I/O	Function
PWM output pin 0	PWX0	Output	PWM output, channel A
PWM output pin 1	PWX1	Output	PWM output, channel B

10.1.4 Register Configuration

Table 10.2 lists the registers of the PWM D/A module.

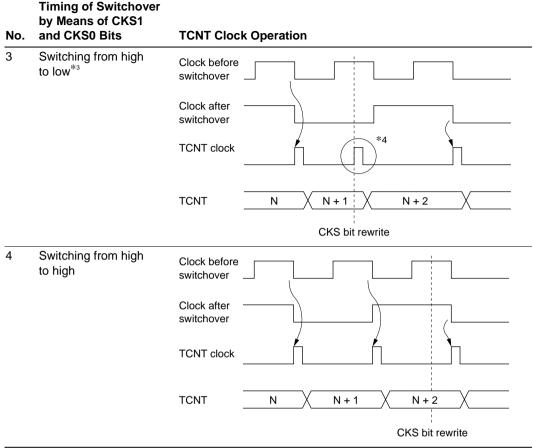
Table 10.2 Register Configuration

Name	Abbreviation	R/W	Initial value	Address ^{*1}
PWM D/A control register	DACR	R/W	H'30	H'FFA0 ^{*2}
PWM D/A data register A high	DADRAH	R/W	H'FF	H'FFA0 ^{*2}
PWM D/A data register A low	DADRAL	R/W	H'FF	H'FFA1 ^{*2}
PWM D/A data register B high	DADRBH	R/W	H'FF	H'FFA6 ^{*2}
PWM D/A data register B low	DADRBL	R/W	H'FF	H'FFA7 ^{*2}
PWM D/A counter high	DACNTH	R/W	H'00	H'FFA6 ^{*2}
PWM D/A counter low	DACNTL	R/W	H'03	H'FFA7 ^{*2}
Module stop control register	MSTPCRH	R/W	H'3F	H'FF86
	MSTPCRL	R/W	H'FF	H'FF87

Notes: 1. Lower 16 bits of the address.

 Registers in the 14-bit PWM timer are assigned to the same addresses as the other registers. In this case, register selection is performed by the IICE bit in the serial timer control register (STCR), and also the same addresses are shared by DADRAH and DACR, and by DADRB and DACNT. Switching is performed by the REGS bit in DACNT or DADRB.

	DADRH							DADRL								
Bit (CPU)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
. ,	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	_
Bit (Data)		DA12			-	DA8	-	-	DA5		DA3	-	DA1	-	050	
DADRA	DATS	DATZ	DATI	DATO	DA9	DA6	DA7	_	_		_		DAT	DA0	CFS	
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	—
DADRB	DA13	DA12	DA11	DA10	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	CFS	REGS
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W


10.2.2 D/A Data Registers A and B (DADRA and DADRB)

There are two 16-bit readable/writable D/A data registers: DADRA and DADRB. DADRA corresponds to PWM D/A channel A, and DADRB to PWM D/A channel B. The CPU can read and write the PWM D/A data register values, but since DADRA and DADRB are 16-bit registers, data transfers between them and the CPU are performed using a temporary register (TEMP). See section 10.3, Bus Master Interface, for details.

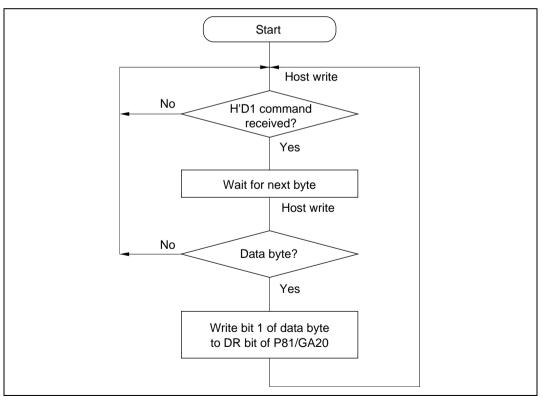
The least significant (CPU) bit of DADRA is not used and is always read as 1.

DADR is initialized to H'FFFF by a reset, and in the standby modes, watch mode, subactive mode, subsleep mode, and module stop mode.

Notes: 1. Includes switching from low to stop, and from stop to low.

- 2. Includes switching from stop to high.
- 3. Includes switching from high to stop.
- 4. Generated on the assumption that the switchover is a falling edge; TCNT is incremented.

Table 13.8	Examples of OCRAR, OCRAF, TOCR, TCORA, TCORB, TCR, and TCSR
	Settings


Register	Bit(s)	Abbreviation	Contents	Desc	ription
TCR in	7	CMIEB	0	Interrupts due to con	
TMRY	6	CMIEA	0	overflow are disable	ed
	5	OVIE	0		
	4 and 3	CCLR1, CCLR0	01	TCNT is cleared by	compare-match A
	2 to 0	CKS2 to CKS0	001	TCNT is incremente	ed on internal clock:
TCSR in TMRY	3 to 0	OS3 to OS0	0110	0 output on compare 1 output on compare	
TOCRA in TMRY			H'3F (example)	IHG signal period =	φ×256
TOCRB in TMR	Y		H'03 (example)	IHG signal 1 interva	l = φ × 16
TCR in FRT	1 and 0	CKS1, CKS0	01	FRC is incremented	l on internal clock: φ/8
OCRAR in FRT			H'7FEF (example)	IVG signal 0 interval = $\phi \times 262016$	IVG signal period = $\phi \times 262144$ (1024 times IHG signal)
OCRAF in FRT			H'000F (example)	IVG signal 1 interval = $\phi \times 128$	_
TOCR in FRT	6	OCRAMS	1	OCRA is set to the or which OCRAR and	

only when register IDR1 is accessed using $\overline{CS1}$. Slave logic decodes the commands input from the host processor. When an H'D1 host command is detected, bit 1 of the data following the host command is output from the GA20 output pin. This operation does not depend on firmware or interrupts, and is faster than the regular processing using interrupts. Table 17.7 lists the conditions that set and clear GA20 (P81). Figure 17.2 shows the GA20 output in flowchart form. Table 17.8 indicates the GA20 output signal values.

Table 17.7 GA20 (P81) Set/Clear Timing

Pin Name	Setting Condition	Clearing Condition
GA20 (P81)	Rising edge of the host's write signal (IOW) when bit 1 of the written data is 1 and the data follows an H'D1 host command	Rising edge of the host's write signal (IOW) when bit 1 of the written data is 0 and the data follows an H'D1 host command
		Also, when bit FGA20E in HICR is cleared to 0

Renesas

- Interrupts cannot be used while the flash memory is being programmed or erased.
- The RxD1 and TxD1 pins should be pulled up on the board.
- Before branching to the programming control program (RAM area H'(FF)E080 (128-kbyte versions including H8S/2132, except for H8S/2132R or H'(FF)E880 (64-kbyte versions, including H8S/2132R, except for H8S/2132)), the chip terminates transmit and receive operations by the on-chip SCI (channel 1) (by clearing the RE and TE bits in SCR to 0), but the adjusted bit rate value remains set in BRR. The transmit data output pin, TxD1, goes to the high-level output state (P84DDR = 1, P84DR = 1).

The contents of the CPU's internal general registers are undefined at this time, so these registers must be initialized immediately after branching to the programming control program. In particular, since the stack pointer (SP) is used implicitly in subroutine calls, etc., a stack area must be specified for use by the programming control program.

The initial values of other on-chip registers are not changed.

• Boot mode can be entered by making the pin settings shown in table 21.6 and executing a reset-start.

When the chip detects the boot mode setting at reset release^{*1}, P92, P91, and P90 can be used as I/O ports.

Boot mode can be cleared by driving the reset pin low, waiting at least 20 states, then setting the mode pins, and executing reset release^{*1}. Boot mode can also be cleared by a WDT overflow reset.

The mode pin input levels must not be changed in boot mode.

• If the mode pin input levels are changed (for example, from low to high) during a reset, the state of ports with multiplexed address functions and bus control output pins (AS, RD, WR) will change according to the change in the microcomputer's operating mode^{*2}.

Therefore, care must be taken to make pin settings to prevent these pins from becoming output signal pins during a reset, or to prevent collision with signals outside the microcomputer.

- Notes: 1. Mode pin input must satisfy the mode programming setup time ($t_{MDS} = 4$ states) with respect to the reset release timing.
 - 2. Ports with multiplexed address functions will output a low level as the address signal if mode pin setting is for mode 1 is entered during a reset. In other modes, the port pins go to the high-impedance state. The bus control output signals will output a high level if mode pin setting is for mode 1 is entered during a reset. In other modes, the port pins go to the high-impedance state.

21.10.2 Socket Adapters and Memory Map

In programmer mode, a socket adapter is mounted on the writer programmer to match the package concerned. Socket adapters are available for each writer manufacturer supporting Renesas Technology microcomputer device types with 128-kbyte or 64-kbyte on-chip flash memory.

Figure 21.15 shows the memory map in programmer mode. For pin names in programmer mode, see section 1.3.2, Pin Functions in Each Operating Mode.

MCU mode	H8S/2138 H8S/2134	Programmer mode	MCU mode	H8S/2132	Programmer mode
H'000000		H'00000	H'000000 [H'00000
				On-chip	
	On-chip			ROM area	
	ROM area		H'00FFFF		H'0FFFF
				Undefined value	
H'01FFFF		H'1FFFF		output	H'1FFFF

21.10.3 Programmer Mode Operation

Table 21.11 shows how the different operating modes are set when using programmer mode, and table 21.12 lists the commands used in programmer mode. Details of each mode are given below.

Memory Read Mode

Memory read mode supports byte reads.

Auto-Program Mode

Auto-program mode supports programming of 128 bytes at a time. Status polling is used to confirm the end of auto-programming.

Auto-Erase Mode

Auto-erase mode supports automatic erasing of the entire flash memory. Status polling is used to confirm the end of auto-erasing.

Status Read Mode

Status polling is used for auto-programming and auto-erasing, and normal termination can be confirmed by reading the FO6 signal. In status read mode, error information is output if an error occurs.

Bit	7	6	5	4	3	2	1	0
EBR1	—	—	_	_	_	—	EB9	EB8
Initial value	0	0	0	0	0	0	0	0
Read/Write	*2	*2	*2	*2	*2	*2	R/W*1	R/W*1
Bit	7	6	5	4	3	2	1	0
EBR2	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W*1	R/W	R/W	R/W	R/W	R/W	R/W	R/W

22.5.3 Erase Block Registers 1 and 2 (EBR1, EBR2)

Notes: 1. In normal mode, these bits cannot be modified and are always read as 0.

2. This bit must not be set to 1.

EBR1 and EBR2 are registers that specify the flash memory erase area block by block; bits 1 and 0 in EBR1 and bits 7 to 0 in EBR2 are readable/writable bits. EBR1 and EBR2 are each initialized to H'00 by a reset, in hardware standby mode, software standby mode, subactive mode, subsleep mode, and watch mode, and when the SWE bit in FLMCR1 is not set. When a bit in EBR1 and EBR2 is set, the corresponding block can be erased. Other blocks are erase-protected. Set only one bit in EBR1 and EBR2 (more than one bit cannot be set). When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

The flash memory block configuration is shown in table 22.5.

Item		Symbol	Min	Тур	Мах	Unit	Test Conditions
Output high	All output pins	V _{oh}	V_{cc} –0.5	—	_	V	I _{oH} = -200 μA
voltage	(except P97, and P52 ^{*₄}) ^{*₅}		3.5	—	_	V	I _{он} = -1 mA
	P97, P52 ^{*4}		2.0	—	—	V	$I_{_{OH}} = -200 \ \mu A,$ $V_{_{CC}} = 4.5 \ to$ 5.5 V
Output low	All output pins*5	V _{ol}	_	—	0.4	V	I _{oL} = 1.6 mA
voltage	Ports 1 to 3		_	_	1.0	V	I _{oL} = 10 mA
Input	RES	I _{in}	_	—	10.0	μA	V _{in} = 0.5 to
leakage current	STBY, NMI, MD1, MD	00	_	—	1.0	μA	V _{cc} –0.5 V
current	Port 7		_	_	1.0	μA	V_{in} = 0.5 to AV _{cc} -0.5 V
Three-state leakage current (off state)	Ports 1 to 6, 8, 9	I _{tsi}	_	_	1.0	μA	$V_{in} = 0.5$ to $V_{cc} - 0.5$ V
Input pull-up	Ports 1 to 3	—I _P	30	—	300	μA	$V_{in} = 0 V$
MOS current	Port 6 (P6PUE = 0)		60	_	600	μA	_
ourient	Port 6 (P6PUE = 1)		15	_	200	μA	_
Input	RES (4)) C _{in}	_	—	80	pF	$V_{in} = 0 V,$
capacitance	NMI		_	—	50	pF	¯ f = 1 MHz, ₋ T _a = 25°C
	P52, P97, P42, P86		_	—	20	pF	r _a – 20 0
	Input pins except (4) above		_	_	15	pF	-
Current	Normal operation	I _{cc}	_	55	70	mA	f = 20 MHz
dissipation*7	Sleep mode		_	36	55	mA	f = 20 MHz
	Standby mode*8		_	1.0	5.0	μA	$T_a \le 50^{\circ}C$
			_	_	20.0	μA	50°C < T _a
Analog power	During A/D, D/A conversion	Al _{cc}	_	3.2	7.0	mA	
supply current	Idle		_	0.01	5.0	μA	AV _{cc} = 2.0 V to 5.5 V

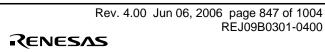
Table 25.17 Permissible Output Currents

Conditions: $V_{cc} = 4.0 \text{ V}$ to 5.5 V, $V_{ss} = 0 \text{ V}$, $Ta = -20 \text{ to } +75^{\circ}\text{C}$ (regular specifications), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit
Permissible output low current (per pin)	SCL1, SCL0, SDA1, SDA0	I _{ol}	_	—	20	mA
	Ports 1 to 3		_	_	10	mA
	Other output pins		_	_	2	mA
Permissible output	Total of ports 1 to 3	$\Sigma {\rm I}_{\rm OL}$	_	_	80	mA
low current (total)	Total of all output pins, including the above		_	—	120	mA
Permissible output high current (per pin)	All output pins	— І _{он}	—	—	2	mA
Permissible output high current (total)	Total of all output pins	$\sum -\mathbf{I}_{\text{OH}}$	—	—	40	mA

Conditions: $V_{cc} = 2.7 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$, $T_a = -20 \text{ to } +75^{\circ}\text{C}$

Item		Symbol	Min	Тур	Max	Unit
Permissible output low current (per pin)	SCL1, SCL0, SDA1, SDA0	I _{ol}	_	—	10	mA
	Ports 1 to 3		_	_	2	mA
	Other output pins		_	_	1	mA
Permissible output	Total of ports 1 to 3	$\Sigma I_{\rm OL}$	_	_	40	mA
low current (total)	Total of all output pins, including the above		_	_	60	mA
Permissible output high current (per pin)	All output pins	— І _{он}	_	—	2	mA
Permissible output high current (total)	Total of all output pins	$\Sigma - \mathbf{I}_{\text{OH}}$	_	—	30	mA


Notes: 1. To protect chip reliability, do not exceed the output current values in table 25.17.

2. When driving a Darlington pair or LED, always insert a current-limiting resistor in the output line, as show in figures 25.1 and 25.2.

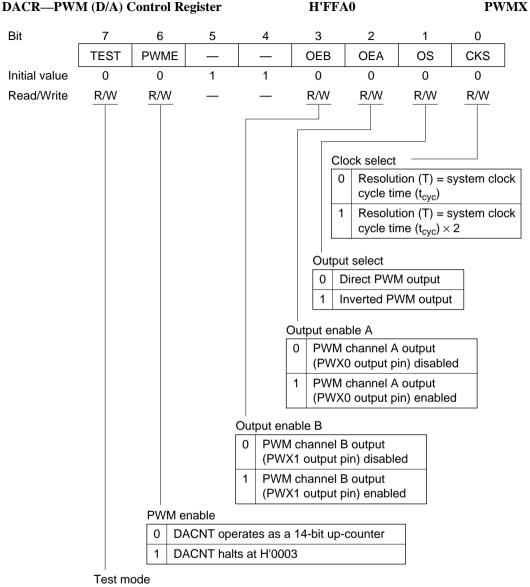
Section 25 Electrical Characteristics

				Con	dition A	Con	dition B	Con	dition C		
				20	MHz	16	MHz	10	MHz		Test
Item			Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
TMR	Timer ou time	utput delay	\mathbf{t}_{TMOD}	—	50	—	50	_	100	ns	Figure 25.18
	Timer re setup tin	set input ne	$t_{_{\rm TMRS}}$	30	—	30	_	50	_		Figure 25.20
	Timer closetup tin	ock input ne	$t_{\rm TMCS}$	30	_	30	_	50	_		Figure 25.19
	Timer clock	Single edge	t_{TMCWH}	1.5	_	1.5	_	1.5	_	t _{cyc}	_
	pulse width	Both edges	$\mathbf{t}_{\text{TMCWL}}$	2.5	_	2.5	_	2.5	_		
PWM, PWMX	Pulse ou delay tin	•	t _{PWOD}	_	50	_	50	_	100	ns	Figure 25.21
SCI	Input clock	Asynchro- nous	t _{scyc}	4	_	4	_	4	_	t _{cyc}	Figure 25.22
	cycle	Synchro- nous		6	_	6	_	6	_		
	Input clo width	ock pulse	t _{scкw}	0.4	0.6	0.4	0.6	0.4	0.6	$\mathbf{t}_{_{\mathrm{Scyc}}}$	_
	Input clo	ck rise time	t _{scKr}	—	1.5	—	1.5	—	1.5	t _{cyc}	_
	Input clo	ock fall time	t _{sckf}	—	1.5	_	1.5	—	1.5		
		t data delay nchronous)	\mathbf{t}_{TXD}	_	50	_	50	_	100	ns	Figure 25.23
		data setup nchronous)	t _{RXS}	50	—	50	—	100	—	ns	-
		data hold nchronous)	t _{RXH}	50	—	50	—	100	—	ns	_
A/D converter		nput setup	\mathbf{t}_{TRGS}	30	—	30	—	50	—	ns	Figure 25.24

Note: * Only supporting modules that can be used in subclock operation.

4th byte

3rd byte


2nd byte

1st byte

Instruction code:

Instruction code:		1st byte	2nd byte	te	3rd byte		4th byte			ļ	N	 Instruct 	ion when	most sign	ificant bit	 Instruction when most significant bit of DH is 0.
	АН	AL	BH	BLC	CH	Н Н	Ы			ľ		 Instruct 	ion when	most sign	ificant bit	Instruction when most significant bit of DH is 1.
				-		-										
	0	1	2	3	4	5	9	7	8	6	A	В	С	D	ш	ш
01C05	MULXS		MULXS													
01D05		DIVXS		DIVXS												
01F06					OR	XOR	AND									
7Cr06*1				BTST												
7Cr07*1				BTST	BOR BIOR	BXOR	BAND									
7Dr06*1	BSET	BNOT	BCLR					BST BIST								
7Dr07*1	BSET	BNOT	BCLR													
7Eaa6*2				BTST												
7Eaa7* ²				BTST	BOR BIOR	BXOR BIXOF	BAND BIAND									
7Faa6*2	BSET	BNOT	BCLR					BST BIST								
7Faa7*2	BSET	BNOT	BCLR													
Note: 1 rie the register specification field	o rodietor	enonificati	tion field													

r is the register specification field. aa is the absolute address specification. ÷ ~; Notes:

0	User mode: the PWM D/A module operates normally
1	Test mode: correct conversion results will not be obtained