

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	6
Program Memory Size	1.5KB (1.5K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	11-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051t606-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

17.2. Interrupt Desciptor Descriptions	റ
17.2. Interrupt Register Descriptions	02
17.3. INTO and INTT External Interrupt Sources	87
18. Power Management Modes	89
18.1. Idle Mode	89
18.2. Stop Mode	90
19. Reset Sources	92
19.1. Power-On Reset	93
19.2. Power-Fail Reset/VDD Monitor	94
19.3. External Reset	94
19.4. Missing Clock Detector Reset	94
19.5. Comparator0 Reset	94
19.6. PCA Watchdog Timer Reset	94
19.7. EPROM Error Reset	95
19.8. Software Reset	95
20. EPROM Memory	97
20.1. Programming and Reading the EPROM Memory	97
20.1.1. EPROM Write Procedure	97
20.1.2 EPROM Read Procedure	98
20.2 Security Ontions	98
20.3 Program Memory CRC	90
20.3.1 Performing 32-bit CRCs on Full EPROM Content	00 99
20.3.2 Performing 16-bit CRCs on 256-Byte EPROM Blocks	00 QQ
21. Oscillators and Clock Selection	100
21.1 System Clock Selection	100
21.1. System Clock Selection	100
21.1. System Clock Selection	100
21.1. System Clock Selection	100 100 101 103
 21.1. System Clock Selection	100 100 101 103 105
 21.1. System Clock Selection	100 100 101 103 105 105
 21.1. System Clock Selection	100 100 101 103 105 105 106
 21.1. System Clock Selection	100 100 101 103 105 105 106 107
 21.1. System Clock Selection	100 100 101 103 105 105 105 107 107
 21.1. System Clock Selection	100 100 101 103 105 105 105 107 107 107
 21.1. System Clock Selection	100 100 101 103 105 105 105 107 107 107 108
 21.1. System Clock Selection	100 100 101 103 105 105 105 107 107 107 108 109
 21.1. System Clock Selection	100 100 101 103 105 105 105 107 107 107 107 108 109 109
 21.1. System Clock Selection	100 100 101 103 105 105 105 107 107 107 107 108 109 109 109
 21.1. System Clock Selection	100 100 101 103 105 105 105 105 107 107 107 107 109 109 109 110
 21.1. System Clock Selection	100 100 101 103 105 105 105 105 107 107 107 107 109 109 109 110 111
 21.1. System Clock Selection	100 100 101 103 105 105 105 105 107 107 107 107 107 109 109 110 111 114
 21.1. System Clock Selection	100 100 101 103 105 105 105 105 107 107 107 107 109 109 109 109 110 111 114 118
 21.1. System Clock Selection	100 100 101 103 105 105 105 105 107 107 107 107 109 109 109 109 109 109 110 111 114 118 120
 21.1. System Clock Selection	100 100 101 103 105 105 105 105 107 107 107 107 107 107 107 109 109 109 110 111 114 118 120 121
 21.1. System Clock Selection. 21.2. Programmable Internal High-Frequency (H-F) Oscillator	100 100 101 103 105 105 105 105 107 107 107 107 107 107 109 109 109 109 109 110 111 114 118 121
 21.1. System Clock Selection	100 100 101 103 105 105 105 105 107 107 107 107 107 107 109 109 109 109 109 109 109 110 111 114 114 121 121 121

27.2. C2 Pin Sharing	185
Document Change List	186
Contact Information	188

	Figure 25.5. Timer 2 8-Bit Mode Block Diagram	156
26.	. Programmable Counter Array	
	Figure 26.1. PCA Block Diagram	160
	Figure 26.2. PCA Counter/Timer Block Diagram	161
	Figure 26.3. PCA Interrupt Block Diagram	162
	Figure 26.4. PCA Capture Mode Diagram	164
	Figure 26.5. PCA Software Timer Mode Diagram	165
	Figure 26.6. PCA High-Speed Output Mode Diagram	166
	Figure 26.7. PCA Frequency Output Mode	167
	Figure 26.8. PCA 8-Bit PWM Mode Diagram	168
	Figure 26.9. PCA 16-Bit PWM Mode	169
	Figure 26.10. PCA Module 2 with Watchdog Timer Enabled	170
27.	. C2 Interface	
	Figure 27.1. Typical C2 Pin Sharing	185

SFR Definition 25.1. CKCON: Clock Control	146
SFR Definition 25.2. TCON: Timer Control	151
SFR Definition 25.3. TMOD: Timer Mode	152
SFR Definition 25.4. TL0: Timer 0 Low Byte	153
SFR Definition 25.5. TL1: Timer 1 Low Byte	153
SFR Definition 25.6. TH0: Timer 0 High Byte	154
SFR Definition 25.7. TH1: Timer 1 High Byte	154
SFR Definition 25.8. TMR2CN: Timer 2 Control	157
SFR Definition 25.9. TMR2RLL: Timer 2 Reload Register Low Byte	158
SFR Definition 25.10. TMR2RLH: Timer 2 Reload Register High Byte	158
SFR Definition 25.11. TMR2L: Timer 2 Low Byte	158
SFR Definition 25.12. TMR2H Timer 2 High Byte	159
SFR Definition 26.1. PCA0CN: PCA Control	173
SFR Definition 26.2. PCA0MD: PCA Mode	174
SFR Definition 26.3. PCA0CPMn: PCA Capture/Compare Mode	175
SFR Definition 26.4. PCA0L: PCA Counter/Timer Low Byte	176
SFR Definition 26.5. PCA0H: PCA Counter/Timer High Byte	176
SFR Definition 26.6. PCA0CPLn: PCA Capture Module Low Byte	177
SFR Definition 26.7. PCA0CPHn: PCA Capture Module High Byte	177
C2 Register Definition 27.1. C2ADD: C2 Address	178
C2 Register Definition 27.2. DEVICEID: C2 Device ID	179
C2 Register Definition 27.3. REVID: C2 Revision ID	179
C2 Register Definition 27.4. DEVCTL: C2 Device Control	180
C2 Register Definition 27.5. EPCTL: EPROM Programming Control Register	180
C2 Register Definition 27.6. EPDAT: C2 EPROM Data	181
C2 Register Definition 27.7. EPSTAT: C2 EPROM Status	181
C2 Register Definition 27.8. EPADDRH: C2 EPROM Address High Byte	182
C2 Register Definition 27.9. EPADDRL: C2 EPROM Address Low Byte	182
C2 Register Definition 27.10. CRC0: CRC Byte 0	183
C2 Register Definition 27.11. CRC1: CRC Byte 1	183
C2 Register Definition 27.12. CRC2: CRC Byte 2	184
C2 Register Definition 27.13. CRC3: CRC Byte 3	184

1. System Overview

C8051T600/1/2/3/4/5/6 devices are fully integrated, mixed-signal, system-on-a-chip MCUs. Highlighted features are listed below. Refer to Table 2.1 for specific product feature selection and part ordering numbers.

- High-speed pipelined 8051-compatible microcontroller core (up to 25 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- C8051F300 ISP Flash device is available for quick in-system code development
- 10-bit 500 ksps Single-ended ADC with analog multiplexer and integrated temperature sensor
- Precision calibrated 24.5 MHz internal oscillator
- 8 k, 4 k, 2 k or 1.5 kB of on-chip Byte-Programmable EPROM-(512 bytes are reserved on 8k version)
- 256 or 128 bytes of on-chip RAM
- SMBus/I²C, and ART serial interfaces implemented in hardware
- Three general-purpose 16-bit timers
- Programmable Counter/Timer Array (PCA) with three capture/compare modules and Watchdog Timer function
- On-chip Power-On Reset and Supply Monitor
- On-chip Voltage Comparator
- 8 or 6 Port I/O

With on-chip power-on reset, V_{DD} monitor, watchdog timer, and clock oscillator, the C8051T600/1/2/3/4/5/6 devices are truly stand-alone, system-on-a-chip solutions. User software has complete control of all peripherals and may individually shut down any or all peripherals for power savings.

Code written for the C8051T600/1/2/3/4/5/6 family of processors will run on the C8051F300 Mixed-Signal ISP Flash microcontroller, providing a quick, cost-effective way to develop code without requiring special emulator circuitry. The C8051T600/1/2/3/4/5/6 processors include Silicon Laboratories' 2-Wire C2 Debug and Programming interface, which allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection of memory, viewing and modification of special function registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging without occupying package pins.

Each device is specified for 1.8–3.6 V operation over the industrial temperature rang<u>e</u> (<u>-45</u> to +85 °C). An internal LDO is used to supply the processor core voltage at 1.8 V. The Port I/O and RST pins are tolerant of input signals up to 5 V. See Table 2.1 for ordering information. Block diagrams of the devices in the C8051T600/1/2/3/4/5/6 family are shown in Figure 1.1, Figure 1.2, and Figure 1.3.

8.2. Electrical Characteristics

Table 8.2. Global Electrical Characteristics

-40 to +85 °C, 25 MHz system clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Supply Voltage (Note 1)	Regulator in Normal Mode Regulator in Bypass Mode	1.8 1.7	3.0 1.8	3.6 1.9	V V
C8051T600/1/2/3/4/5 Digital Sup- ply Current with CPU Active	$V_{DD} = 1.8 \text{ V}, \text{Clock} = 25 \text{ MHz}$ $V_{DD} = 1.8 \text{ V}, \text{Clock} = 1 \text{ MHz}$ $V_{DD} = 3.0 \text{ V}, \text{Clock} = 25 \text{ MHz}$ $V_{DD} = 3.0 \text{ V}, \text{Clock} = 1 \text{ MHz}$		4.3 2.0 5.0 2.4	6.0 — 6.0 —	mA mA mA mA
C8051T600/1/2/3/4/5 Digital Sup- ply Current with CPU Inactive (not accessing EPROM)	$V_{DD} = 1.8 \text{ V}, \text{Clock} = 25 \text{ MHz} \\ V_{DD} = 1.8 \text{ V}, \text{Clock} = 1 \text{ MHz} \\ V_{DD} = 3.0 \text{ V}, \text{Clock} = 25 \text{ MHz} \\ V_{DD} = 3.0 \text{ V}, \text{Clock} = 1 \text{ MHz} \\ \end{array}$	 	1.7 0.5 1.8 0.6	2.5 — 2.6 —	mA mA mA mA
C8051T600/1/2/3/4/5 Digital Sup- ply Current (shutdown)	Oscillator not running (stop mode), Internal Regulator Off	_	1		μA
	Oscillator not running (stop or suspend mode), Internal Regulator On		450		μA
C8051T606 Digital Supply Current with CPU Active	$V_{DD} = 1.8 V$, Clock = 25 MHz $V_{DD} = 1.8 V$, Clock = 1 MHz $V_{DD} = 3.0 V$, Clock = 25 MHz $V_{DD} = 3.0 V$, Clock = 1 MHz	 	4.6 1.9 5.0 1.9	6.0 — 6.0 —	mA mA mA mA
C8051T606 Digital Supply Current with CPU Inactive (not accessing EPROM)		 	1.7 0.35 1.8 0.36	2.5 — 2.6 —	mA mA mA mA
C8051T606 Digital Supply Current (shutdown)	Oscillator not running (stop mode), Internal Regulator Off	—	1		μA
	Oscillator not running (stop or suspend mode), Internal Regulator On		300		μA
Digital Supply RAM Data Retention Voltage		_	1.5		V
Specified Operating Temperature Range		-40		+85	°C
SYSCLK (system clock frequency)	(Note 2)	0	_	25	MHz

Notes:

1. Analog performance is not guaranteed when V_{DD} is below 1.8 V.

2. SYSCLK must be at least 32 kHz to enable debugging.

3. Supply current parameters specified with Memory Power Controller enabled.

Table 8.11. Comparator Electrical Characteristics V_{DD} = 3.0 V, -40 to +85 °C unless otherwise noted.

Parameter	Conditions	Min	Тур	Мах	Units			
Response Time:	CP0+ - CP0- = 100 mV	_	240		ns			
Mode 0, Vcm* = 1.5 V	CP0+ - CP0- = -100 mV	_	240	—	ns			
Response Time:	CP0+ - CP0- = 100 mV	—	400	—	ns			
Mode 1, Vcm* = 1.5 V	CP0+ - CP0- = -100 mV	—	400	—	ns			
Response Time:	CP0+ - CP0- = 100 mV	—	650	—	ns			
Mode 2, Vcm* = 1.5 V	CP0+ - CP0- = -100 mV	—	1100	—	ns			
Response Time:	CP0+ - CP0- = 100 mV	—	2000	—	ns			
Mode 3, Vcm* = 1.5 V	CP0+ - CP0- = -100 mV	—	5500	—	ns			
Common-Mode Rejection Ratio		—	1	4	mV/V			
Positive Hysteresis 1	CP0HYP1-0 = 00	—	0	1	mV			
Positive Hysteresis 2	CP0HYP1-0 = 01	2	5	8	mV			
Positive Hysteresis 3	CP0HYP1-0 = 10	5	10	14	mV			
Positive Hysteresis 4	CP0HYP1-0 = 11	11	20	28	mV			
Negative Hysteresis 1	CP0HYN1-0 = 00	—	0	1	mV			
Negative Hysteresis 2	CP0HYN1-0 = 01	2	5	8	mV			
Negative Hysteresis 3	CP0HYN1-0 = 10	5	10	14	mV			
Negative Hysteresis 4	CP0HYN1-0 = 11	11	20	28	mV			
Inverting or Non-Inverting Input Voltage Range		-0.25	_	V _{DD} + 0.25	V			
Input Offset Voltage		-7.5		7.5	mV			
Power Specifications	•							
Power Supply Rejection		—	0.5	—	mV/V			
Powerup Time		—	10	—	μs			
Supply Current at DC	Mode 0	—	26	50	μA			
	Mode 1	—	10	20	μA			
	Mode 2	—	3	6	μA			
	Mode 3	—	0.5	2	μA			
Note: Vcm is the common-mode voltage on CP0+ and CP0								

9.4. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

SFR Definition 9.5. ADC0GTH: ADC0 Greater-Than Data High Byte

Bit	7	6	5	4	3	2	1	0	
Nam	ADC0GTH[7:0]								
Туре	e R/W								
Rese	et 1	1	1	1	1	1	1	1	
SFR Address = 0xC4									
Bit	Name	Function							
7:0	ADC0GTH[7:0	GTH[7:0] ADC0 Greater-Than Data Word High-Order Bits.							

SFR Definition 9.6. ADC0GTL: ADC0 Greater-Than Data Low Byte

Bit	7	6	5	4	3	2	1	0
Name	ADC0GTL[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1
SFR Address = 0xC3								

Bit	Name	Function
7:0	ADC0GTL[7:0]	ADC0 Greater-Than Data Word Low-Order Bits.

SFR Definition 9.7. ADC0LTH: ADC0 Less-Than Data High Byte

Bit	7	6	5	4	3	2	1	0
Nam	ADCoLTH[7:0]							
Туре	ype R/W							
Rese	et 0	0	0	0	0	0	0	0
SFR Address = 0xC6								
Bit	Name	Function						
7:0	ADC0LTH[7:0]	ADC0 Le	ADC0 Less-Than Data Word High-Order Bits.					

SFR Definition 9.8. ADC0LTL: ADC0 Less-Than Data Low Byte

Bit	7	6	5	4	3	2	1	0		
Nam	ADCoLTL[7:0]									
Туре	R/W									
Rese	et ⁰	0	0	0	0	0	0	0		
SFR Address = 0xC5										
Bit	Name		Function							
7:0	ADC0LTL[7:0]	ADC0 Le	ADC0 Less-Than Data Word Low-Order Bits.							

SFR Definition 11.1. REF0CN: Reference Control

Bit	7	6	5	4	3	2	1	0
Name				REGOVR	REFSL	TEMPE		
Туре	R	R	R	R/W	R/W	R/W	R	R
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD1

Bit	Name	Function
7:5	Unused	Unused. Read = 000b; Write = Don't Care.
4	REGOVR	Regulator Reference Override.
		This bit "overrides" the REFSL bit, and allows the internal regulator to be used as a reference source.
		0: The voltage reference source is selected by the REFSL bit.
		1: The internal regulator is used as the voltage reference.
3	REFSL	Voltage Reference Select.
		This bit selects the ADCs voltage reference.
		0: V _{REF} pin used as voltage reference.
		1: V _{DD} used as voltage reference.
2	TEMPE	Temperature Sensor Enable Bit.
		0: Internal Temperature Sensor off.
		1: Internal Temperature Sensor on.
1:0	Unused	Unused. Read = 00b; Write = Don't Care.

SFR Definition 17.1. IE: Interrupt Enable

Bit	7	6	5	4	3	2	1	0
Name	EA	IEGF0	ET2	ES0	ET1	EX1	ET0	EX0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xA8; Bit-Addressable

Bit	Name	Function
7	EA	 Enable All Interrupts. Globally enables/disables all interrupts. It overrides individual interrupt mask settings. 0: Disable all interrupt sources. 1: Enable each interrupt according to its individual mask setting.
6	IEGF0	General Purpose Flag 0. This is a general purpose flag for use under software control.
5	ET2	 Enable Timer 2 Interrupt. This bit sets the masking of the Timer 2 interrupt. 0: Disable Timer 2 interrupt. 1: Enable interrupt requests generated by the TF2L or TF2H flags.
4	ES0	Enable UART0 Interrupt. This bit sets the masking of the UART0 interrupt. 0: Disable UART0 interrupt. 1: Enable UART0 interrupt.
3	ET1	Enable Timer 1 Interrupt. This bit sets the masking of the Timer 1 interrupt. 0: Disable all Timer 1 interrupt. 1: Enable interrupt requests generated by the TF1 flag.
2	EX1	Enable External Interrupt 1. This bit sets the masking of External Interrupt 1. 0: Disable External Interrupt 1. 1: Enable interrupt requests generated by the INT1 input.
1	ET0	Enable Timer 0 Interrupt. This bit sets the masking of the Timer 0 interrupt. 0: Disable all Timer 0 interrupt. 1: Enable interrupt requests generated by the TF0 flag.
0	EX0	 Enable External Interrupt 0. This bit sets the masking of External Interrupt 0. 0: Disable External Interrupt 0. 1: Enable interrupt requests generated by the INTO input.

SFR Definition 17.3. EIE1: Extended Interrupt Enable 1

Bit	7	6	5	4	3	2	1	0
Name			ECP0R	ECP0F	EPCA0	EADC0	EWADC0	ESMB0
Туре	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE6

Bit	Name	Function
7:6	Unused	Unused. Read = 00b; Write = Don't Care.
5	ECP0R	Enable Comparator0 (CP0) Rising Edge Interrupt.
		This bit sets the masking of the CP0 rising edge interrupt.
		0: Disable CP0 rising edge interrupts.
		1: Enable interrupt requests generated by the CP0RIF flag.
4	ECP0F	Enable Comparator0 (CP0) Falling Edge Interrupt.
		This bit sets the masking of the CP0 falling edge interrupt.
		0: Disable CP0 falling edge interrupts.
		1: Enable interrupt requests generated by the CP0FIF flag.
3	EPCA0	Enable Programmable Counter Array (PCA0) Interrupt.
		This bit sets the masking of the PCA0 interrupts.
		0: Disable all PCA0 interrupts.
		1: Enable interrupt requests generated by PCA0.
2	EADC0	Enable ADC0 Conversion Complete Interrupt.
		This bit sets the masking of the ADC0 Conversion Complete interrupt.
		0: Disable ADC0 Conversion Complete interrupt.
		1: Enable interrupt requests generated by the AD0INT flag.
1	EWADC0	Enable Window Comparison ADC0 Interrupt.
		This bit sets the masking of ADC0 Window Comparison interrupt.
		0: Disable ADC0 Window Comparison interrupt.
		1: Enable interrupt requests generated by ADC0 Window Compare flag (AD0WINT).
0	ESMB0	Enable SMBus (SMB0) Interrupt.
		This bit sets the masking of the SMB0 interrupt.
		0: Disable all SMB0 interrupts.
		1: Enable interrupt requests generated by SMB0.

SFR Definition 19.1. RSTSRC: Reset Source

Bit	7	6	5	4	3	2	1	0
Name		MEMERR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF
Туре	R	R	R/W	R/W	R	R/W	R/W	R
Reset	0	Varies						

SFR Address = 0xEF

Bit	Name	Description	Write	Read
7	Unused	Unused.	Don't care.	0
6	MEMERR	EPROM Error Reset Flag.	N/A	Set to 1 if EPROM read/write error caused the last reset.
5	CORSEF	Comparator0 Reset Enable and Flag.	Writing a 1 enables Comparator0 as a reset source (active-low).	Set to 1 if Comparator0 caused the last reset.
4	SWRSF	Software Reset Force and Flag.	Writing a 1 forces a sys- tem reset.	Set to 1 if last reset was caused by a write to SWRSF.
3	WDTRSF	Watchdog Timer Reset Flag.	N/A	Set to 1 if Watchdog Timer overflow caused the last reset.
2	MCDRSF	Missing Clock Detector Enable and Flag.	Writing a 1 enables the Missing Clock Detector. The MCD triggers a reset if a missing clock condition is detected.	Set to 1 if Missing Clock Detector timeout caused the last reset.
1	PORSF	Power-On/V _{DD} Monitor Reset Flag, and V _{DD} monitor Reset Enable.	Writing a 1 enables the V_{DD} monitor and configures it as a reset source. Writing 1 to this bit while the V_{DD} monitor is disabled may cause a system reset.	Set to 1 any time a power- on or V _{DD} monitor reset occurs. When set to 1, all other RSTSRC flags are inde- terminate.
0	PINRSF	HW Pin Reset Flag.	N/A	Set to 1 if RST pin caused the last reset.
Note:	Do not use	read-modify-write operations on this	s register	

20.3. Program Memory CRC

A CRC engine is included on-chip, which provides a means of verifying EPROM contents once the device has been programmed. The CRC engine is available for EPROM verification even if the device is fully read and write locked, allowing for verification of code contents at any time.

The CRC engine is operated through the C2 debug and programming interface, and performs 16-bit CRCs on individual 256-byte blocks of program memory, or a 32-bit CRC the entire memory space. To prevent hacking and extrapolation of security-locked source code, the CRC engine will only allow CRCs to be performed on contiguous 256-byte blocks beginning on 256-byte boundaries (lowest 8-bits of address are 0x00). For example, the CRC engine can perform a CRC for locations 0x0400 through 0x04FF, but it cannot perform a CRC for locations 0x0401 through 0x0500, or on block sizes smaller or larger than 256 bytes.

20.3.1. Performing 32-bit CRCs on Full EPROM Content

A 32-bit CRC on the entire EPROM space is initiated by writing to the CRC1 byte over the C2 interface. The CRC calculation begins at address 0x0000 and ends at the end of user EPROM space. The EPBusy bit in register C2ADD will be set during the CRC operation, and cleared once the operation is complete. The 32-bit results will be available in the CRC3-0 registers. CRC3 is the MSB, and CRC0 is the LSB. The polynomial used for the 32-bit CRC calculation is 0x04C11DB7.

Note: If a 16-bit CRC has been performed since the last device reset, a device reset should be initiated before performing a 32-bit CRC operation.

20.3.2. Performing 16-bit CRCs on 256-Byte EPROM Blocks

A 16-bit CRC of individual 256-byte blocks of EPROM can be initiated by writing to the CRC0 byte over the C2 interface. The value written to CRC0 is the high byte of the beginning address for the CRC. For example, if CRC0 is written to 0x02, the CRC will be performed on the 256 bytes beginning at address 0x0200, and ending at address 0x2FF. The EPBusy bit in register C2ADD will be set during the CRC operation, and cleared once the operation is complete. The 16-bit results will be available in the CRC1-0 registers. CRC1 is the MSB, and CRC0 is the LSB. The polynomial for the 16-bit CRC calculation is 0x1021

21.2. Programmable Internal High-Frequency (H-F) Oscillator

All C8051T600/1/2/3/4/5/6 devices include a programmable internal high-frequency oscillator that defaults as the system clock after a system reset. The internal oscillator period can be adjusted via the OSCICL register as defined by SFR Definition 21.1.

On C8051T600/1/2/3/4/5/6 devices, OSCICL is factory calibrated to obtain a 24.5 MHz base frequency.

The system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset.

SFR Definition 21.1. OSCICL: Internal H-F Oscillator Calibration

Bit	7	6	5	4	3	2	1	0
Name			OSCICL[6:0]					
Туре	R				R/W			
Reset	0	Varies	Varies	Varies	Varies	Varies	Varies	Varies

SFR Address = 0xB3

Bit	Name	Function
7	Unused	Unused. Read = 0; Write = Don't Care
6:0	OSCICL[6:0]	Internal Oscillator Calibration Bits.
		These bits determine the internal oscillator period. When set to 0000000b, the H-F oscillator operates at its fastest setting. When set to 1111111b, the H-F oscillator operates at its slowest setting. The reset value is factory calibrated to generate an internal oscillator frequency of 24.5 MHz.

SFR Definition 23.2. SMB0CN: SMBus Control

Bit	7	6	5	4	3	2	1	0
Name	MASTER	TXMODE	STA	STO	ACKRQ	ARBLOST	ACK	SI
Туре	R	R	R/W	R/W	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC0; Bit-Addressable

Bit	Name	Description	Read	Write
7	MASTER	SMBus Master/Slave Indicator. This read-only bit indicates when the SMBus is operating as a master.	0: SMBus operating in slave mode. 1: SMBus operating in master mode.	N/A
6	TXMODE	SMBus Transmit Mode Indicator. This read-only bit indicates when the SMBus is operating as a transmitter.	0: SMBus in Receiver Mode. 1: SMBus in Transmitter Mode.	N/A
5	STA	SMBus Start Flag.	0: No Start or repeated Start detected. 1: Start or repeated Start detected.	0: No Start generated. 1: When Configured as a Master, initiates a START or repeated START.
4	STO	SMBus Stop Flag.	0: No Stop condition detected. 1: Stop condition detected (if in Slave Mode) or pend- ing (if in Master Mode).	0: No STOP condition is transmitted. 1: When configured as a Master, causes a STOP condition to be transmit- ted after the next ACK cycle. Cleared by Hardware.
3	ACKRQ	SMBus Acknowledge Request.	0: No Ack requested 1: ACK requested	N/A
2	ARBLOST	SMBus Arbitration Lost Indicator.	0: No arbitration error. 1: Arbitration Lost	N/A
1	ACK	SMBus Acknowledge.	0: NACK received. 1: ACK received.	0: Send NACK 1: Send ACK
0	SI	SMBus Interrupt Flag. This bit is set by hardware under the conditions listed in Table 15.3. SI must be cleared by software. While SI is set, SCL is held low and the SMBus is stalled.	0: No interrupt pending 1: Interrupt Pending	0: Clear interrupt, and initiate next state machine event.1: Force interrupt.

Bit	Set by Hardware When:	Cleared by Hardware When:			
MASTED	A START is generated.	A STOP is generated.			
WASTER		 Arbitration is lost. 			
	 START is generated. 	A START is detected.			
	 SMB0DAT is written before the start of an 	 Arbitration is lost. 			
	SMBus frame.	 SMB0DAT is not written before the start of an SMBus frame. 			
STA	 A START followed by an address byte is received. 	Must be cleared by software.			
	A STOP is detected while addressed as a	 A pending STOP is generated. 			
STO	slave.				
	 Arbitration is lost due to a detected STOP. 				
	A byte has been received and an ACK	After each ACK cycle.			
ACKRQ	hardware ACK is not enabled)				
	 A repeated START is detected as a 	 Each time SL is cleared 			
	MASTER when STA is low (unwanted repeated START).				
ARBLOST	 SCL is sensed low while attempting to generate a STOP or repeated START condition. 				
	 SDA is sensed low while transmitting a 1 (excluding ACK bits). 				
ACK	The incoming ACK value is low	The incoming ACK value is high			
	(ACKNOWLEDGE).	(NOT ACKNOWLEDGE).			
	A START has been generated.	Must be cleared by software.			
	Lost arbitration.				
SI SI	 A byte has been transmitted and an ACK/NACK received. 				
51	 A byte has been received. 				
	 A START or repeated START followed by a slave address + R/W has been received. A STOP has been received. 				

Table 23.3. Sources for Hardware Changes to SMB0CN

SFR Definition 24.2. SBUF0: Serial (UART0) Port Data Buffer

Bit	7	6	5	4	3	2	1	0		
Nam	e	SBUF0[7:0]								
Тур	rpe R/W									
Rese	et 0	0	0	0	0	0	0	0		
SFR Address = 0x99										
Bit	Name	Function								
7:0	SBUF0[7:0]	Serial Data Buffer Bits 7–0 (MSB–LSB).								
		This SFR accesses two registers; a transmit shift register and a receive latch register. When data is written to SBUF0, it goes to the transmit shift register and is held for								

SBUF0 returns the contents of the receive latch.

serial transmission. Writing a byte to SBUF0 initiates the transmission. A read of

Figure 25.1. T0 Mode 0 Block Diagram

25.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

25.2. Timer 2

Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T2SPLIT bit (TMR2CN.3) defines the Timer 2 operation mode.

Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 2 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by eight is synchronized with the system clock.

25.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT (TMR2CN.3) is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 25.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled, an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from 0xFF to 0x000.

Figure 25.4. Timer 2 16-Bit Mode Block Diagram

