

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	8
Program Memory Size	2KB (2K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	11-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051t604-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Tables

1. System Overview	
2. Ordering Information	
Table 2.1. Product Selection Guide	16
3. Pin Definitions	
Table 3.1. Pin Definitions for the C8051T600/1/2/3/4/5	17
Table 3.2. Pin Definitions for the C8051T606	18
4. QFN-11 Package Specifications	
Table 4.1. QFN-11 Package Dimensions	22
Table 4.2. QFN-11 PCB Land Pattern Dimensions	23
5. SOIC-14 Package Specifications	
Table 5.1. SOIC-14 Package Dimensions	24
Table 5.2. SOIC-14 PCB Land Pattern Dimensions	25
6. MSOP-10 Package Specifications	
Table 6.1. MSOP-10 Package Dimensions	26
Table 6.2. MSOP-10 PCB Land Pattern Dimensions	27
7. QFN-10 Package Specifications	
Table 7.1. QFN-10 Package Dimensions	28
Table 7.2. QFN-10 PCB Land Pattern Dimensions	29
8. Electrical Characteristics	
Table 8.1. Absolute Maximum Ratings	30
Table 8.2. Global Electrical Characteristics	31
Table 8.3. Port I/O DC Electrical Characteristics	33
Table 8.4. Reset Electrical Characteristics	34
Table 8.5. Internal Voltage Regulator Electrical Characteristics	34
Table 8.6. EPROM Electrical Characteristics	34
Table 8.7. Internal High-Frequency Oscillator Electrical Characteristics	35
Table 8.8. Temperature Sensor Electrical Characteristics	35
Table 8.9. Voltage Reference Electrical Characteristics	35
Table 8.10. ADC0 Electrical Characteristics	36
Table 8.11. Comparator Electrical Characteristics	37
9. 10-Bit ADC (ADC0, C8051T600/2/4 only)	
10. Temperature Sensor (C8051T600/2/4 only)	
11. Voltage Reference Options	
12. Voltage Regulator (REG0)	
13. Comparator0	
14. CIP-51 Microcontroller	
Table 14.1. CIP-51 Instruction Set Summary	67
15. Memory Organization	
16. Special Function Registers	
Table 16.1. Special Function Register (SFR) Memory Map	77
Table 16.2. Special Function Registers	77
17. Interrupts	
Table 17.1. Interrupt Summary	82

C8051T600/1/2/3/4/5/6

4. QFN-11 Package Specifications

Figure 4.1. QFN-11 Package Drawing

Dimension	Min	Nom	Max		Dimension	Min	Nom	Max
A	0.80	0.90	1.00		E		3.00 BSC	
A1	0.03	0.07	0.11		E2	2.20	2.25	2.30
A3	0.25 REF				L	0.45	0.55	0.65
b	0.18	0.25	0.30		aaa	_	—	0.15
D		3.00 BSC			bbb	_	—	0.15
D2	1.30	1.35	1.40		ddd	—	—	0.05
е		0.50 BSC			eee		—	0.08

Table 4.1. QFN-11 Package Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to the JEDEC Solid State Outline MO-243, variation VEED except for custom features D2, E2, and L which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 5.2. SOIC-14 Recommended PCB Land Pattern

Table 5.2	SOIC-14 PCB	Land Pattern	Dimensions
			Difficitions

Dimension	Min	Max		Dimension	Min	Max					
C1	C1 5.30 5			X1	0.50	0.60					
E	1.27	BSC		Y1	1.45	1.55					
Notes: General 1. All dim 2. This La	 Notes: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 										
Solder Mask D 3. All met mask a	 Solder Mask Design All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad. 										
Stencil Design 4. A stain to assu 5. The ste 6. The rat	 Stencil Design A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. The stencil thickness should be 0.125 mm (5 mils). The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads. 										
Card Assembl	у										
 A No-Clean, Type-3 solder paste is recommended. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 											

C8051T600/1/2/3/4/5/6

6. MSOP-10 Package Specifications

Figure 6.1. MSOP-10 Package Drawing

Dimension	Min	Nom	Max		Dimension	Min	Nom	Max
A	_		1.10		е			
A1	0.00	—	0.15		L	0.40	0.60	0.80
A2	0.75	0.85	0.95		L2		0.25 BSC	
b	0.17	—	0.33		θ	0°	—	8°
С	0.08	—	0.23		aaa	_	—	0.20
D		3.00 BSC			bbb	_	—	0.25
E	4.90 BSC				CCC	_	—	0.10
E1		3.00 BSC			ddd			0.08

Table 6.1. MSOP-10 Package Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm).
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to JEDEC outline MO-187, Variation "BA".

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 7.2. QFN-10 PCB Land Pattern

Table 7.2. QFN-10 PCB Land Pattern Dimensions

Dimension	Min	Max		Dimension	Min	Max
е	0.50	0.50 BSC.		X1	0.20	0.30
C1	1.70	70 1.80		Y1	0.85	0.95
C2	1.70	1.80				

Notes: General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on IPC-SM-782 guidelines.
- **4.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.

Solder Mask Design

5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \,\mu$ m minimum, all the way around the pad.

Stencil Design

- 6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 7. The stencil thickness should be 0.125 mm (5 mils).
- 8. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.

Card Assembly

- 9. A No-Clean, Type-3 solder paste is recommended.
- **10.** The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 8.10. ADC0 Electrical Characteristics

 V_{DD} = 3.0 V, VREF = 2.40 V (REFSL=0), -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy			1	<u></u>	
Resolution	T		10		bits
Integral Nonlinearity		<u>+ – </u>	±0.5	±1	LSB
Differential Nonlinearity	Guaranteed Monotonic	<u> </u>	±0.5	±1	LSB
Offset Error		-2	0	2	LSB
Full Scale Error		-2	0	2	LSB
Offset Temperature Coefficient		1 —	45	_	ppm/°C
Dynamic performance (10 kHz s	sine-wave single-ended input,	1 dB belo	ow Full Sc	ale, 500	ksps)
Signal-to-Noise Plus Distortion		56	60		dB
Total Harmonic Distortion	Up to the 5th harmonic	<u> </u>	72		dB
Spurious-Free Dynamic Range		<u> </u>	-75		dB
Conversion Rate					
SAR Conversion Clock		$\neg -$	—	8.33	MHz
Conversion Time in SAR Clocks	10-bit Mode	13	—		clocks
	8-bit Mode	11	—		clocks
Track/Hold Acquisition Time	$V_{DD} \ge 2.0 V$	300	—	—	ns
	$V_{DD} < 2.0 V$	2.0		—	μs
Throughput Rate				500	ksps
Analog Inputs					
ADC Input Voltage Range		0	—	VREF	V
Sampling Capacitance	1x Gain	1 —	5	_	pF
	0.5x Gain		3	—	pF
Input Multiplexer Impedance			5	—	kΩ
Power Specifications	-	_	·		
Power Supply Current	Operating Mode, 500 ksps	—	600	900	μA
(V _{DD} supplied to ADC0)					
Power Supply Rejection		—	-70	_	dB

9.3.3. Settling Time Requirements

A minimum tracking time is required before each conversion to ensure that an accurate conversion is performed. This tracking time is determined by any series impedance, including the AMUX0 resistance, the the ADC0 sampling capacitance, and the accuracy required for the conversion. Note that in delayed tracking mode, three SAR clocks are used for tracking at the start of every conversion. For many applications, these three SAR clocks will meet the minimum tracking time requirements.

Figure 9.3 shows the equivalent ADC0 input circuit. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 9.1. See Table 8.10 for ADC0 minimum settling time requirements as well as the mux impedance and sampling capacitor values.

Equation 9.1. ADC0 Settling Time Requirements

Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds

 R_{TOTAL} is the sum of the AMUX0 resistance and any external source resistance.

n is the ADC resolution in bits (10).

Note: See electrical specification tables for R_{MUX} and C_{SAMPLE} parameters.

Figure 9.3. ADC0 Equivalent Input Circuits

9.4. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

SFR Definition 9.5. ADC0GTH: ADC0 Greater-Than Data High Byte

Bit	7	6	5	4	3	2	1	0	
Nam	ame ADC0GTH[7:0]								
Туре	R/W								
Rese	et 1	1	1	1	1	1	1	1	
SFR A	Address = 0xC4								
Bit	Name Function								
7:0	7:0 ADC0GTH[7:0] ADC0 Greater-Than Data Word High-Order Bits.								

SFR Definition 9.6. ADC0GTL: ADC0 Greater-Than Data Low Byte

Bit	7	6	5	4	3	2	1	0		
Name	ADC0GTL[7:0]									
Туре		R/W								
Reset										
SFR Ad	SFR Address = 0xC3									

Bit	Name	Function
7:0	ADC0GTL[7:0]	ADC0 Greater-Than Data Word Low-Order Bits.

C8051T600/1/2/3/4/5/6

Note that false rising edges and falling edges can be detected when the comparator is first powered on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed.

SFR Definition 13.1. CPT0CN: Comparator0 Control

Bit	7	6	5	4	3	2	1	0
Name	CP0EN	CP0OUT	CP0RIF	CP0FIF	CP0H	YP[1:0]	CP0H	/N[1:0]
Туре	R/W	R	R/W	R/W	R/W		R/	W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF8; Bit-Addressable

Bit	Name	Function
7	CP0EN	Comparator0 Enable Bit.
		0: Comparator0 Disabled.
		1: Comparator0 Enabled.
6	CP0OUT	Comparator0 Output State Flag.
		0: Voltage on CP0+ < CP0
		1: Voltage on CP0+ > CP0
5	CP0RIF	Comparator0 Rising-Edge Flag. Must be cleared by software.
		0: No Comparator0 Rising Edge has occurred since this flag was last cleared.
		1: Comparator0 Rising Edge has occurred.
4	CP0FIF	Comparator0 Falling-Edge Flag. Must be cleared by software.
		0: No Comparator0 Falling-Edge has occurred since this flag was last cleared.
		1: Comparator0 Falling-Edge has occurred.
3:2	CP0HYP[1:0]	Comparator0 Positive Hysteresis Control Bits.
		00: Positive Hysteresis Disabled.
		01: Positive Hysteresis = 5 mV.
		10: Positive Hysteresis = 10 mV.
1.0		
1:0	CPUHYN[1:0]	Comparator0 Negative Hysteresis Control Bits.
		00: Negative Hysteresis Disabled.
		U1: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV
		10. Negative Hysteresis = 10 mV. 11. Negative Hysteresis = 20 mV

SFR Definition 14.3. SP: Stack Pointer

Bit	7	6	5	4	3	2	1	0		
Nam	e	SP[7:0]								
Туре	•	R/W								
Rese	et 0	0	0	0	0	1	1	1		
SFR A	SFR Address = 0x81									
Bit	Name	Function								
7:0	SP[7:0]	Stack Point	er.							

SP[7:0]	Stack Pointer.
	The Stack Pointer holds the location of the top of the stack. The stack pointer is incre-
	mented before every PUSH operation. The SP register defaults to 0x07 after reset.

SFR Definition 14.4. ACC: Accumulator

Bit	7	6	5	4	3	2	1	0	
Name	ACC[7:0]								
Туре				R/	W				
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0xE0; Bit-Addressable

Bit	Name	Function
7:0	ACC[7:0]	Accumulator.
		This register is the accumulator for arithmetic operations.

SFR Definition 14.5. B: B Register

Bit	7	6	5	4	3	2	1	0
Name	B[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF0; Bit-Addressable

Bit	Name	Function
7:0	B[7:0]	B Register.
		This register serves as a second accumulator for certain arithmetic operations.

SFR Definition 17.5. IT01CF: INT0/INT1 Configuration

Bit	7	6	5	4	3	2	1	0
Name	IN1PL		IN1SL[2:0]		IN0PL		IN0SL[2:0]	
Туре	R/W		R/W		R/W		R/W	
Reset	0	0	0	0	0	0	0	1

SFR Address = 0xE4

Bit	Name	Function
7	IN1PL	INT1 Polarity.
		1: INT1 input is active low.
6:4	IN1SL[2:0]	INT1 Port Pin Selection Bits. These bits select which Port pin is assigned to INT1. Note that this pin assignment is
		independent of the Crossbar; IN11 will monitor the assigned Port pin without disturb- ing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P0.0 001: Select P0.1 010: Select P0.2 011: Select P0.3 100: Select P0.4 101: Select P0.5 110: Select P0.6 111: Select P0.7
3	IN0PL	INTO Polarity. 0: INTO input is active low. 1: INTO input is active high.
2:0	IN0SL[2:0]	INTO Port Pin Selection Bits. These bits select which Port pin is assigned to INTO. Note that this pin assignment is independent of the Crossbar; INTO will monitor the assigned Port pin without disturb- ing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P0.0 001: Select P0.1 010: Select P0.2 011: Select P0.3 100: Select P0.4 101: Select P0.5 110: Select P0.6 111: Select P0.7

18. Power Management Modes

The C8051T600/1/2/3/4/5/6 devices have two software programmable power management modes: idle and stop. Idle mode halts the CPU while leaving the peripherals and clocks active. In stop mode, the CPU is halted, all interrupts and timers (except the missing clock detector) are inactive, and the internal oscillator is stopped (analog peripherals remain in their selected states; the external oscillator is not affected). Since clocks are running in idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering idle. Stop mode consumes the least power because the majority of the device is shut down with no clocks active. SFR Definition 18.1 describes the Power Control Register (PCON) used to control the C8051T600/1/2/3/4/5/6's stop and idle power management modes.

Although the C8051T600/1/2/3/4/5/6 has idle and stop modes available, more control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers or serial buses, draw little power when they are not in use.

18.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the hardware to halt the CPU and enter idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs during the execution phase of the instruction that sets the IDLE bit, the CPU may not wake from idle mode when a future interrupt occurs. Therefore, instructions that set the IDLE bit should be followed by an instruction that has two or more opcode bytes, for example:

// in `C': PCON = 0x01; PCON = PCON;	<pre>// set IDLE bit // followed by a 3-cycle dummy instruction</pre>
; in assembly:	
ORL PCON, #01h	; set IDLE bit
MOV PCON, PCON	; followed by a 3-cycle dummy instruction

If enabled, the watchdog timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the idle mode indefinitely, waiting for an external stimulus to wake up the system. Refer to Section "19.6. PCA Watchdog Timer Reset" on page 94 for more information on the use and configuration of the WDT.

SFR Definition 19.1. RSTSRC: Reset Source

Bit	7	6	5	4	3	2	1	0
Name		MEMERR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF
Туре	R	R	R/W	R/W	R	R/W	R/W	R
Reset	0	Varies						

SFR Address = 0xEF

Bit	Name	Description	Write	Read
7	Unused	Unused.	Don't care.	0
6	MEMERR	EPROM Error Reset Flag.	N/A	Set to 1 if EPROM read/write error caused the last reset.
5	CORSEF	Comparator0 Reset Enable and Flag.	Writing a 1 enables Comparator0 as a reset source (active-low).	Set to 1 if Comparator0 caused the last reset.
4	SWRSF	Software Reset Force and Flag.	Writing a 1 forces a sys- tem reset.	Set to 1 if last reset was caused by a write to SWRSF.
3	WDTRSF	Watchdog Timer Reset Flag.	N/A	Set to 1 if Watchdog Timer overflow caused the last reset.
2	MCDRSF	Missing Clock Detector Enable and Flag.	Writing a 1 enables the Missing Clock Detector. The MCD triggers a reset if a missing clock condition is detected.	Set to 1 if Missing Clock Detector timeout caused the last reset.
1	PORSF	Power-On/V _{DD} Monitor Reset Flag, and V _{DD} monitor Reset Enable.	Writing a 1 enables the V_{DD} monitor and configures it as a reset source. Writing 1 to this bit while the V_{DD} monitor is disabled may cause a system reset.	Set to 1 any time a power- on or V _{DD} monitor reset occurs. When set to 1, all other RSTSRC flags are inde- terminate.
0	PINRSF	HW Pin Reset Flag.	N/A	Set to 1 if RST pin caused the last reset.
Note:	Do not use	read-modify-write operations on this	s register	

SFR Definition 22.3. XBR2: Port I/O Crossbar Register 2

Bit	7	6	5	4	3	2	1	0
Name	WEAKPUD	XBARE				T1E	T0E	ECIE
Туре	R/W	R/W	R	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE3

Bit	Name	Function
7	WEAKPUD	Port I/O Weak Pullup Disable.
		0: Weak Pullups enabled (except for Ports whose I/O are configured for analog mode).
		1: Weak Pullups disabled.
6	XBARE	Crossbar Enable.
		0: Crossbar disabled.
		1: Crossbar enabled.
5:3	Unused	Unused. Read = 000b; Write = Don't Care.
2	T1E	T1 Enable.
		0: T1 unavailable at Port pin.
		1: T1 routed to Port pin.
1	T0E	T0 Enable.
		0: T0 unavailable at Port pin.
		1: T0 routed to Port pin.
0	ECIE	PCA0 External Counter Input Enable.
		0: ECI unavailable at Port pin.
		1: ECI routed to Port pin.

23.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames. As a receiver, the interrupt for an ACK occurs **before** the ACK. As a transmitter, interrupts occur **after** the ACK.

23.5.1. Write Sequence (Master)

During a write sequence, an SMBus master writes data to a slave device. The master in this transfer will be a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt. Figure 23.5 shows a typical master write sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur **after** the ACK cycle in this mode.

Figure 23.5. Typical Master Write Sequence

23.5.3. Write Sequence (Slave)

During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be a receiver during the address byte and a receiver during all data bytes. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode when a START followed by a slave address and direction bit (WRITE in this case) is received. Upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK or ignore the received slave address with a NACK.

If the received slave address is ignored by software (by NACKing the address), slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are received.

The ACKRQ bit is set to 1 and an interrupt is generated after each received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

The interface exits Slave Receiver Mode after receiving a STOP. Note that the interface will switch to Slave Transmitter Mode if SMB0DAT is written while an active Slave Receiver. Figure 23.7 shows a typical slave write sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur **before** the ACK.

Figure 23.7. Typical Slave Write Sequence

SFR Definition 25.2. TCON: Timer Control

Bit	7	6	5	4	3	2	1	0	
Nam	e TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
Туре	R/W	R/W	R/W R/W						
Rese	t 0	0	0	0	0	0	0	0	
SFR Address = 0x88; Bit-Addressable									
Bit	Name		Function						
7	TF1	Timer 1 Ov Set to 1 by I but is autom routine.	Timer 1 Overflow Flag. Set to 1 by hardware when Timer 1 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine.						
6	TR1	Timer 1 Ru Timer 1 is e	n Control. nabled by se	etting this bit	: to 1.				
5	TF0	Timer 0 Ov	erflow Flag						
		Set to 1 by l but is autom routine.	Set to 1 by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.					y software ot service	
4	TR0	Timer 0 Ru	Timer 0 Run Control.						
		Timer 0 is enabled by setting this bit to 1.							
3	IE1	External Interrupt 1.							
		This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine in edge-triggered mode.						detected. It ctors to the	
2	IT1	Interrupt 1	Type Select	t.					
		This bit selects whether the configured /INT1 interrupt will be edge or level sensitive. /INT1 is configured active low or high by the IN1PL bit in the IT01CF register (see SFR Definition 17.5). 0: /INT1 is level triggered. 1: /INT1 is edge triggered.							
1	IE0	External In	terrupt 0.						
		This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 0 service routine in edge-triggered mode.							
0	IT0	Interrupt 0	Type Select	t.					
		This bit selects whether the configured INTO interrupt will be edge or level sensitive. INTO is configured active low or high by the INOPL bit in register ITO1CF (see SFR Definition 17.5). 0: INTO is level triggered. 1: INTO is edge triggered.					I sensitive. (see SFR		

26.2. PCA0 Interrupt Sources

Figure 26.3 shows a diagram of the PCA interrupt tree. There are four independent event flags that can be used to generate a PCA0 interrupt. They are: the main PCA counter overflow flag (CF), which is set upon a 16-bit overflow of the PCA0 counter, and the individual flags for each PCA channel (CCF0, CCF1, and CCF2), which are set according to the operation mode of that module. These event flags are always set when the trigger condition occurs. Each of these flags can be individually selected to generate a PCA0 interrupt, using the corresponding interrupt enable flag (ECF for CF and ECCFn for each CCFn). PCA0 interrupts must be globally enabled before any individual interrupt sources are recognized by the processor. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1.

Figure 26.3. PCA Interrupt Block Diagram

26.4. Watchdog Timer Mode

A programmable Watchdog Timer (WDT) function is available through the PCA Module 2. The WDT is used to generate a reset if the time between writes to the WDT update register (PCA0CPH2) exceed a specified limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE bit set in the PCA0MD register, Module 2 operates as a Watchdog Timer (WDT). The Module 2 high byte is compared to the PCA counter high byte; the Module 2 low byte holds the offset to be used when WDT updates are performed. The Watchdog Timer is enabled on reset. Writes to some PCA registers are restricted while the Watchdog Timer is enabled. The WDT will generate a reset shortly after code begins execution. To avoid this reset, the WDT should be explicitly disabled (and optionally re-configured and re-enabled if it is used in the system).

26.4.1. Watchdog Timer Operation

While the WDT is enabled:

- PCA counter is forced on.
- Writes to PCA0L and PCA0H are not allowed.
- PCA clock source bits (CPS2–CPS0) are frozen.
- PCA Idle control bit (CIDL) is frozen.
- Module 2 is forced into software timer mode.
- Writes to the Module 2 mode register (PCA0CPM2) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run until the WDT is disabled. The PCA counter run control bit (CR) will read zero if the WDT is enabled but user software has not enabled the PCA counter. If a match occurs between PCA0CPH2 and PCA0H while the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to PCA0CPH2. Upon a PCA0CPH2 write, PCA0H plus the offset held in PCA0CPL2 is loaded into PCA0CPH2 (See Figure 26.10).

Figure 26.10. PCA Module 2 with Watchdog Timer Enabled

C8051T600/1/2/3/4/5/6

C2 Register Definition 27.8. EPADDRH: C2 EPROM Address High Byte

Bit	7	6	5	4	3	2	1	0
Name				EPADD	R[15:8]			
Туре	R/W							
Reset	0	0	0	0	0	0	0	0
C2 Address: 0xAF								

Bit	Name	Function
7:0	EPADDR[15:8]	C2 EPROM Address High Byte.
		This register is used to set the EPROM address location during C2 EPROM oper- ations.

C2 Register Definition 27.9. EPADDRL: C2 EPROM Address Low Byte

Bit	7	6	5	4	3	2	1	0
Name	EPADDR[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

C2 Address: 0xAE

Bit	Name	Function
7:0	EPADDR[15:8]	C2 EPROM Address Low Byte.
		This register is used to set the EPROM address location during C2 EPROM oper- ations.

