

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	8
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051t600-gsr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

1.	System Overview	
	Figure 1.1. C8051T600/2/4 Block Diagram	14
	Figure 1.2. C8051T601/3/5 Block Diagram	14
	Figure 1.3. C8051T606 Block Diagram	15
2.	Ordering Information	
3.	Pin Definitions	
	Figure 3.1. C8051T600/1/2/3/4/5-GM QFN11 Pinout Diagram (Top View)	19
	Figure 3.2. C8051T600/1/2/3/4/5-GS SOIC14 Pinout Diagram (Top View)	19
	Figure 3.3. C8051T606-GM QFN11 Pinout Diagram (Top View)	20
	Figure 3.4. C8051T606-GT MSOP10 Pinout Diagram (Top View)	20
	Figure 3.5. C8051T606-ZM QFN10 Pinout Diagram (Top View)	21
4.	QFN-11 Package Specifications	
	Figure 4.1. QFN-11 Package Drawing	22
	Figure 4.2. QFN-11 PCB Land Pattern	23
5.	SOIC-14 Package Specifications	
	Figure 5.1. SOIC-14 Package Drawing	24
	Figure 5.2. SOIC-14 Recommended PCB Land Pattern	25
6.	MSOP-10 Package Specifications	
	Figure 6.1. MSOP-10 Package Drawing	26
	Figure 6.2. MSOP-10 PCB Land Pattern	27
7.	QFN-10 Package Specifications	
	Figure 7.1. QFN-10 Package Drawing	28
_	Figure 7.2. QFN-10 PCB Land Pattern	29
8.	Electrical Characteristics	
	Figure 8.1. C8051T600/1/2/3/4/5 Normal Mode Supply Current vs. Frequency	~ ~
	(MPCE = 1)	38
	Figure 8.2. C8051T606 Normal Mode Supply Current vs. Frequency (MPCE = 1)	38
	Figure 8.3. C80511600/1/2/3/4/5 Idle Mode Supply Current vs. Frequency	~~
	(MPCE = 1)	39
•	Figure 8.4. C80511606 Idle Mode Digital Current VS. Frequency (MPCE = 1)	39
9.	Tu-Bit ADC (ADCU, C80511600/2/4 Only)	40
	Figure 9.1. ADC0 Functional Block Diagram	40
	Figure 9.2. 10-Bit ADC Track and Conversion Example Timing	42
	Figure 9.3. ADC0 Equivalent input Circuits	43
	Figure 9.4. ADC Window Compare Example: Right-Justified Data	49
	Figure 9.5. ADC Window Compare Example. Left-Justified Data	49
10	Tomporature Sensor (C9051T600/2/4 only)	50
IU	Figure 10.1. Temperature Sensor Transfer Function	۲ 0
	Figure 10.2. Temperature Sensor Error with 1-Point Calibration at 0.°C	52
11	Voltage Reference Options	55
	Figure 11.1 Voltage Reference Functional Black Diagram	55
12	Voltage Regulator (REG0)	55
12		

Table 8.4. Reset Electrical Characteristics

-40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
RST Output Low Voltage	I _{OL} = 8.5 mA, V _{DD} = 1.8 V to 3.6 V	—		0.6	V
RST Input High Voltage		0.75 x V _{DD}	_	—	V
RST Input Low Voltage		—	_	0.6	V_{DD}
RST Input Pullup Current	RST = 0.0 V	—	25	50	μA
V _{DD} POR Ramp Time		—	_	1	ms
V_{DD} Monitor Threshold (V_{RST})		1.7	1.75	1.8	V
Missing Clock Detector Timeout	Time from last system clock rising edge to reset initiation	400	625	900	μs
Reset Time Delay	Delay between release of any reset source and code execution at location 0x0000	_		60	μs
Minimum RST Low Time to Generate a System Reset		15	_	—	μs
V _{DD} Monitor Turn-on Time	$V_{DD} = V_{RST} - 0.1 V$	—	50	—	μs
V _{DD} Monitor Supply Current		_	20	30	μA

Table 8.5. Internal Voltage Regulator Electrical Characteristics

-40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Input Voltage Range		1.8	_	3.6	V
Bias Current	Normal Mode		30	50	μA

Table 8.6. EPROM Electrical Characteristics

Parameter	Conditions	Min	Тур	Max	Units	
EPROM Size	C8051T600/1	8192*			bytes	
	C8051T602/3	4096	—	—	bytes	
	C8051T604/5	2048	—	—	bytes	
	C8051T606	1536	—	—	bytes	
Write Cycle Time (per Byte)		105	155	205	μs	
Programming Voltage (V _{PP})	C8051T600/1/2/3/4/5	6.25	6.5	6.75	V	
Programming Voltage (V _{PP})	C8051T606	5.75	6.0	6.25	V	
Note: 512 bytes at location 0x1E00 to 0x1FFF are not available for program storage						

SFR Definition 9.4. ADC0CN: ADC0 Control

Bit	7	6	5	4	3	2	1	0
Name	AD0EN	AD0TM	AD0INT	AD0BUSY	AD0WINT		AD0CM[2:0]	
Туре	R/W	R/W	R/W	R/W	R/W		R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE8; Bit-Addressable

Bit	Name	Function						
7	AD0EN	ADC0 Enable Bit.						
		0: ADC0 Disabled. ADC0 is in low-power shutdown.						
		1: ADC0 Enabled. ADC0 is active and ready for dat	a conversions.					
6	AD0TM	ADC0 Track Mode Bit.						
		0: Normal Track Mode: When ADC0 is enabled, tra version is in progress. Conversion begins immediat as defined by AD0CM[2:0].	cking is continuous unless a con- ely on start-of-conversion event,					
		1: Delayed Track Mode: When ADC0 is enabled, in is not in progress. A start-of-conversion signal initia tracking, and then begins the conversion.	put is tracked when a conversion tes three SAR clocks of additional					
5	AD0INT	ADC0 Conversion Complete Interrupt Flag.						
		0: ADC0 has not completed a data conversion sinc	e AD0INT was last cleared.					
		1: ADC0 has completed a data conversion.						
4	AD0BUSY	ADC0 Busy Bit. Read:	Write:					
		0: ADC0 conversion is not in	0: No Effect.					
		1: ADC0 conversion is in prog- ress.	1: Initiates ADC0 Conversion if $AD0CM[2:0] = 000b$					
3	AD0WINT	ADC0 Window Compare Interrupt Flag.						
		0: ADC0 Window Comparison Data match has not cleared.	occurred since this flag was last					
		1: ADC0 Window Comparison Data match has occ	urred.					
2:0	AD0CM[2:0]	ADC0 Start of Conversion Mode Select.						
		000: ADC0 start-of-conversion source is write of 1 t	o ADOBUSY.					
		001: ADC0 start-of-conversion source is overflow of Timer 0.						
		011: ADC0 start-of-conversion source is overflow o	f Timer 1.					
		100: ADC0 start-of-conversion source is rising edge	e of external CNVSTR.					
		101: ADC0 start-of-conversion source is overflow o 11x: Reserved.	f Timer 3.					

SFR Definition 9.9. AMX0SL: AMUX0 Positive Channel Select

Bit	7	6	5	4	3	2	1	0
Name					AMX0P[3:0]			
Туре	R/W	R/W	R/W	R/W	R/W			
Reset	1	0	0	0	0	0	0	0

SFR Address = 0xBB

Bit	Name		Function		
7:4	Unused	Unused. Read = 1000b; Write = Don't Care.			
3:0	AMX0P[3:0]	AMUX0 Positive Input Selection.			
		0000:	P0.0		
		0001:	P0.1		
		0010:	P0.2		
		0011:	P0.3		
		0100:	P0.4		
		0101:	P0.5		
		0110:	P0.6		
		0111:	P0.7		
		1000:	Temp Sensor		
		1001:	V _{DD}		
		1010 – 1111:	no input selected		

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0–R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through R0 or R1.

rel - 8-bit, signed (twos complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00–0x7F) or an SFR (0x80–0xFF).

#data - 8-bit constant

#data16 - 16-bit constant

bit - Direct-accessed bit in Data RAM or SFR

addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.

addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 8 kB program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

19.7. EPROM Error Reset

If an EPROM read or write targets an illegal address, a system reset is generated. This may occur due to any of the following:

- Programming hardware attempts to write or read an EPROM location which is above the user code space address limit.
- An EPROM read from firmware is attempted above user code space. This occurs when a MOVC operation is attempted above the user code space address limit.
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above the user code space address limit.

The MEMERR bit (RSTSRC.6) is set following an EPROM error reset. The state of the \overline{RST} pin is unaffected by this reset.

19.8. Software Reset

Software may force a reset by writing a 1 to the SWRSF bit (RSTSRC.4). The SWRSF bit will read 1 following a software forced reset. The state of the RST pin is unaffected by this reset.

SFR Definition 19.1. RSTSRC: Reset Source

Bit	7	6	5	4	3	2	1	0
Name		MEMERR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF
Туре	R	R	R/W	R/W	R	R/W	R/W	R
Reset	0	Varies						

SFR Address = 0xEF

Bit	Name	Description	Write	Read
7	Unused	Unused.	Don't care.	0
6	MEMERR	EPROM Error Reset Flag.	N/A	Set to 1 if EPROM read/write error caused the last reset.
5	CORSEF	Comparator0 Reset Enable and Flag.	Writing a 1 enables Comparator0 as a reset source (active-low).	Set to 1 if Comparator0 caused the last reset.
4	SWRSF	Software Reset Force and Flag.	Writing a 1 forces a sys- tem reset.	Set to 1 if last reset was caused by a write to SWRSF.
3	WDTRSF	Watchdog Timer Reset Flag.	N/A	Set to 1 if Watchdog Timer overflow caused the last reset.
2	MCDRSF	Missing Clock Detector Enable and Flag.	Writing a 1 enables the Missing Clock Detector. The MCD triggers a reset if a missing clock condition is detected.	Set to 1 if Missing Clock Detector timeout caused the last reset.
1	PORSF	Power-On/V _{DD} Monitor Reset Flag, and V _{DD} monitor Reset Enable.	Writing a 1 enables the V_{DD} monitor and configures it as a reset source. Writing 1 to this bit while the V_{DD} monitor is disabled may cause a system reset.	Set to 1 any time a power- on or V _{DD} monitor reset occurs. When set to 1, all other RSTSRC flags are inde- terminate.
0	PINRSF	HW Pin Reset Flag.	N/A	Set to 1 if RST pin caused the last reset.
Note:	Do not use	read-modify-write operations on this	s register	

22.2.3. Assigning Port I/O Pins to External Digital Event Capture Functions

External digital event capture functions can be used to trigger an interrupt or wake the device from a low power mode when a transition occurs on a digital I/O pin. The digital event capture functions do not require dedicated pins and will function on both GPIO pins (XBR0 = 1) and pins in use by the crossbar (XBR0 = 0). External digital event capture functions cannot be used on pins configured for analog I/O. Table 22.3 shows all available external digital event capture functions.

Table 22.3. Port I/O Assignment for External Digital Event Capture Functions

Digital Function	Potentially Assignable Port Pins	SFR(s) used for Assignment
External Interrupt 0	P0.0–P0.7	IT01CF
External Interrupt 1	P0.0–P0.7	IT01CF

SFR Definition 22.1. XBR0: Port I/O Crossbar Register 0

Bit	7	6	5	4	3	2	1	0
Nam	Name XSKP[6:0]					•		
Type R R/W								
Rese	et 0	0* 0 0 0 0 0				0	0*	
SFR A	Address = 0>	κE1						
Bit	Name				Function			
7	Unused	Unused. Read	d = 0; Write	= Don't Care				
6:0	XSKP[6:0]	Crossbar Ski These bits se	p Enable B ect port pins	its. s to be skipp	ed by the cro	ossbar deco	der. Port pins	s used for
		0: Correspond 1: Correspond	nalog, special functions or GPIO should be skipped by the crossbar. : Corresponding P0.n pin is not skipped by the crossbar. : Corresponding P0.n pin is skipped by the crossbar.					
		Note: Bits 6 ar	ote: Bits 6 and 0 on the C8051T606 are read-only with a reset value of '1'.					

SFR Definition 22.3. XBR2: Port I/O Crossbar Register 2

Bit	7	6	5	4	3	2	1	0
Name	WEAKPUD	XBARE				T1E	T0E	ECIE
Туре	R/W	R/W	R	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE3

Bit	Name	Function
7	WEAKPUD	Port I/O Weak Pullup Disable.
		0: Weak Pullups enabled (except for Ports whose I/O are configured for analog mode).
		1: Weak Pullups disabled.
6	XBARE	Crossbar Enable.
		0: Crossbar disabled.
		1: Crossbar enabled.
5:3	Unused	Unused. Read = 000b; Write = Don't Care.
2	T1E	T1 Enable.
		0: T1 unavailable at Port pin.
		1: T1 routed to Port pin.
1	T0E	T0 Enable.
		0: T0 unavailable at Port pin.
		1: T0 routed to Port pin.
0	ECIE	PCA0 External Counter Input Enable.
		0: ECI unavailable at Port pin.
		1: ECI routed to Port pin.

SFR Definition 22.5. P0MDIN: Port 0 Input Mode

Bit	7	6	5	4	3	2	1	0
Name	P0MDIN[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address = 0xF1

Bit	Name	Function
7:0	P0MDIN[7:0]	Analog Configuration Bits for P0.7–P0.0 (respectively).
		Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
		0: Corresponding P0.n pin is configured for analog mode.
		1: Corresponding P0.n pin is not configured for analog mode.
		Note: Bits 6 and 0 on the C8051T606 are read-only.

SFR Definition 22.6. P0MDOUT: Port 0 Output Mode

Bit	7	6	5	4	3	2	1	0
Name	P0MDOUT[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xA4

Bit	Name	Function
7:0	P0MDOUT[7:0]	Output Configuration Bits for P0.7–P0.0 (respectively).
		These bits are ignored if the corresponding bit in register P0MDIN is logic 0. 0: Corresponding P0.n Output is open-drain. 1: Corresponding P0.n Output is push-pull.
		Note: Bits 6 and 0 on the C8051T606 are read-only.

SMBCS1	SMBCS0	SMBus Clock Source
0	0	Timer 0 Overflow
0	1	Timer 1 Overflow
1	0	Timer 2 High Byte Overflow
1	1	Timer 2 Low Byte Overflow

Table 23.1. SMBus Clock Source Selection

The SMBCS1–0 bits select the SMBus clock source, which is used only when operating as a master or when the Free Timeout detection is enabled. When operating as a master, overflows from the selected source determine the absolute minimum SCL low and high times as defined in Equation 23.1. Note that the selected clock source may be shared by other peripherals so long as the timer is left running at all times. For example, Timer 1 overflows may generate the SMBus and UART baud rates simultaneously. Timer configuration is covered in Section "25. Timers" on page 145.

$$T_{HighMin} = T_{LowMin} = \frac{1}{f_{ClockSourceOverflow}}$$

Equation 23.1. Minimum SCL High and Low Times

The selected clock source should be configured to establish the minimum SCL High and Low times as per Equation 23.1. When the interface is operating as a master (and SCL is not driven or extended by any other devices on the bus), the typical SMBus bit rate is approximated by Equation 23.2.

$$BitRate = \frac{f_{ClockSourceOverflow}}{3}$$

Equation 23.2. Typical SMBus Bit Rate

Figure 23.4 shows the typical SCL generation described by Equation 23.2. Notice that T_{HIGH} is typically twice as large as T_{LOW} . The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by Equation 23.1.

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable

SFR Definition 24.1. SCON0: Serial Port 0 Control

Bit	7	6	5	4	3	2	1	0
Name	SOMODE		MCE0	REN0	TB80	RB80	T10	RI0
Туре	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	0	0	0	0	0	0

SFR Address = 0x98; Bit-Addressable

Bit	Name	Function
7	SOMODE	Serial Port 0 Operation Mode. Selects the UART0 Operation Mode.
		0: 8-bit UART with Variable Baud Rate. 1: 9-bit UART with Variable Baud Rate.
6	Unused	Unused. Read = 1b, Write = Don't Care.
5	MCE0	Multiprocessor Communication Enable.
		The function of this bit is dependent on the Serial Port 0 Operation Mode: Mode 0: Checks for valid stop bit.
		0: Logic level of stop bit is ignored.
		1: RIO will only be activated if stop bit is logic level 1.
		Mode 1: Multiprocessor Communications Enable.
		1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1.
4	REN0	Receive Enable.
		0: UART0 reception disabled.
		1: UART0 reception enabled.
3	TB80	Ninth Transmission Bit.
		The logic level of this bit will be sent as the ninth transmission bit in 9-bit UART Mode (Mode 1). Unused in 8-bit mode (Mode 0).
2	RB80	Ninth Receive Bit.
		RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9th data bit in Mode 1.
1	TI0	Transmit Interrupt Flag.
		Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit in 8-bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the UART0 interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually by software.
0	RI0	Receive Interrupt Flag.
		Set to 1 by hardware when a byte of data has been received by UART0 (set at the STOP bit sampling time). When the UART0 interrupt is enabled, setting this bit to 1 causes the CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually by software.

C8051T600/1/2/3/4/5/6

25.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 in the TCON register is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit (TCON.4) enables the timer when either GATE0 in the TMOD register is logic 0 or when the input signal INT0 is active as defined by bit IN0PL in register IT01CF (see Section "17.3. INT0 and INT1 External Interrupt Sources" on page 87 for details on the external input signals INT0 and INT1).

Figure 25.2. T0 Mode 2 Block Diagram

25.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0, and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1, or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

C8051T600/1/2/3/4/5/6

SFR Definition 25.12. TMR2H Timer 2 High Byte

Bit	7	6	5	4	3	2	1	0
Nam	ame TMR2H[7:0]							
Type R/W								
Rese	et O	0	0	0	0	0	0	0
SFR A	Address = 0xC	D						
Bit	Name				Function			
7:0	TMR2H[7:0]	Timer 2 Lov	Timer 2 Low Byte.					
		In 16-bit mo	de, the TMR	2H register	contains the	high byte of	the 16-bit Ti	mer 2. In 8-

bit mode, TMR2H contains the 8-bit high byte timer value.

E	
SILICON	LABS

26. Programmable Counter Array

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and three 16-bit Capture/Compare modules. Each Capture/Compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled. The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by eight, Timer 0 overflows, or an external clock signal on the ECI input pin. Each Capture/Compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM (each mode is described in Section "26.3. Capture/Compare Modules" on page 163). The external oscillator clock option is ideal for real-time clock (RTC) functionality, allowing the PCA to be clocked by a precision external oscillator while the internal oscillator drives the system clock. The PCA is configured and controlled through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 26.1

Important Note: The PCA Module 2 may be used as a Watchdog Timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See Section 26.4 for details.

Figure 26.1. PCA Block Diagram

26.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit Capture/Compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

Figure 26.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least two system clock cycles to be recognized by the hardware.

als ¹

System Clock (Hz)	PCA0CPL2	Timeout Interval (ms)							
24,500,000	255	32.1							
24,500,000	128	16.2							
24,500,000	32 4.1								
3,062,500 ²	255	257							
3,062,500 ²	128	129.5							
3,062,500 ²	32	33.1							
32,000	255	24576							
32,000	128	12384							
32,000	32	3168							
Notes:									
1. Assumes SYSCLK/12 as the PCA clock source and a PCA0L value									
of 0x00 at the update time.									

2. Internal SYSCLK reset frequency = Internal Oscillator divided by 8.

SFR Definition 26.3. PCA0CPMn: PCA Capture/Compare Mode

Bit	7	6	5	4	3	2	1	0		
Name	PWM16	n ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn		
Type R/V		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Rese	t 0	0	0	0	0	0	0	0		
SFR A	ddresses: I	:: PCA0CPM0 = 0xDA, PCA0CPM1 = 0xDB, PCA0CPM2 = 0xDC								
Bit	Name				Function					
7	PWM16n	16-bit Pulse Width Modulation Enable.								
		This bit enables 16-bit mode when Pulse Width Modulation mode is enabled.								
		0: 8-bit PWM selected.								
6	FCOMn	Compositor Function Enclus								
Ū		This bit enables the comparator function for PCA module n when set to 1								
5	CAPPn	Conture Desitive Euletion Enable								
		This bit enable	This bit enables the positive edge capture for PCA module n when set to 1							
4	CAPNn	Capture Negative Function Enable.								
		This bit enables the negative edge capture for PCA module n when set to 1.								
3	MATn	Match Function Enable.								
		This bit enables the match function for PCA module n when set to 1. When enabled, matches of the PCA counter with a module's Capture/Compare register cause the CCFn bit in PCA0MD register to be set to logic 1.								
2	TOGn	Toggle Function Enable.								
		This bit enables the toggle function for PCA module n when set to 1. When enabled, matches of the PCA counter with a module's Capture/Compare register cause the logic level on the CEXn pin to toggle. If the PWMn bit is also set to logic 1, the module operates in Frequency Output Mode.								
1	PWMn	Pulse Width I	Modulation	Mode Enab	le.					
		This bit enables the PWM function for PCA module n when set to 1. When enabled, a pulse width modulated signal is output on the CEXn pin. The 8-bit PWM is used if PWM16n is cleared; 16-bit mode is used if PWM16n is set to logic 1. If the TOGn bit is also set, the module operates in Frequency Output Mode.								
0	ECCFn	Capture/Com	pare Flag Ir	nterrupt Ena	able.					
		This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt.								
		 U: Disable CCFn interrupts. 1: Enable a Capture/Compare Flag interrupt request when CCFn is set. 								
Note:	Note: When the WDTE bit is set to 1, the PCA0CPM2 register cannot be modified, and module 2 acts as the Watchdog Timer. To change the contents of the PCA0CPM2 register or the function of module 2, the Watchdog Timer must be disabled.									

