

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	576KB (576K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc2287m-72f80l-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC2287M, XC2286M, XC2285M XC2000 Family / Base Line

Table of Contents

4.4	System Parameters 104
4.5	Flash Memory Parameters 108
4.6	AC Parameters 110
4.6.1	Testing Waveforms 110
4.6.2	Definition of Internal Timing 111
4.6.2.1	Phase Locked Loop (PLL) 112
4.6.2.2	Wakeup Clock
4.6.2.3	Selecting and Changing the Operating Frequency
4.6.3	External Clock Input Parameters 116
4.6.4	Pad Properties 118
4.6.5	External Bus Timing 121
4.6.5.1	Bus Cycle Control with the READY Input 127
4.6.5.2	External Bus Arbitration 129
4.6.6	Synchronous Serial Interface Timing 132
4.6.7	Debug Interface Timing 136
5	Package and Reliability 142
5.1	Packaging
5.2	Thermal Considerations 144
5.3	Quality Declarations 145

General Device Information

2 General Device Information

The XC228xM series (16/32-Bit Single-Chip Microcontroller with 32-Bit Performance) is a part of the Infineon XC2000 Family of full-feature single-chip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 80 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM.

Figure 2 XC228xM Logic Symbol

XC2287M, XC2286M, XC2285M XC2000 Family / Base Line

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
17	P6.1	O0 / I	DA/A	Bit 1 of Port 6, General Purpose Input/Output	
	EMUX1	01	DA/A	External Analog MUX Control Output 1 (ADC0)	
	T3OUT	O2	DA/A	GPT12E Timer T3 Toggle Latch Output	
	U1C1_DOUT	O3	DA/A	USIC1 Channel 1 Shift Data Output	
	ADCx_REQT RyE	1	DA/A	External Request Trigger Input for ADC0/1	
	RxDC2E	Ι	DA/A	CAN Node 2 Receive Data Input	
	ESR1_6	I	DA/A	ESR1 Trigger Input 6	
18	P6.2	O0 / I	DA/A	Bit 2 of Port 6, General Purpose Input/Output	
	EMUX2	01	DA/A	External Analog MUX Control Output 2 (ADC0)	
	T6OUT	O2	DA/A	GPT12E Timer T6 Toggle Latch Output	
	U1C1_SCLK OUT	O3	DA/A	USIC1 Channel 1 Shift Clock Output	
	U1C1_DX1C	I	DA/A	USIC1 Channel 1 Shift Clock Input	
19	P6.3	O0 / I	DA/A	Bit 3 of Port 6, General Purpose Input/Output	
	T3OUT	O2	DA/A	GPT12E Timer T3 Toggle Latch Output	
	U1C1_SELO 0	O3	DA/A	USIC1 Channel 1 Select/Control 0 Output	
	U1C1_DX2D	I	DA/A	USIC1 Channel 1 Shift Control Input	
_	ADCx_REQT RyF	I	DA/A	External Request Trigger Input for ADC0/1	
21	P15.0	I	In/A	Bit 0 of Port 15, General Purpose Input	
	ADC1_CH0	I	In/A	Analog Input Channel 0 for ADC1	
22	P15.1	I	In/A	Bit 1 of Port 15, General Purpose Input	
	ADC1_CH1	l	In/A	Analog Input Channel 1 for ADC1	
23	P15.2	l	In/A	Bit 2 of Port 15, General Purpose Input	
	ADC1_CH2	I	In/A	Analog Input Channel 2 for ADC1	
	T5INA	l	In/A	GPT12E Timer T5 Count/Gate Input	
24	P15.3	I	In/A	Bit 3 of Port 15, General Purpose Input	
	ADC1_CH3	I	In/A	Analog Input Channel 3 for ADC1	
_	T5EUDA	I	In/A	GPT12E Timer T5 External Up/Down Control Input	

XC2287M, XC2286M, XC2285M XC2000 Family / Base Line

General Device Information

Table	Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
98	P10.4	O0 / I	St/B	Bit 4 of Port 10, General Purpose Input/Output	
	U0C0_SELO 3	O1	St/B	USIC0 Channel 0 Select/Control 3 Output	
	CCU60_COU T61	O2	St/B	CCU60 Channel 1 Output	
	U3C0_DOUT	O3	St/B	USIC3 Channel 0 Shift Data Output	
	AD4	OH / IH	St/B	External Bus Interface Address/Data Line 4	
	U0C0_DX2B	I	St/B	USIC0 Channel 0 Shift Control Input	
	U0C1_DX2B	I	St/B	USIC0 Channel 1 Shift Control Input	
	ESR1_9	I	St/B	ESR1 Trigger Input 9	
99	P3.4	O0 / I	St/B	Bit 4 of Port 3, General Purpose Input/Output	
-	U2C1_SELO 0	O1	St/B	USIC2 Channel 1 Select/Control 0 Output	
	U2C0_SELO 1	O2	St/B	USIC2 Channel 0 Select/Control 1 Output	
	U0C0_SELO 4	O3	St/B	USIC0 Channel 0 Select/Control 4 Output	
	U2C1_DX2A	I	St/B	USIC2 Channel 1 Shift Control Input	
	RxDC4A	I	St/B	CAN Node 4 Receive Data Input	
100	P10.5	O0 / I	St/B	Bit 5 of Port 10, General Purpose Input/Output	
	U0C1_SCLK OUT	O1	St/B	USIC0 Channel 1 Shift Clock Output	
	CCU60_COU T62	O2	St/B	CCU60 Channel 2 Output	
	U2C0_DOUT	O3	St/B	USIC2 Channel 0 Shift Data Output	
	AD5	OH / IH	St/B	External Bus Interface Address/Data Line 5	
	U0C1_DX1B	I	St/B	USIC0 Channel 1 Shift Clock Input	

Table 6

XC2287M, XC2286M, XC2285M XC2000 Family / Base Line

General Device Information

Pin	Symbol	Ctrl.	Туре	Function
2, 36, 38, 72, 74, 108, 110,	V _{DDPB}	-	PS/B	Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins. Note: The on-chip voltage regulators and all ports except P5, P6 and P15 are fed from supply voltage V_{DDPB} .
144				
1, 37, 73,	V _{SS}	-	PS/	Digital Ground All V_{SS} pins must be connected to the ground-line or ground-plane.
109				Note: Also the exposed pad is connected internally to V_{SS} . To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.

Pin Definitions and Functions (cont'd)

 To generate the reference clock output for bus timing measurement, f_{SYS} must be selected as source for EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This configuration is referred to as reference clock output signal CLKOUT.

8 Kbytes of on-chip Stand-By SRAM (SBRAM) provide storage for system-relevant user data that must be preserved while the major part of the device is powered down. The SBRAM is accessed via a specific interface and is powered in domain M.

1024 bytes (2 × **512 bytes)** of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are word-wide registers which are used to control and monitor functions of the different on-chip units. Unused SFR addresses are reserved for future members of the XC2000 Family. In order to ensure upward compatibility they should either not be accessed or written with zeros.

The on-chip Flash memory stores code, constant data, and control data. The on-chip Flash memory consists of 1 module of 64 Kbytes (preferably for data storage) and modules with a maximum capacity of 256 Kbytes each. Each module is organized in sectors of 4 Kbytes.

The uppermost 4-Kbyte sector of segment 0 (located in Flash module 0) is used internally to store operation control parameters and protection information.

Note: The actual size of the Flash memory depends on the chosen device type.

Each sector can be separately write protected¹⁾, erased and programmed (in blocks of 128 Bytes). The complete Flash area can be read-protected. A user-defined password sequence temporarily unlocks protected areas. The Flash modules combine 128-bit read access with protected and efficient writing algorithms for programming and erasing. Dynamic error correction provides extremely high read data security for all read access operations. Access to different Flash modules can be executed in parallel. For Flash parameters, please see Section 4.5.

Memory Content Protection

The contents of on-chip memories can be protected against soft errors (induced e.g. by radiation) by activating the parity mechanism or the Error Correction Code (ECC).

The parity mechanism can detect a single-bit error and prevent the software from using incorrect data or executing incorrect instructions.

The ECC mechanism can detect and automatically correct single-bit errors. This supports the stable operation of the system.

It is strongly recommended to activate the ECC mechanism wherever possible because this dramatically increases the robustness of an application against such soft errors.

To save control bits, sectors are clustered for protection purposes, they remain separate for programming/erasing.

XC2287M, XC2286M, XC2285M XC2000 Family / Base Line

Functional Description

With this hardware most XC228xM instructions are executed in a single machine cycle of 12.5 ns with an 80-MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle, no matter how many bits are shifted. Also, multiplication and most MAC instructions execute in one cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast; for example, a 32-/16-bit division is started within 4 cycles while the remaining cycles are executed in the background. Another pipeline optimization, the branch target prediction, eliminates the execution time of branch instructions if the prediction was correct.

The CPU has a register context consisting of up to three register banks with 16 wordwide GPRs each at its disposal. One of these register banks is physically allocated within the on-chip DPRAM area. A Context Pointer (CP) register determines the base address of the active register bank accessed by the CPU at any time. The number of these register bank copies is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 32 Kwords is provided for storage of temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area); it is accessed by the CPU with the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared with the stack pointer value during each stack access to detect stack overflow or underflow.

The high performance of the CPU hardware implementation can be best utilized by the programmer with the highly efficient XC228xM instruction set. This includes the following instruction classes:

- Standard Arithmetic Instructions
- DSP-Oriented Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

3.11 Real Time Clock

The Real Time Clock (RTC) module of the XC228xM can be clocked with a clock signal selected from internal sources or external sources (pins).

The RTC basically consists of a chain of divider blocks:

- Selectable 32:1 and 8:1 dividers (on off)
- The reloadable 16-bit timer T14
- The 32-bit RTC timer block (accessible via registers RTCH and RTCL) consisting of: – a reloadable 10-bit timer
 - a reloadable 6-bit timer
 - a reloadable 6-bit timer
 - a reloadable 10-bit timer

All timers count up. Each timer can generate an interrupt request. All requests are combined to a common node request.

Figure 10 RTC Block Diagram

Note: The registers associated with the RTC are only affected by a power reset.

3.13 Universal Serial Interface Channel Modules (USIC)

The XC228xM features the USIC modules USIC0, USIC1, USIC2, USIC3. Each module provides two serial communication channels.

The Universal Serial Interface Channel (USIC) module is based on a generic data shift and data storage structure which is identical for all supported serial communication protocols. Each channel supports complete full-duplex operation with a basic data buffer structure (one transmit buffer and two receive buffer stages). In addition, the data handling software can use FIFOs.

The protocol part (generation of shift clock/data/control signals) is independent of the general part and is handled by protocol-specific preprocessors (PPPs).

The USIC's input/output lines are connected to pins by a pin routing unit. The inputs and outputs of each USIC channel can be assigned to different interface pins, providing great flexibility to the application software. All assignments can be made during runtime.

Figure 11 General Structure of a USIC Module

The regular structure of the USIC module brings the following advantages:

- Higher flexibility through configuration with same look-and-feel for data management
- Reduced complexity for low-level drivers serving different protocols
- Wide range of protocols with improved performances (baud rate, buffer handling)

3.14 MultiCAN Module

The MultiCAN module contains independently operating CAN nodes with Full-CAN functionality which are able to exchange Data and Remote Frames using a gateway function. Transmission and reception of CAN frames is handled in accordance with CAN specification V2.0 B (active). Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

All CAN nodes share a common set of message objects. Each message object can be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects can be combined to build gateways between the CAN nodes or to set up a FIFO buffer.

Note: The number of CAN nodes and message objects depends on the selected device type.

The message objects are organized in double-chained linked lists, where each CAN node has its own list of message objects. A CAN node stores frames only into message objects that are allocated to its own message object list and it transmits only messages belonging to this message object list. A powerful, command-driven list controller performs all message object list operations.

Figure 12 Block Diagram of MultiCAN Module

3.20 Instruction Set Summary

Table 11 lists the instructions of the XC228xM.

The addressing modes that can be used with a specific instruction, the function of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "**Instruction Set Manual**".

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16- \times 16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise exclusive OR, (word/byte operands)	2/4
BCLR/BSET	Clear/Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND/BOR/BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/BFLDL	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL/SHR	Shift left/right direct word GPR	2

Table 11 Instruction Set Summary

4.2.1 DC Parameters

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

Note: Operating Conditions apply.

 Table 14 is valid under the following conditions:

 $V_{\text{DDP}} \ge 4.5 \text{ V}; V_{\text{DDPtvp}} = 5 \text{ V}; V_{\text{DDP}} \le 5.5 \text{ V}$

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	_	-	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.11 x V _{DDP}	-	-	V	$R_{\rm S} = 0$ Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{OZ1} CC	-	10	200	nA	$V_{\rm IN}$ > 0 V; $V_{\rm IN}$ < $V_{\rm DDP}$
Absolute input leakage current for all other pins. To be doubled for double	I _{OZ2} CC	-	0.2	5	μΑ	$\begin{array}{l} T_{\rm J} \leq 110 ~^{\circ}{\rm C}; \\ V_{\rm IN} < V_{\rm DDP}; \\ V_{\rm IN} > V_{\rm SS} \end{array}$
bond pins. ³⁾¹⁾⁴⁾		_	0.2	15	μΑ	$T_{ m J} \leq$ 150 °C; $V_{ m IN} < V_{ m DDP};$ $V_{ m IN} > V_{ m SS}$
Pull Level Force Current ⁵⁾	$ I_{PLF} $ SR	250	-	-	μA	6)
Pull Level Keep Current ⁷⁾	$ I_{PLK} $ SR	-	-	30	μA	6)
Input high voltage (all except XTAL1)	$V_{\rm IH}{\rm SR}$	0.7 x V_{DDP}	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{\rm IL}{\rm SR}$	-0.3	-	0.3 x V _{DDP}	V	
Output High voltage ⁸⁾	V _{OH} CC	V _{DDP} - 1.0	-	-	V	$I_{\rm OH} \ge I_{\rm OHmax}$
		V _{DDP} - 0.4	-	-	V	$I_{\text{OH}} \ge I_{\text{OHnom}}^{9)}$

Table 14 DC Characteristics for Upper Voltage Range

4.2.3 Power Consumption

The power consumed by the XC228xM depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current I_{LK} depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Standby mode:

Voltage domain DMP_1 switched off completely, power supply control switched off.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

Sample time and conversion time of the XC228xM's A/D converters are programmable. The timing above can be calculated using Table 19.

The limit values for f_{ADCI} must not be exceeded when selecting the prescaler value.

GLOBCTR.5-0 (DIVA)	A/D Converter Analog Clock fance	INPCRx.7-0 (STC)	Sample Time ¹⁾
000000 _B	f _{sys}	00 _H	$t_{ADCI} \times 2$
000001 _B	<i>f</i> _{SYS} / 2	01 _H	$t_{ADCI} \times 3$
000010 _B	<i>f</i> _{SYS} / 3	02 _H	$t_{ADCI} \times 4$
	$f_{\rm SYS}$ / (DIVA+1)	:	$t_{ADCI} \times (STC+2)$
111110 _B	f _{SYS} / 63	FE _H	$t_{ADCI} imes 256$
111111 _B	f _{SYS} / 64	FF _H	$t_{ADCI} imes 257$

 Table 19
 A/D Converter Computation Table

1) The selected sample time is doubled if broken wire detection is active (due to the presampling phase).

Converter Timing Example A:

Assumptions:	$f_{\rm SYS}$	= 80 MHz (i.e. t_{SYS} = 12.5 ns), DIVA = 03 _H , STC = 00 _H
Analog clock	$f_{\rm ADCI}$	$= f_{SYS} / 4 = 20 \text{ MHz}$, i.e. $t_{ADCI} = 50 \text{ ns}$
Sample time	t _S	$= t_{ADCI} \times 2 = 100 \text{ ns}$
Conversion 10	-bit:	
	<i>t</i> _{C10}	= $13 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 13×50 ns + 2×12.5 ns = 0.675 μ s
Conversion 8-b	oit:	
	t _{C8}	= $11 \times t_{ADCI}$ + 2 × t_{SYS} = 11 × 50 ns + 2 × 12.5 ns = 0.575 µs

Converter Timing Example B:

Assumptions:	$f_{\rm SYS}$	= 40 MHz (i.e. t_{SYS} = 25 ns), DIVA = 02 _H , STC = 03 _H	
Analog clock	$f_{\rm ADCI}$	$= f_{SYS} / 3 = 13.3 \text{ MHz}$, i.e. $t_{ADCI} = 75 \text{ ns}$	
Sample time	t _S	$= t_{ADCI} \times 5 = 375 \text{ ns}$	
Conversion 10-b	oit:		
	t _{C10}	= $16 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 16×75 ns + 2×25 ns = 1.25 µs	
Conversion 8-bit:			
	t _{C8}	= $14 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 14×75 ns + 2×25 ns = 1.10 µs	

Coding of bit fields LEVxV in SWD and PVC Configuration Registers

		In Register en Deente
Code	Default Voltage Level	Notes ¹⁾
0000 _B	2.9 V	
0001 _B	3.0 V	LEV1V: reset request
0010 _B	3.1 V	
0011 _B	3.2 V	
0100 _B	3.3 V	
0101 _B	3.4 V	
0110 _B	3.6 V	
0111 _B	4.0 V	
1000 _B	4.2 V	
1001 _B	4.5 V	LEV2V: no request
1010 _B	4.6 V	
1011 _B	4.7 V	
1100 _B	4.8 V	
1101 _B	4.9 V	
1110 _B	5.0 V	
1111 _B	5.5 V	

Table 21 Coding of bit fields LEVxV in Register SWDCON0

1) The indicated default levels are selected automatically after a power reset.

Table 22 Coding of Bitfields LEVxV in Registers PVCyCONz

Code	Default Voltage Level	Notes ¹⁾
000 _B	0.95 V	
001 _B	1.05 V	
010 _B	1.15 V	
011 _B	1.25 V	
100 _B	1.35 V	LEV1V: reset request
101 _B	1.45 V	LEV2V: interrupt request ²⁾
110 _B	1.55 V	
111 _B	1.65 V	

1) The indicated default levels are selected automatically after a power reset.

4.6 AC Parameters

These parameters describe the dynamic behavior of the XC228xM.

4.6.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

Figure 17 Input Output Waveforms

PLL frequency band selection

Different frequency bands can be selected for the VCO so that the operation of the PLL can be adjusted to a wide range of input and output frequencies:

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
VCO output frequency (VCO controlled)	$f_{\rm VCO}$ CC	50	-	110	MHz	$VCOSEL = 00_B$
		100	-	160	MHz	$VCOSEL = 01_B$
VCO output frequency (VCO free-running)	$f_{\rm VCO}{\rm CC}$	10	-	40	MHz	$VCOSEL = 00_B$
		20	-	80	MHz	$VCOSEL = 01_B$

Table 24 System PLL Parameters

4.6.2.2 Wakeup Clock

When wakeup operation is selected (SYSCON0.CLKSEL = 00_B), the system clock is derived from the low-frequency wakeup clock source:

 $f_{SYS} = f_{WU}$.

In this mode, a basic functionality can be maintained without requiring an external clock source and while minimizing the power consumption.

4.6.2.3 Selecting and Changing the Operating Frequency

When selecting a clock source and the clock generation method, the required parameters must be carefully written to the respective bit fields, to avoid unintended intermediate states.

Many applications change the frequency of the system clock (f_{SYS}) during operation in order to optimize system performance and power consumption. Changing the operating frequency also changes the switching currents, which influences the power supply.

To ensure proper operation of the on-chip EVRs while they generate the core voltage, the operating frequency shall only be changed in certain steps. This prevents overshoots and undershoots of the supply voltage.

To avoid the indicated problems, recommended sequences are provided which ensure the intended operation of the clock system interacting with the power system. Please refer to the Programmer's Guide.

4.6.5.2 External Bus Arbitration

If the arbitration signals are enabled, the XC228xM makes its external resources available in response to an arbitration request.

Note: Operating Conditions apply.

Table 32 Bus Arbitration Timing for Upper Voltage Ra	lange
--	-------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Input setup time HOLD input	<i>t</i> ₄₀ SR	23		-	ns	
<u>Output</u> <u>delay</u> rising edge HLDA, BREQ	<i>t</i> ₄₁ CC	-1		13	ns	
Output delay falling edge HLDA	<i>t</i> ₄₂ CC	-2		14	ns	

Table 33	Bus Arbitration	Timing for Lower	Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Input setup time HOLD input	<i>t</i> ₄₀ SR	28		-	ns	
Output delay rising edge HLDA, BREQ	<i>t</i> ₄₁ CC	-1		19	ns	
Output delay falling edge HLDA	<i>t</i> ₄₂ CC	-2		21	ns	

Debug via JTAG

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply; C_L = 20 pF.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
TCK clock period	t ₁ SR	50 ¹⁾	-	-	ns	2)
TCK high time	t_2 SR	16	-	-	ns	
TCK low time	t_3 SR	16	-	-	ns	
TCK clock rise time	t_4 SR	-	-	8	ns	
TCK clock fall time	t ₅ SR	-	-	8	ns	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ³⁾	t ₈ CC	-	25	29	ns	
TDO high impedance to valid output from TCK falling edge ⁴⁾³⁾	t ₉ CC	-	25	29	ns	
TDO valid output to high impedance from TCK falling edge ³⁾	<i>t</i> ₁₀ CC	-	25	29	ns	
TDO hold after TCK falling edge ³⁾	<i>t</i> ₁₈ CC	5	-	-	ns	

Table 40JTAG Interface Timing for Upper Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_1 \ge t_{SYS}$.

2) Under typical conditions, the interface can operate at transfer rates up to 20 MHz.

3) The falling edge on TCK is used to generate the TDO timing.

4) The setup time for TDO is given implicitly by the TCK cycle time.

www.infineon.com

Published by Infineon Technologies AG